Better Language Model with Hypernym Class Prediction

He Bai*
University of Waterloo
he.bai@uwaterloo.ca

Alessandro Sordoni
Microsoft Research
alsordon@microsoft.com

Abstract

Class-based language models (LMs) have
been long devised to address context sparsity
in n-gram LMs. In this study, we revisit this
approach in the context of neural LMs. We
hypothesize that class-based prediction leads
to an implicit context aggregation for similar
words and thus can improve generalization for
rare words. We map words that have a com-
mon WordNet hypernym to the same class and
train large neural LMs by gradually annealing
from predicting the class to token prediction
during training. Empirically, this curriculum
learning strategy consistently improves per-
plexity over various large, highly-performant
state-of-the-art Transformer-based models on
two datasets, WikiText-103 and ARXIV. Our
analysis shows that the performance improve-
ment is achieved without sacrificing perfor-
mance on rare words. Finally, we document
other attempts that failed to yield empirical
gains, and discuss future directions for the
adoption of class-based LMs on a larger scale.

1 Introduction

Over the course of the past decades, language mod-
eling (LM) has transitioned from n-gram to neu-
ral models (Bengio et al., 2003; Mnih and Hinton,
2007; Devlin et al., 2019; Brown et al., 2020). Per-
formance improvement of today’s neural LMs is
often achieved at the cost of increased computa-
tional resources. For example, to capture long-term
dependencies, various extensions of Transformer-
based LMs have been proposed (Dai et al., 2019;
Rae et al., 2020). These modifications bring about
significant improvements on held-out perplexity,
but training cost also increases significantly due to
large GPU memory consumption and more compu-
tations at each training step.
In parallel, alternative training strategies have
also been proposed (Guu et al., 2020; Ziegler
*Most of the work was done during the internship

at Microsoft Research. Code: https://github.com/
richardbaihe/robustLM.git

Tong Wang
Microsoft Research
Tong.Wang@microsoft.com

Peng Shi
University of Waterloo
peng.shi@uwaterloo.ca

Original Text:

A final torch used to enter Empire Stadium that
was made of stainless steel and powered by a
magnesium candle

Replaced with hypernym class:

A final instrumentality.n.03 used to enter Empire
structure.n.01 that was made of alloy.n.01
alloy.n.01 and powered by a metallic_element.n.01
instrumentality.n.03

Figure 1: An example of word prediction training text
and hypernym class prediction training text.

and Rush, 2019; Deng et al., 2020). In this pa-
per, we explore the effectiveness of class-based
language models (CLMs, Brown et al. 1992) in
the context of neural LMs. CLMs group indi-
vidual words into coarser-grained classes and has
proven effective in alleviating context sparsity in
n-gram LMs (Dagan et al., 1999). It has been also
used to improve computational efficiency in neural
LMs (Morin and Bengio, 2005; Grave et al., 2017a).
More recently, Levine et al. (2020) pretrain masked
LMs (Devlin et al., 2019) by predicting WordNet
supersense labels. However, the work focuses on
word-sense disambiguation tasks and doesn’t pro-
vide clear evidence of gains in terms of perplexity.

In this paper, we revisit CLM and assign words
to classes by leveraging hypernym relations from
the WordNet (Miller, 1995). Our proposal, dubbed
Hypernym Class Prediction (HCP) is simple and
effective: for each batch, we substitute a subset
of the tokens with their WordNet hypernyms (see
Figure 1). Then, we train an autoregressive LM
on the resulting sentences using a mixed vocabu-
lary composed of hypernyms and tokens. Crucially,
we anneal the substitution rate during training, i.e.,
we gently switch from hypernym prediction to to-
ken prediction, following a curriculum learning
approach. Note that this approach does not re-
quire WordNet information at inference time nor

1352

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1352 - 1362
May 22-27, 2022 (©)2022 Association for Computational Linguistics

https://github.com/richardbaihe/robustLM.git
https://github.com/richardbaihe/robustLM.git

increases training time.

Our approach is motivated by two hypotheses.
Firstly, mapping words to their hypernyms gives
rise to a natural gradation of difficulty in the pre-
diction task. Prior work has shown that LM bene-
fits from training on instances of increasing diffi-
culty (Bengio et al., 2009; Press et al., 2021). We
thus postulate that, when coupled with the right
curriculum, HCP can improve LM training and per-
plexity. Secondly, we hypothesize that HCP can
improve rare word generalization through implicit
context sharing. Neural models still struggle to
learn reliable representations for rare words (Schick
and Schiitze, 2020). With CLM-based models, data
sparsity for rare words can be abated, e.g., when
the representation of their contexts are potentially
drawn closer to those of their more frequent sib-
lings by way of label (hypernym) sharing.

