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Abstract

Shannon entropy is often a quantity of inter-
est to linguists studying the communicative ca-
pacity of human language. However, entropy
must typically be estimated from observed data
because researchers do not have access to the
underlying probability distribution that gives
rise to these data. While entropy estimation is a
well-studied problem in other fields, there is not
yet a comprehensive exploration of the efficacy
of entropy estimators for use with linguistic
data. In this work, we fill this void, studying
the empirical effectiveness of different entropy
estimators for linguistic distributions. In a repli-
cation of two recent information-theoretic lin-
guistic studies, we find evidence that the re-
ported effect size is over-estimated due to over-
reliance on poor entropy estimators. Finally, we
end our paper with concrete recommendations
for entropy estimation depending on distribu-
tion type and data availability.

1 Introduction

There is a natural connection between informa-
tion theory, the mathematical study of communica-
tion systems, and linguistics, the study of human
language—the primary vehicle that humans em-
ploy to communicate. Researchers have exploited
this connection since information theory’s incep-
tion (Shannon, 1951; Cherry et al., 1953; Harris,
1991). With the advent of modern computing, the
number of information-theoretic linguistic studies
has risen, exploring claims about language such
as the optimality of the lexicon (Piantadosi et al.,
2011; Pimentel et al., 2021), the complexity of
morphological systems (Cotterell et al., 2019; Wu
et al., 2019; Rathi et al., 2021), and the correla-
tion between surprisal and language processing
time (Smith and Levy, 2013; Bentz et al., 2017;
Goodkind and Bicknell, 2018; Cotterell et al., 2018;
Meister et al., 2021, inter alia).

In information-theoretic linguistics, a fundamen-
tal quantity of research interest is entropy. Entropy
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Figure 1: A comparison of several estimators of the
entropy of the unigram distribution across 5 languages.
Minima in all the graphs indicate sign changes in the
error of the estimate, from an under- to an over-estimate.

is both useful to linguists in its own right, and is
necessary for estimating other useful quantities,
e.g., mutual information. However, the estimation
of entropy from raw data can be quite challeng-
ing (Paninski, 2003; Nowozin, 2015), e.g., in ex-
pectation, the plug-in estimator underestimates en-
tropy (Miller, 1955). Linguistic distributions often
present additional challenges. For instance, many
linguistic distributions, such as the unigram distri-
bution, follow a power law (Zipf, 1935; Mitzen-
macher, 2004).1 Linguistics is not the only field
with such nuances, and so a large number of en-
tropy estimators have been proposed in other fields
(Chao and Shen, 2003; Archer et al., 2014, inter
alia). However, no work to date has attempted a
practical comparison of these estimators on natural
language data. This work fills this empirical void.

Our paper offers a large empirical comparison of
the performance of 6 different entropy estimators

1As Nemenman et al. (2002) highlight, when estimating
the entropy of a distribution that follows a power law, it is
often possible to get an effectively meaningless estimate that
is completely determined by the estimator’s hyperparameters.
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on both synthetic and natural language data, an ex-
ample of which is shown in Figure 1. We find that
Chao and Shen’s (2003) is the best estimator when
very few data are available, but Nemenman et al.’s
(2002) is superior as more data become available.
Both are significantly better (in terms of mean-
squared error) than the naïve plug-in estimator. Im-
portantly, we also show that two recent studies
(Williams et al., 2021; McCarthy et al., 2020) show
smaller effect sizes when a better estimator is em-
ployed; however, we are able to reproduce a signifi-
cant effect in both replications. We recommend that
future studies carefully consider their choice of en-
tropy estimators, taking into account data availabil-
ity and the nature of the underlying distribution.2

2 Entropy and Language

Shannon entropy is a quantification of the uncer-
tainty in a random variable. Given a (discrete)
random variable X with probability distribution
p over K possible outcomes X = {xk}Kk=1, the
Shannon entropy of X is defined as

H(X) = H(p)
def
= −

K∑
k=1

p(xk) log p(xk) (1)

Entropy has many uses throughout science and en-
gineering; for instance, Shannon (1948) originally
proposed entropy as a lower bound on the com-
pressibility of a stochastic source.

Yet the application of information-theoretic tech-
niques to linguistics is not so straightforward:
Information-theoretic measures are defined over
probability distributions and, in the study of nat-
ural language, we typically only have access to
samples from the distribution of interest, e.g., the
phonotactic distribution in English, which permits
word we cannot find in a corpus, like blick, rather
than the true probabilities required in the computa-
tion of Eq. (1). Indeed, it is often the case that not
all elements of X are even observed in available
data—such as words that were coined after the a
corpus was collected.

Rather, p must be approximated in order to es-
timate H(p). One solution is plug-in estimation:
Given samples from p, the maximum-likelihood es-
timate for p is “plugged” into Eq. (1). However, as
originally noted by Miller (1955), this strategy gen-
erally yields poor estimates.3 It is thus necessary

2Our code is available at https://github.com/
aryamanarora/entropy-estimation.

3A proof of this result in given in full in Proposition 1.

to derive more nuanced estimators.

3 Statistical Estimation Theory

Statistical estimation theory provides us with the
tools for estimating various quantities of interest
based on samples from a distribution.

Central to this theory is the estimator: A
statistic that approximates a property of the distri-
bution our data is drawn from. More formally, let
D = {x̃(n)}Nn=1 be samples from an unknown dis-
tribution p. Suppose we are interested in a quantity
θ that can be computed as a function of the distribu-
tion p. An estimator θ̂(D) for θ is then a function
of the data D that provides an approximation of θ.

Two properties of an estimator are often of
interest: bias—the difference between the true
value of θ and the expected value of our estimator
θ̂(D) under p—and variance—how much θ̂(D)
fluctuates from sample set to sample set:

bias(θ̂(D))
def
= Ep[θ̂(D)]− θ (2)

var(θ̂(D))
def
= Ep[(θ̂(D)− Ep[θ̂(D)])2] (3)

It is desirable to construct an estimator that has
both low bias and low variance. However, the
bias–variance trade-off tells us that we often have
to pick one, and we should focus on a balance
between the two. This trade-off is evinced through
mean-squared error (MSE), a metric oft-employed
for assessing estimator quality:

MSE(θ̂(D)) = bias(θ̂(D))2 + var(θ̂(D)) (4)

To recognize the trade-oft note that, for any fixed
MSE, a decrease in bias must be compensated with
an increase in variance and vice versa. Indeed, it
is important to recognize that there is typically no
single estimator that is seen as “best.” Different
estimators balance the bias–variance trade-off
differently, making their perceived quality specific
to one’s use-case. Importantly, the effectiveness
of an estimator also depends on the domain of in-
terest. Consequently, an empirical study of various
entropy estimators, which this paper provides, is
necessary in order to determine which entropy es-
timators are best suited for linguistic distributions.