Empirically, the proposed method consis-
tently yields about 0.6-1.9% relative reduction
in perplexity over baselines on the WikiText-
103 dataset (Merity et al., 2016), and 1.3-3.1%
on the ARXIV dataset (Lazaridou et al., 2021).
These improvements are observed with respect to
memory-augmented (Dai et al., 2019) and segment-
aware (Bai et al., 2021) LMs. Importantly, the
proposed method improves performance for both
rare and frequent words. We also observe that this
is in contrast with performance improvements in
regular LMs, which seem to be achieved at the cost
of worsened performance on rare words.

To the best of our knowledge, this is the first
work that shows how perplexity of Transformer
LMs can be improved by leveraging hypernymy re-
lationships. We provide an extensive ablation study
highlighting crucial elements of HCP. Amongst
those, we found particularly important to adopt a
curriculum learning approach, rather than multi-
objective learning or adaptive-softmax, and exclud-
ing frequent words from the hypernym prediction
task. We highlight the simplicity and effectiveness
of the proposed method as our main contribution,
and hope this study would facilitate further explo-
ration in this line of research.

2 Related Work

Transformer-based models are now popular lan-
guage models. Dai et al. (2019) propose
Transformer-XL by extending the vanilla Trans-
former (Vaswani et al., 2017) with a memory seg-
ment, which can encode more context tokens to

predict the next token. Rae et al. (2020) extend
Transformer-XL with a compressed memory seg-
ment to further encode long-time context memory.
Other works explore different sparse Transformers
to encode much longer sequences for LM (Beltagy
et al., 2020; Roy et al., 2021). Bai et al. (2021)
propose a segment-aware Transformer (Segatron)
to encode more positional information for language
modeling. Despite their effectiveness, neural mod-
els still struggle to learn reliable representations
for rare words. Some approaches have been pro-
posed to tackle this challenge by way of morphol-
ogy (Luong et al., 2013), lexical similarity (Khas-
sanov et al., 2019), context similarity (Schick and
Schiitze, 2020; Khandelwal et al., 2020) and tok-
enization (Kudo and Richardson, 2018).

In addition to the model modifications, other
work investigated curriculum learning to train LMs.
Bengio et al. (2009) first find that curriculum learn-
ing could benefit LM training by training with high-
frequency tokens first and low-frequency tokens
later. Wu et al. (2021) find that curricula works
well when the training data is noisy or the training
data is too large to iterate multiple epochs. Press
et al. (2021) find that training Transformer-based
LMs with short sequences first could improve con-
vergence speed and perplexity.

Related work aimed at integrating WordNet in-
formation into pretrained language models. Levine
et al. (2020) propose SenseBERT by adding the
word sense (WordNet supersense) prediction as an
additional task during BERT (Devlin et al., 2019)
pre-training. SenseBERT outperforms BERT on
both word supersense disambiguation (Raganato
et al., 2017) task and word in context (Pilehvar and
Camacho-Collados, 2019) task. Recently, Porada
et al. (2021) use WordNet hypernymy chains as in-
put to a Roberta (Liu et al., 2019) model to predict
the plausibility of input events. In this work, our
focus is to improve performance of auto-regressive
LMs. We show that a multi-task strategy harms
performance in this setting, and give a successful
recipe to consistently boost LM performance with
class-based predictions.

3 Method

Coupling class-based LM (CLM) and curriculum
learning, HCP is to gradually anneal class predic-
tion to token prediction during LM training. In this
section, we first describe how we instantiate word
classes by leveraging hypernym relation from the

1353

|Entity.n.01thysical_entity.n.01 H matter.n.03 H substance.n.01 Hchemical_element.n.01 Hmetallic_element.n.01|

abstraction.n.06 Hrelation.n.01H

part.n.01

|

|Entity.n.01thysical_entity.n.01 H matter.n.03 H substance.n.01 Hchemical_element.n.01 Hmetallic_element.n.01|

abstraction.n.06 Hrelation.n.01H

part.n.01 |

|Entity.n.01thysical_entity.n.01 H object.n.01 H whole.n.02 Hartifact.n.01 Hinstrumentality.n.OSl

|desk.n.01 Htable.n.OZH furniture.n.01 H furnishing.n.02 |

Figure 2: Hypernym-paths of synsets “magnesium.n.01”, “iron.n.01”, and “desk.n.01”, corresponding to the word

magnesium, iron, and desk respectively.