3.1 Plug-in Estimation of Entropy

A simple, two-step approach for estimating entropy
is plug-in estimation. In the first step, we compute
the maximum-likelihood estimate for p from our
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dataset D as follows

p̂MLE(xk)
def
=

∑N
n=1 1{x̃(n) = xk}

N
(5)

In the second step, we plug Eq. (5) into Eq. (1)
directly, which results in the estimator ĤMLE(D).
So why is this a bad idea? While our probabil-
ity estimates themselves are unbiased, entropy is
a concave function. Consequently, by Jensen’s in-
equality, this estimator is, in expectation, a lower
bound on the true entropy (see App. E.1 for proof).
Moreover, when N ≪ K, which is often the case
in power-law distributed data, the estimate becomes
quite unreliable (Nemenman et al., 2002).

3.2 An Ensemble of Entropy Estimators
MM—Miller (1955) and Madow (1948). The
first innovation in entropy estimation known to the
authors is a simple fix derived from a first-order
Taylor expansion of MLE (described above). The
Miller–Madow estimator only involves a simple
additive correction, which is shown below:

ĤMM(D)
def
= ĤMLE(D) +

K − 1

2N
(6)

where K is size of the support of X . The Miller–
Madow correction should seem intuitive in that we
add K−1

2N ≥ 0 to compensate for the negative bias
of the estimator. A full derivation of the Miller–
Madow estimator is given in Proposition 2.

JACK—Zahl (1977). Next we consider the jack-
knife, which is a common strategy used to correct
for the bias of statistical estimators. In the case
of entropy estimation, we can apply the jackknife
out of the box to correct the bias inherent in the
MLE estimator. Explicitly, this is done by averag-
ing plug-in entropy estimates ĤMLE(D) albeit with
the nth sample from the data removed; we denote
this held-out plug-in estimator as Ĥ\n

MLE(D). Aver-
aging these “held-out” plug-in estimators results in
the following simple entropy estimator

ĤJACK(D)
def
= N ĤMLE(D)− N − 1

N

N∑
n=1

Ĥ
\n
MLE(D)

(7)
Note that the jackknife is applicable to any estima-
tor, not just ĤMLE(D), and, thus, can be combined
with any of the other approaches mentioned.

HT—Horvitz and Thompson (1952). Horvitz–
Thompson is a general scheme for building estima-
tors that employs importance weighting in order to

more efficiently estimate a function of a random
variable. Importantly, this estimator gives us the
ability to compensate for situations where the prob-
ability of an outcome is so low that it is often not
observed in a sample, which is often the case for
e.g., power-law distributions.

While a full exposition of HT estimators is out-
side of the scope of this work, in essence, we can
divide the expected probability of a class by each
class’s estimated inclusion probability to compen-
sate for such situations. Given the true proba-
bility of an outcome p(xk), the probability that
it occurs at least once in a sample of size N is
1 − (1 − p(xk))

N . The HT estimator for entropy
is then defined as

ĤHT(D)
def
= −

K∑
k=1

p̂MLE(xk) log p̂MLE(xk)

1− (1− p̂MLE(xk))N
(8)

using our MLE probability estimates p̂MLE(xk).

CS—Chao and Shen (2003). Chao–Shen mod-
ifies HT by multiplying the MLE probability esti-
mates by an estimate of sample coverage. Formally,
let f1 be the number of observed singletons4 in
sample; our sample coverage can be estimated as
Ĉ = 1− f1

N . The CS estimator is then computed as:

ĤCS(D)
def
= −

K∑
k=1

Ĉ · p̂MLE(xk) log Ĉ · p̂MLE(xk)

1− (1− Ĉ · p̂MLE(xk))N

(9)
In the case that f1 = N , we set f1 = N − 1 to
ensure the estimated entropy is not 0.

WW—Wolpert and Wolf (1995). One family of
entropy estimators in information theory is based
on Bayesian principles. The first of these was the
Wolpert–Wolf estimator, which uses a Dirichlet
prior (with concentration parameter α and a uni-
form base distribution). This Bayesian estimator
has a clean, closed form:

ĤWW(D | α)
def
= ψ

(
Ã+ 1

)
−

K∑
k=1

α̃k

Ã
ψ(α̃k + 1)

(10)
where α̃k = c(xk) + αk (for the histogram count
c(xk) of class k in the sample; this is analogous to
Laplace smoothing), Ã =

∑K
k=1 α̃k, and ψ is the

digamma function. A full derivation of Eq. (10) is
given in Proposition 3. Unfortunately, Eq. (10) is

4A singleton (hapax legomenon) is an outcome which is
observed only once in the sample.
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MAB MSE
102 103 104 105 102 103 104 105

English HT HT NSB NSB HT HT NSB NSB
German HT HT NSB CS HT HT NSB CS
Dutch HT HT NSB CS HT HT NSB CS

Mongolian NSB HT NSB NSB NSB HT NSB NSB
Tagalog HT HT NSB NSB HT HT NSB NSB

Table 1: The best unigram entropy estimators on the corpora studied, tested on various N averaged over 100
samples. All differences are statistically significant on the permutation test; lighter color indicates fewer statistically
significant comparisons on the Tukey test. Scale: significantly better than 6 5 4 3 2 1 0 other estimators.

very dependent on the choice of α: For large K, α
almost completely determines the final entropy esti-
mate, an observation first made by Nemenman et al.
(2002) which motivated their improved estimator
described below.

NSB—Nemenman et al. (2002). Nemenman
et al. (NSB) attempt to alleviate the Wolpert–Wolf
estimator’s dependence on α. They take α = α ·1,
enforcing that the Dirichlet prior is symmetric, and
develop a hyperprior over α that results in a near-
uniform distribution over entropy. The hyperprior
is given by

pNSB(α)
def
=
Kψ1(Kα+ 1)− ψ1(α+ 1)

logK
(11)

where ψ1 is the trigamma function. A full deriva-
tion of Eq. (11) is given in Proposition 4. This
choice of hyperprior mitigates the effect that the
chosen α has on the entropy estimate. Nemenman
et al.’s (2002) entropy estimator is then the pos-
terior mean of the Wolpert–Wolft estimator taken
under pNSB:

ĤNSB(D) =

∫ ∞

0
ĤWW(D | α · 1) pNSB(α) dα

(12)
Typically, numerical integration is used to quickly
compute the unidimensional integral.

4 Experiments

Here we provide an evaluation of the entropy
estimators presented in §3.2 on linguistic data.

4.1 Entropy of the Unigram Distribution

We start our study with a controlled experiment
where we estimate the entropy of the truncated
unigram distribution, the (finite) distribution over
the frequent word tokens in a language without
regard to context (Baayen et al., 2016; Diessel,
2017; Divjak, 2019; Nikkarinen et al., 2021). We

renormalize the frequency counts of corpora in En-
glish, German, and Dutch (taken from CELEX;
Baayen et al., 1995), as well as Mongolian and
Tagalog (from Wikipedia5). We take this renor-
malization as a gold standard distribution, since
we cannot access the underlying unigram distri-
bution. We then draw samples of varying sizes
(N ∈ {102, 103, 104, 105}) from the distribution
of renormalized frequency counts to test the estima-
tors’ ability to recover the underlying distributions’
entropy. While the renormalized frequency counts
are not necessarily representative of the true uni-
gram distribution, they nevertheless provide us with
a controlled setting to benchmark various entropy
estimators.

We evaluate the estimators on both bias and
MSE, as defined in (2) and (4), as well as mean
absolute bias (MAB). To test the statistical sig-
nificance of differences in metrics between en-
tropy estimators, we use paired permutation tests
(Good, 2000) (sampling 1, 000 permutations) be-
tween pairs of estimators, checking MAB and MSE.
We run Tukey’s test (1949) to judge the statistical
significance of differences in MAB and MSE be-
tween all pairs of estimators, which found only a
few insignificant comparisons when N was large.

Results are shown in Table 1 and Figure 1. We
find that NSB (followed closely by CS) converges
almost to the true entropy from below using with
only a few samples. HT is the best estimator for
N < 2, 000, but as N increases it tends to overes-
timate entropy to the point where its bias is greater
than that of MLE. Besides HT, all estimators at all
tested sample sizes N have lower MAB and MSE
than MLE.

4.2 Replication of Williams et al. (2021)
Next, we turn to a replication of Williams et al.’s
(2021) information-theoretic study on the associa-

5We used dumps from November 1, 2021: Mongolian and
Tagalog; the extracted counts are available in our repository.
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Language n MLE CS MM JACK WW NSB

Italian 16, 856 20.00% 15.56% 16.43% 14.09% 19.67% 11.41%
Polish 15, 525 30.52% 23.48% 25.49% 21.75% 34.68% 17.07%
Portuguese 7, 409 27.60% 20.76% 22.51% 18.81% 33.32% 14.18%
Spanish 21, 408 20.50% 15.17% 16.44% 13.80% 21.04% 10.50%

Arabic 2, 483 45.31% 38.49% 40.99% 37.93% 49.09% 34.82%
Croatian 13, 856 31.35% 26.04% 26.62% 23.08% 35.66% 19.06%
Greek 3, 305 41.58% 33.17% 36.39% 32.32% 48.80% 27.00%

Table 2: Normalized mutual information, calculated with several estimators, between adjectives and the inanimate
nouns they modify based on UD corpora. Colored-in cell means statistically significant NMI value.

tion between gendered inanimate nouns and their
modifying adjectives. They estimate mutual infor-
mation by using its familiar decomposition as the
difference of two entropies: MI(X;Y ) = H(X)−
H(X | Y ). The entropies H(X) and H(X | Y ) are
estimated independently and then their difference is
computed. We replicate Williams et al.’s (2021) ex-
periments using gold-parsed Universal Dependen-
cies corpora, filtering out animate nouns with Mul-
tilingual WordNet (Bond and Foster, 2013). We
rerun their experimental set-up using our full suite
of entropy estimators to determine whether the re-
lationship they posit remains significant, checking
3 more languages not in the original study.

We report results for normalized mutual infor-
mation (dividing MI by maximum possible MI) in
Table 2. We find that using NSB (the estimator
we found most effective in §4.1) instead of MLE,
nearly halves the measured effect in all languages.
However, the effect remains statistically significant
in 5 of 7 languages tested, including the 4 that were
also in the original study.

4.3 Replication of McCarthy et al. (2020)

Finally, we turn our attention to McCarthy et al.’s
(2020) study on the similarity between grammat-
ical gender partitions between languages. Using
information-theoretic measures, they found that
closely related languages have more similar gender
groupings of core lexical items. We replicate their
experiment on Swadesh lists (Swadesh, 1955) for
10 European languages with different estimators,
and find that hierarchical clustering over both mu-
tual (MI) and variational information (VI) produces
the same trees as the original study. In this case, us-
ing NSB, our recommended estimator, results in a
reduced estimate of MI (e.g. Croatian–Slovak: 0.54
with MLE → 0.46 with NSB), but significance test-
ing with 1,000 permutations finds the same pairs
were statistically significant for both MI and VI re-
gardless of estimator: all pairs of Slavic languages

and Romance languages, and Bulgarian–Spanish
(see Figure 2). Thus, we see a similar result here
as in the previous replication.

5 Conclusion

This work presents the first empirical study compar-
ing the performance of various entropy estimators
for use with natural language distributions. From
experiments on synthetic data (appendix) and nat-
ural data (CELEX), and two replication studies of
recent papers in information-theoretic linguistics,
we find that the oft-employed plug-in estimator of
entropy can cause misleading results, e.g., the over-
estimates of effect sizes seen in both replication
studies. The recommendation of our paper is that
researchers should carefully consider their choice
of entropy estimator based on data availability and
the nature of the underlying distribution.
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MAB MSE
101 102 103 104 101 102 103 104

2 HT WW WW WW WW WW WW JACK
5 MM WW WW JACK MM WW WW MM
10 JACK CS WW MM JACK WW WW MLE
100 CS CS JACK WW CS JACK JACK WW
1000 CS HT CS JACK CS HT CS JACK

Table 3: Estimators with least MAB (mean absolute bias) and MSE (mean squared error) for various combinations
of N and K sampling from symmetric Dirichlet. The lighter the color the fewer estimators the best estimator was
found to be statistically significantly better than.

MAB MSE
101 102 103 104 101 102 103 104

100 CS CS CS J CS CS CS J
1000 NSB HT NSB J CS HT NSB J

Table 4: Estimators with least MAB (mean absolute bias) and MSE (mean squared error) for various combinations
of N and K sampling from Zipfian distributions.

A Implementation

The code for each of the entropy estimators is implemented in Python using numpy (Harris et al., 2020),
except for NSB which was taken from an existing efficient implementation in the ndd module (Marsili,
2016). We calculated entropies with base e (in nats).

B Experiments with simulated data

In our experiments with simulated data, we explore distributions sampled from a symmetric Dirichlet
prior with varying number of classes K and known distributions of Zipfian form with various parameters.
Words in natural languages have a roughly Zipfian distribution, with probability inversely proportional to
rank (Zipf, 1935), and a symmetric Dirichlet distribution is analogous to e.g. POS tag label distributions
in natural language. Thus, studying synthetic data from such distributions as a start is useful.

B.1 Experiment 1: Symmetric Dirichlet distributions

We sample 1, 000 distributions from a symmetric Dirichlet distribution with variable number of classes K,
i.e. with paramater α = [α1, . . . , αK ] = [1, . . . , 1]. We calculate entropy estimates on different sample
sizes N . Since we know the parameters of the true distribution, we can compare estimates with the true
entropy. We do pairwise comparisons of the MAB and MSE of estimators, using paired permutation tests
to establish significance. Table 3 shows our results, including significance tests. It is clear that when
N ≫ K, all of the estimators have nearly converged to the true value and estimator choice does not matter.
However, in the low-sample regime some estimators are indeed significantly better at approximating the
true entropy. Our results are mixed as to which estimator is best in what context; the one found to be most
frequently significantly better than other estimators was Chao–Shen. What is clear is that MLE is never
the best choice.

B.2 Experiment 2: Zipfian distributions

We sample 1, 000 finite Zipfian distributions with K classes which obey Zipf’s law, that the probability of
an outcome is inverse proportional to its rank. The experimental setup is the same as in Experiment 1.
A Zipfian distribution approximates (but is not a perfect model of) the distribution of tokens in natural
language text in some languages, including English, which was the basis for the law being proposed.
Compare similar experiments on infinite Zipf distributions by Zhang (2012). Results are in Table 4.

C Replication of Williams et al. (2021)

We used the following UD treebanks:
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• Arabic: PADT (Smrž et al., 2008; Taji et al., 2017);
• Greek: GDT (Prokopidis et al., 2005; Prokopidis and Papageorgiou, 2017);
• Italian: ISDT (Bosco et al., 2013), VIT (Tonelli et al., 2008);
• Polish: PDB (Wróblewska, 2018);
• Portuguese: GSD (McDonald et al., 2013), Bosque (Rademaker et al., 2017);
• Spanish: AnCora (Taulé et al., 2008), GSD (McDonald et al., 2013).

D Additional Figures
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Figure 2: Mutual information between the gender partitions of language pairs with various estimators, replicating
McCarthy et al. (2020).
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Figure 4: The heatmaps display the p-values calculated between pairs of estimators for mean absolute bias (MAB)
and mean squared error (MSE) for Experiment 1. More purple values mean the estimator on the y-axis (Estimator 2)
is better than the estimator on the x-axis (Estimator 1). Comparisons tend to become non-significant as N increases,
since all the estimators gradually converge to the true entropy.
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E Derivation of the Entropy Estimators

Let X = {xk}Kk=1 be a finite set. Let p be a distribution over X . The entropy of p is defined as

H(p)
def
= −

K∑
k=1

pk log pk (13)

Given a dataset of N samples D sampled i.i.d. from p, our goal is to estimate the entropy
H(p) from samples D from the true distribution p. We will denote the count of an item xk as
c(xk) =

∑N
n=1 1

{
xk = x̃(n)

}
. The maximum-likelihood estimate (MLE) of p given D is denoted∑N

n=1 1{x̃(n)=xk}
N . The plug-in estimate of H(p) is defined to be the estimate of H(p) obtained by

plugging the MLE estimate p̂MLE directly into the definition of entropy, i.e.,

ĤMLE(D) = H(p̂MLE) = −
K∑
k=1

p̂MLE(xk) log p̂MLE(xk) = −
K∑
k=1

c(xk)

N
log

c(xk)

N
(14)

This section discusses the problems with Eq. (14) as an estimator and provides detailed derivations of
improved estimators found in the literature.

E.1 The Plug-in Estimator is Negatively Biased
Proposition 1. The MLE entropy estimator in expectation underestimates true entropy, i.e.,

ĤMLE(D) = E

[
K∑
k=1

−p̂MLE(xk) log p̂MLE(xk)

]
≤ H(p) (15)

Proof. The result is a simple consequence of Jensen’s inequality and some basic manipulations:

E

[
K∑
k=1

−p̂MLE(xk) log p̂MLE(xk)

]
=

K∑
k=1

E[−p̂MLE(xk) log p̂MLE(xk)] (linearity of expectation)

≤ −
K∑
k=1

E[p̂MLE(xk)] logE[p̂MLE(xk)] (Jensen’s inequality)

= −
K∑
k=1

p(xk) log p(xk) (E[p̂MLE(xk)] = p(xk))

= H(p) (definition of entropy)

This completes the result.

E.2 Miller–Madow
Proposition 2. Let p be a categorical distribution over X = {x1, . . . , xK}, i.e., a categorical distribution
with support K. Let D be our dataset of size N sampled from p. Finally, let p̂MLE be the maximum-
likelihood estimate computed on D. Then, we have

bias
(
ĤMLE(D)

)
def
= Ep

[
ĤMLE(D)

]
−H(p) (16)

= −K − 1

2N
+ o

(
N−1

)
(17)

Proof. We start by taking a first-order Taylor expansion and take an expectation of both sides.

ĤMLE(D) = H(p̂MLE, p)︸ ︷︷ ︸
cross-entropy

−KL(p̂MLE || p) (Lemma 1) (18)
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Ep

[
ĤMLE(D)

]
= Ep [H(p̂MLE, p)]− Ep [KL(p̂MLE || p)] (expectation) (19)

= Ep

[
−

K∑
k=1

p̂MLE(xk) log p(xk)

]
− Ep [KL(p̂MLE || p)] (defn. H(p, q)) (20)

= −
K∑
k=1

Ep [p̂MLE(xk) log p(xk)]− Ep [KL(p̂MLE || p)] (linearity) (21)

= −
K∑
k=1

Ep [p̂MLE(xk)] log p(xk)− Ep [KL(p̂MLE || p)] (algebra) (22)

= −
K∑
k=1

p(xk) log p(xk)− Ep [KL(p̂MLE || p)] (unbiased) (23)

= H(p)− Ep [KL(p̂MLE || p)] (defn. of H(p)) (24)

(25)

This gives us:

Ep

[
ĤMLE(D)

]
−H(p) = −Ep [KL(p̂MLE || p)] (subtract H(p)) (26)

Thus, we may compactly write the bias as:

bias
(
ĤMLE(D)

)
= Ep [H(p̂MLE)]−H(p) (definition of bias) (27)

= −Ep [KL(p̂MLE || p)] (above computation) (28)

≤ 0 (non-negativity of KL) (29)

Now, we find a simpler expression for the remainder Ep [KL(p̂MLE || p)]. Again, we start with a second-
order Taylor expansion

KL(p || q) =
∑
x∈X

∆(x)2

2q(x)
+ o

(
∆(x)2

)
(Lemma 2) (30)

around the point ∆(x) = p(x) − q(x). Define p̂MLE(xk) =
c(xk)
N where c(xk) is the count of xk in the

training set. We now simplify the first term:

Ep

[
K∑
k=1

∆(xk)
2

2q(xk)

]
= Ep

[
K∑
k=1

(p̂MLE(xk)− p(xk))
2

2p(xk)

]
(definition of ∆(xk)) (31)

= Ep

[
K∑
k=1

( c(xk)
N − p(xk))

2

2p(xk)

]
(definition of MLE) (32)

= Ep

[
K∑
k=1

(c(xk)−Np(xk))
2

2N2p(xk)

]
(×N/N) (33)

=
1

2N
Ep

[
K∑
k=1

(c(xk)−Np(xk))
2

Np(xk)

]
(pulling out 1/2N) (34)

=
1

2N
Ep

 K∑
k=1

c(xk)
2 − 2c(xk)Np(xk)

+N2p(xk)
2

Np(xk)

 (exp. the binomial) (35)

=
1

2N

K∑
k=1

Ep

[
c(xk)

2
]
− 2Np(xk)Ep [c(xk)]

+N2p(xk)
2

Np(xk)
(lin. of expect.) (36)

187



=
1

2N

K∑
k=1

Npk(1− p(xk)) +N2p(xk)
2

− 2N2p(xk)
2 +N2p(xk)

2

Np(xk)
(moments of MLE) (37)

=
1

2N

K∑
k=1

Npk(1− p(xk))

Np(xk)

+
1

2N

K∑
k=1

N2p(xk)
2 − 2N2p(xk)

2 +N2p(xk)
2

Np(xk)︸ ︷︷ ︸
=0

(38)

=
1

2N

K∑
k=1

����Np(xk)(1− p(xk))

����Np(xk)
(39)

=
1

2N

K∑
k=1

(1− p(xk)) (algebra) (40)

=
1

2N

K∑
k=1

1︸ ︷︷ ︸
=K

− 1

2N

K∑
k=1

p(xk)︸ ︷︷ ︸
=1

(algebra) (41)

=
K − 1

2N
(42)

Next, we simplify the second term, o
(
∆(x)2

)
, in the MLE case:

Ep

[
o
(
∆(x)2

)]
= Ep

[
o
(
(p̂MLE(xk)− p(xk))

2
)]

(definition of ∆) (43)

= Ep

[
o

((
c(xk)

N
− p(xk)

)2
)]

(definition of MLE) (44)

= Ep

[
o

(
(c(xk)−Np(xk))

2

N2

)]
(×N/N) (45)

= Ep

[
o

(
c(xk)

2 − 2c(xk)Np(xk) +N2p(xk)
2

N2

)]
(46)

= o

(
Ep

[
c(xk)

2 − 2c(xk)Np(xk) +N2p(xk)
2
]

N2

)
(push exp. through) (47)

= o


Npk(1− p(xk)) +N2p(xk)

2

− 2N2p(xk)
2 +N2p(xk)

2

N2

 (48)

= o

(
Np(xk)(1− p(xk))

N2

)
(cancel terms) (49)

= o

(
p(xk)(1− p(xk))

N

)
(cancel N in fraction) (50)

= o
(
N−1

)
(ignore constants) (51)

Putting it all together, we get that bias (H(p̂MLE)) = −K−1
2N + o

(
N−1

)
which is the desired result.

Interestingly, it can be seen that the negative bias of the MLE gets worse as the number of classes K
grows. Distributions with large K pop up frequently when dealing with natural language.

Corollary 1. The plug-in estimator of entropy is consistent.
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Proof. From Proposition 2, we have bias (H(p̂MLE)) = −K−1
2N + o

(
N−1

)
. Clearly, as N → 0, we have

bias (H(p̂MLE)) → 0, so the estimator is consistent. One could also prove consistency through a simple
application of the continuous mapping theorem.

Estimator 1 (Miller–Madow). Let p be a categorical over K categories. We seek to estimate the entropy
H(p). Let D be our dataset of size N sampled from p. Then, the Miller–Madow estimator of H(p) is
given by

ĤMM(D)
def
= ĤMLE(D) +

K − 1

2N
(52)

The Miller–Madow estimator is biased, however it is consistent.

Lemma 1. The the first-order Taylor approximation of ĤMLE(D) around the distribution p is given by

ĤMLE(D) = H(p̂MLE, p) +R(p, p̂MLE) (53)

where the remainder R is given by

R(p, p̂MLE) = −KL(p̂MLE || p) (54)

Proof. The result follows from direct computation. We start by taking the Taylor expansion of H(p̂MLE)
around H(p):

ĤMLE(D) = H(p) +
K∑
k=1

∂

∂p(xk)

[
H(p)

](
p̂MLE(xk)− p(xk)

)
+R(p, p̂MLE)︸ ︷︷ ︸

remainder

(55)

Our first order term can then be rewritten as follows:

K∑
k=1

∂

∂p(xk)

[
H(p)

](
p̂MLE(xk)− p(xk)

)
(56)

=

K∑
k=1

∂

∂p(xk)

[
K∑

k′=1

−p(xk′) log p(xk′)
](

p̂MLE(xk)− p(xk)
)

(57)

=

K∑
k=1

[
K∑

k′=1

− ∂

∂p(xk)
p(xk′) log p(xk′)

](
p̂MLE(xk)− p(xk)

)
(linearity) (58)

=
K∑
k=1

[
K∑

k′=1

∂

∂p(xk)
p(xk′) log p(xk′)

](
p(xk)− p̂MLE(xk)

)
(sign) (59)

=
K∑
k=1

(
1 + log p(xk)

)(
p(xk)− p̂MLE(xk)

)
(60)

=

K∑
k=1

(
p(xk)− p̂MLE(xk)

)
+ log p(xk) (p(xk)− p̂MLE(xk)) (61)

=
K∑
k=1

(
p(xk)− p̂MLE(xk)

)
+

K∑
k=1

log p(xk) (p(xk)− p̂MLE(xk)) (62)

=
K∑
k=1

p(xk)︸ ︷︷ ︸
=1

−
K∑
k=1

p̂MLE(xk)︸ ︷︷ ︸
=1

+
K∑
k=1

log p(xk) (p(xk)− p̂MLE(xk)) (distrib. sum) (63)

=
K∑
k=1

log p(xk) (p(xk)− p̂MLE(xk)) (simplify) (64)
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=
K∑
k=1

log p(xk)p(xk)︸ ︷︷ ︸
−H(p)

−
K∑
k=1

log p(xk)p̂MLE(xk)︸ ︷︷ ︸
H(p,p̂MLE)

(distrib. sum) (65)

= H(p, p̂MLE)−H(p) (66)

Plugging this back into our Taylor expansion, we get the following:

ĤMLE(D) =�
��H(p)−�

��H(p) + H(p, p̂MLE) +R(p, p̂MLE) (67)

Now, we see that this implies

R(p, p̂MLE) = ĤMLE(D)−H(p̂MLE, p) (algebra) (68)

= −
K∑
k=1

p̂MLE(xk) log p̂MLE(xk) +
K∑
k=1

p̂MLE(xk) log p(xk) (defn.) (69)

= −
K∑
k=1

(p̂MLE(xk) log p̂MLE(xk)− p̂MLE(xk) log p(xk)) (merge sums) (70)

= −
K∑
k=1

p̂MLE(xk)(log p̂MLE(xk)− log p(xk)) (factor out p̂MLE(xk)) (71)

= −
K∑
k=1

p̂MLE(xk) log
p̂MLE(xk)

p(xk)
(log algebra) (72)

= −KL(p̂MLE || p) (defn.) (73)

which is the desired result.

Lemma 2. Define ∆(x) = p(x)− q(x). The second-order Taylor expansion of KL(p || q) around ∆(x)
is given by

KL(p || q) =
∑
x∈X

∆(x)2

2q(x)
+ o

(
∆(x)2

)
(74)

Proof. Now we compute the series expansion of the KL-divergence. We first make a tricky substitution:

p(x)

q(x)
=
q(x) + p(x)− q(x)

q(x)
= 1 +

p(x)− q(x)

q(x)
= 1 +

∆(x)

q(x)
(75)

Now, we proceed with the derivation:

KL(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
(defn. of KL divergence) (76)

=
∑
x∈X

(q(x) + ∆(x)) log

(
1 +

∆(x)

q(x)

)
(Eq. (75)) (77)

=
∑
x∈X

(q(x) + ∆(x))

(
∆(x)

q(x)
− ∆(x)2

2q(x)2
+ o

(
∆(x)2

))
(Taylor expansion) (78)

=
∑
x∈X

∆(x)− ∆(x)2

2q(x)
+

∆(x)2

q(x)
− ∆(x)3

2q(x)2
+ o

(
∆(x)2

)
(distribute) (79)

=
∑
x∈X

∆(x)− ∆(x)2

2q(x)
+

∆(x)2

q(x)
+ o

(
∆(x)2

)
(defn. of o) (80)

=
∑
x∈X

∆(x) +
∆(x)2

2q(x)
+ o

(
∆(x)2

)
(algebra) (81)
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=
∑
x∈X

∆(x)︸ ︷︷ ︸
=0

+
∑
x∈X

∆(x)2

2q(x)
+ o

(
∆(x)2

)
(split sums) (82)

=
∑
x∈X

∆(x)2

2q(x)
+ o

(
∆(x)2

)
(83)

which is the desired result.

E.3 Jackknife

The jackknife resampling method is used to estimate the bias of an estimator and correct for it, by sampling
all subsamples of size N − 1 from the available sample of size N , computing their average for the statistic
being estimated.

Generally, this reduces the order of the bias of an estimator from O(N−1) to at most O(N−2) (Friedl
and Stampfer, 2002).

Estimator 2 (Jackknife). Let p be a categorical over K categories. We seek to estimate the entropy H(p).
Let D be our dataset of size N sampled from p. Let Ĥ\n(D) be an estimate of the entropy from a sample
with the nth observation held out. Then, the Jackknife estimator is given by

ĤJACK(D)
def
= N ĤMLE(D)− N − 1

N

N∑
n=1

Ĥ
\n
MLE(D) (84)

This estimator is derived from the jackknife-resampled estimate of the bias of the MLE estimator, multiplied
by N − 1.

ĤJACK(D)− ĤMLE(D) = (N − 1)

(
ĤMLE(D)− 1

N

N∑
n=1

Ĥ
\n
MLE(D)

)
(85)

E.4 Horvitz–Thompson

Horvitz and Thompson (HT; 1952) is a common estimator given a finite universe, which is our case as K
is finite. We omit a derivation a full here as it is well documented in other places (Vieira, 2017). However,
we note that, in contrast to many applications of HT, the application of HT to entropy estimation results in
a biased estimator as the function whose mean we seek to estimate is log p(xk), which is dependent on
the unknown distribution p.

Estimator 3 (Horvitz–Thompson). Let p be a categorical over K categories. We seek to estimate the
entropy H(p). Let D be our dataset of size N sampled from p. Then the Horvitz–Thompson estimator
is defined as

ĤHT(D)
def
= −

K∑
k=1

p̂MLE(xk) log p̂MLE(xk)

1− (1− p̂MLE(xk))N
(86)

where 1 − (1 − p̂MLE(xk))
N is an estimate of the inclusion probability, i.e., the probability that xk

appears in a random sample D of size N .

We do not know of a simple expression for the bias of the Horvitz–Thompson entropy estimator, but
one observation is that Ep

[
(1− p̂MLE(xk))

N
]
> Ep

[
(1− p(xk))

N
]

when N > 1 (justified by Jensen’s
inequality, since xN , N > 1 is convex over [0, 1]); this is an overestimate of the true inclusion probability.

E.5 Chao–Shen

The Chao–Shen estimator builds upon Horvitz–Thompson by noting that that estimator does not correct for
underestimation of number of classesK and resulting effect on estimates of p(xk); i.e. 1−(1−p̂MLE(xk))

N

is always 0 for a class not included in the sample even if the class is present in the true distribution. We can
reweight the sample probabilities to compensate for missing classes using the notion of sample coverage.
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Definition 1 (Sample coverage). We define the sample coverage as

C =

K∑
k=1

p(xk)1
{
xk ∈ D

}
(87)

Definitionally, (1− C) is then the probability of sampling an xk not observed in the sample X̃ .

However, exact computation of Eq. (88) is impossible as we do not know the true distribution p. Thus,
Chao and Shen (2003) fall back on a well-known estimator of C that uses a technique from Good–Turing
(1953) smoothing. Let f1 be the number of classes with only one observation in the current sample, i.e,
the number of singletons, then we can estimate the sample coverage as

Ĉ
def
= 1− f1

N
(88)

The Chao–Shen estimator, described below, simply re-scales the MLE estimate of probability p̂MLE(xk)
in the HT estimator by Ĉ. This corrects for the observed underestimation of p’s entropy by HT.

Estimator 4 (Chao–Shen). Let p be a categorical over K categories. We seek to estimate the entropy
H(p). Let D be our dataset of size N sampled from p. Let Ĉ, an estimate of sample coverage, be defined
as in Eq. (88). The Chao–Shen estimator is then defined as

ĤCS(D)
def
= −

K∑
k=1

Ĉ · p̂MLE(xk) log (Ĉ · p̂MLE(xk))

1− (1− Ĉ · p̂MLE(xk))N
(89)

E.6 Wolpert–Wolf
Fact 1 (Derivative of an exponent).

d

da
xa = xa log x (90)

Fact 2 (Normalizer of a Dirichlet). The normalizer of a Dirichlet distribution is∫
δ

(
K∑
k=1

xk − 1

)
K∏
k=1

xαk dx =

∏K
k=1 Γ(αk)

Γ
(∑K

k=1 αk

) (91)

A relatively easy proof of this fact makes use of a Laplace transform.

Estimator 5 (Wolpert–Wolf). Let p be a categorical over K categories. We seek to estimate the entropy
H(p). Let D be our dataset of size N sampled from p. Then, the Wolpert–Wolf estimator is given by

ĤWW(D | α)
def
= ψ

(
Ã+ 1

)
−

K∑
k=1

α̃k

Ã
ψ(α̃k + 1) (92)

where c(xk)
def
=
∑N

n=1 1{x̃n = xk}, and we additionally define α̃k
def
= c(xk) + αk and Ã def

=
∑K

k=1 α̃k.

Proposition 3 (Wolpert–Wolf). The expectation of entropy under a Dirichlet posterior Dirichlet(α)
where parameter α is given by

E [H(p) | α]
def
=

∫
H(p) δ

(
K∑
k=1

p(xk)− 1

)
Γ (A)∏

k=1 Γ(αk)

K∏
k=1

p(xk)
αk−1dp (93)

= ψ (A+ 1)−
K∑
k=1

αk

A
ψ(αk + 1) (94)

where A def
=
∑K

k=1 αk.

192



Proof. Let Dirichlet(α1, . . . , αK) be a Dirichlet posterior. The result follows by a series of manipulations:

E [H(p) | α] =

∫
H(p) δ

(
K∑
k=1

p(xk)− 1

)
Γ (A)∏

k=1 Γ(αk)

K∏
k=1

p(xk)
αk−1dp (defn.) (95)

=
Γ (A)∏

k=1 Γ(αk)

∫
H(p) δ

(
K∑
k=1

p(xk)− 1

)
K∏
k=1

p(xk)
αk−1dp (96)

=
Γ (A)∏

k=1 Γ(αk)

∫ (
−

K∑
k=1

p(xk) log p(xk)

)
δ

(
K∑
k=1

p(xk)− 1

)
K∏
k=1

pαk−1
k dp (defn. H) (97)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

∫
p(xk) log p(xk)δ

(
K∑
k=1

p(xk)− 1

)
K∏
k=1

p(xk)
αk−1dp (linear.) (98)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

∫
p(xk)

αk log p(xk)δ

(
K∑
k=1

p(xk)− 1

)
K∏

j=1,
j ̸=k

p(xj)
αj−1dp (algebra) (99)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

∫
d

dαk
p(xk)

αkδ

(
K∑
k=1

p(xk)− 1

)
K∏

j=1,
j ̸=k

p(xj)
αj−1dp (fact #1) (100)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

∫
d

dαk
δ

(
K∑
k=1

p(xk)− 1

)
p(xk)

αk

K∏
j=1,
j ̸=k

p(xj)
αj−1dp (algebra) (101)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

d

dαk

∫
δ

(
K∑
k=1

p(xk)− 1

)
p(xk)

αk

K∏
j=1,
j ̸=k

p(xj)
αj−1dp (102)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

d

dαk

Γ(αk + 1)
∏K

j=1,
j ̸=k

Γ(αj)

Γ
(∑K

j=1 αj + 1
) (fact #2) (103)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

K∏
j=1,
j ̸=k

Γ(αj)
d

dαk

Γ(αk + 1)

Γ
(∑K

j=1 αj + 1
) (104)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

K∏
j=1,
j ̸=k

Γ(αj)
ψ(αk + 1)Γ(αk + 1)Γ

(∑K
j=1 αj + 1

)
Γ
(∑K

j=1 αj + 1
)2 (derivative) (105)

−
ψ(
∑K

j=1 αj + 1)Γ(αk + 1)Γ(
∑K

j=1 αk + 1)

Γ
(∑K

j=1 αj + 1
)2

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

K∏
j=1,
j ̸=k

Γ(αj)

ψ(αk + 1)Γ(αk + 1)

− ψ(
∑K

j=1 αj + 1)Γ(αk + 1)

Γ
(∑K

j=1 αj + 1
) (simplify) (106)

= − Γ (A)∏
k=1 Γ(αk)

K∑
k=1

K∏
j=1,
j ̸=k

Γ(αj)

ψ(αk + 1)Γ(αk)αk

− ψ(
∑K

j=1 αj + 1)Γ(αk)αk

Γ
(∑K

j=1 αj

)
A

(defn. Γ) (107)
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= − Γ (A)∏
k=1 Γ(αk)

∏K
k=1 Γ(αk)

Γ (A)

K∑
k=1

(
αk

A
ψ(αk + 1)− αk

A
ψ

(
K∑
k=1

αk + 1

))
(distrib.) (108)

= −
K∑
k=1

(
αk

A
ψ(αk + 1)− αk

A
ψ

(
K∑
k=1

αk + 1

))
(cancel) (109)

= −
K∑
k=1

(αk

A
ψ(αk + 1)− αk

A
ψ (A+ 1)

)
(defn. A) (110)

= −
K∑
k=1

αk

A
ψ(αk + 1) +

K∑
k=1

αk

A
ψ (A+ 1) (distrib.) (111)

= −
K∑
k=1

αk

A
ψ(αk + 1) + ψ (A+ 1) (

∑
ak=A) (112)

= ψ (A+ 1)−
K∑
k=1

αk

A
ψ(αk + 1) (rearr.) (113)

which proves the result.

E.7 Nemenman–Shafee–Bialek

Estimator 6 (Nemenman–Shafee–Bialek). Let p be a categorical over K categories. We seek to estimate
the entropy H(p). Let D be our dataset of size N sampled from p. Define the NSB density as

pNSB(α)
def
=
Kψ1 (Kα+ 1)− ψ1(α+ 1)

logK
(114)

where ψ1 is the trigramma function. Then, the NSB estimator is given by

ĤNSB(D)
def
=

∫ ∞

0
ĤWW(D | α · 1) pNSB(α) dα (115)

The integral in Eq. (115) is typically computed by numerical integration.

To derive the Nemenman–Shafee–Bialek (NSB) estimator, we start with the idea that we would like a
prior over distributions such that the distribution over expected entropy is uniform. In other words, we
are looking for a pNSB such that for α ∼ pNSB, the values of Ep [H(p) | α] are uniformly distributed over
[0, logK]. This is a good idea since, a-priori, we do not know entropy of p and, in the absence of any
insight, we should assume the entropy could be anywhere in the range [0, logK]. We make the above
intuition formal with the following proposition.

Proposition 4. Let pNSB be the NSB density given in Eq. (114). Then the following conditional expectation

Ep [H(p) | α] def
=

∫
H(p) δ

(
K∑
k=1

p(xk)− 1

)
Γ (Kα)

Γ(α)K

K∏
k=1

p(xk)
α−1 dp (116)

= ψ (Kα+ 1)− ψ(α+ 1) (Proposition 3) (117)

is uniformly distributed over [0, logK] when α ∼ pNSB(·), defined in Eq. (114).

Proof. First, we note that Ep [H(p) | α] is a continuous, increasing function in α. We will not prove this
formally, but it should make intuitive sense: α is a smoothing parameter and the more the distribution is
smoothed, the more entropic it should be. From basic analysis, we know that a strictly continuous, increas-
ing function has an inverse. The above means that we can view Ep [H(p) | α] as a bijection from R≥0 to the
interval [0, logK]. Our goal is to reparameterize the Uniform distribution in terms of α. To that end, we
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define the function g−1(α)
def
= Ep [H(p) | α] : R≥0 → [0, logK] and perform a change-of-variables trans-

form on Eq. (118) using g−1. We start with the continuous uniform over [0, logK], which is show below

p(H)
def
=

1

logK
1

{
H ∈ [0, logK]

}
︸ ︷︷ ︸

uniform over [0, logK]

(defn. of uniform dist) (118)

Note H is a random variable and unrelated to the functional H(·); the choice of letter intentionally
reminds one that the variable represents the expected entropy of under a random distribution. Now we
apply the change-of-variables formula at H = g−1(α) and manipulate:

p(H) = p(g−1(α))

∣∣∣∣dg−1

dα
(α)

∣∣∣∣ (change of variable) (119)

=
1

logK
1

{
g−1(α) ∈ [0, logK]

} ∣∣∣∣dg−1

dα
(α)

∣∣∣∣ (definition of p) (120)

=
1

logK

∣∣∣∣dg−1

dα
(α)

∣∣∣∣ (redundant indicator) (121)

=
1

logK

dg−1

dα
(α) (derivative is positive) (122)

=
Kψ1 (Kα+ 1)− ψ1(α+ 1)

logK
(Lemma 3) (123)

def
= pNSB(α) (definition) (124)

By construction, the prior pNSB(α) has the property that the expected entropy Ep [H(p) | α] where
α ∼ pNSB(·) is uniformly distributed over [0, logK], which we can see by reversing the above derivation.
This proves the result.

Nemenman et al. (2002) interpreted Proposition 4 in the following manner: As the variance of
Ep [H(p) | α], which is treated as a random variable since α is random, approaches 0, then the the
NSB estimator implies a uniform prior over the entropy.

Lemma 3 (NSB Derivative).

d

dα
[ψ(Kα+ 1)− ψ(α+ 1)] = Kψ1(Kα+ 1)− ψ1(α+ 1) (125)

Proof. The proof follows by a straightforward computation:

d

dα
[ψ(Kα+ 1)− ψ(α+ 1)] =

d

dα
[ψ(Kα+ 1)]− d

dα
[ψ(α+ 1)] (linearity) (126)

= Kψ1(Kα+ 1)− ψ1(α+ 1) (definition) (127)

where ψ1(x)
def
= d

dxψ(x).
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