def token2class(token2freq, d, f):
token2freq is a dictionary whose key is the token and
value is the tokens' occurrences)
d is the depth, f is the occurrence threthold
rtn = {}
for token, freq in token2freq.items():
if freq > f:
continue
for synset in wordnet.synsets(token):
for path in synset.hypernym_paths():
if len(path)>=d and 'noun' in path[d-1]:
rtn[token] = path[d-1]
break
if token in rtn:
break
return rtn

Code 1: Pseudocode for token to class mapping.

WordNet. We then present how to incorporate the
proposed Hypernym Class Prediction task into LM
training via curriculum learning.

3.1 Hypernymy as Word Classes

WordNet (Miller, 1995) is a lexical database that
groups words into sets of cognitive synonyms
known as synsets, which are in turn organized into
a directed graph by various lexical relations includ-
ing the hypernymy (is-a) relation. As shown in
Figure 2, each vertex is a synset, labeled by the
text within the box, and each edge points from the
hypernym (supertype) to the hyponym (subtype).
Note that a word form (spelling) may be associated
with multiple synsets — each corresponding to a
different sense of the word, which are sorted by
the frequency of the sense estimated from a sense-
annotated corpus. For example, iron has 6 synsets,
among which “iron.n.01” is the most common one.

Hence, if two words share the same hypernym
at a certain level in their hypernym-paths (to the
root in WordNet), we could say they are similar
at that level. Here we use "Depth" to quantify the

hypernym-path level. In Figure 2, for example, at
Depth 6, iron and magnesium are mapped to the
same group named “metallic_element.n.01”, while
desk is mapped to “instrumentality.n.03”. At Depth
2, all these three words share the same (indirect)
hypernym “physical_entity.n.01”.

In this work, we map each token in our training
set into its hypernym class if this token (1) has a
noun synset in the WordNet, (2) with a hypernym-
path longer than a given depth d, and (3) has fre-
quency below a given threshold f in the training
corpus. We only consider nouns because it is not
only the most common class in the WordNet but
also a difficult class for LMs to learn (Lazaridou
et al., 2021). For tokens with multiple synsets, we
iterate over the synsets in the order of sense fre-
quency and break the loop once found. We select
the most frequent synset no less than the required
depth. The mapping pseudocode is illustrated in
Code 1, which is a data pre-processing algorithm
conducted only once before the training and takes
no more than 5 minutes in our implementation.

3.2 Hypernym Class Prediction

We first partition the vocabulary into Vx and V_»
based on whether or not a token has a hypernym
in the WordNet, and Vy, denotes the set of all hy-
pernyms. The original task in a Transformer-based
LM is then to predict the token w;’s probability
with the output x from the last layer:

exp(xTvu,)

Py = wj|x) = > o (1)

wj, €V UV ok exp(x' vayy,)

where wy, is the ky, word in the original vocabu-
lary and v, is its embedding. Here we assume
the output layer weights are tied with the input em-

1354

N
)

L constant
0.8 & ---- linear-decay
\
> \\b
-_'g 0.6 \\
< \
"8 N
204 \
[} \
O AN
T 0.2
a*N \\
0.0 "
0 20k 40k N

Training Steps

Figure 3: Probabilities of HCP step over training pro-
cess with different pacing functions.

beddings. We call any training step predicted with
Eq. 1 a token prediction step.

To do the Hypernym Class Prediction step, we
replace all tokens in Vy in a batch of training data
with their corresponding hypernym classes in Vy,.
After the replacement, only hypernym classes in
V1, and tokens in V_x can be found in that batch.
Then, the LM probability prediction becomes:

exp(xvaj)

P(y = wj‘x) = Zwkevhuvﬁx eXp(xvak) (2)
where w; could be either a token or a hypernym
class. We called this batch step is a Hypernym
Class Prediction (HCP) step.

Note that Eq. 2 is different from the multi-
objective learning target, where the hypernym class

would be predicted separately:

exp(xvaj)

W €V exp(xvak)

P(y = w;|x) = D (3)
where w; is a hypernym class. We will elaborate
on this difference in the experiment results part.

3.3 Training Method

We train a LM by switching from HCP to token pre-
diction. For the example in Figure 2, our target is to
teach a model to distinguish whether the next token
belongs to the metallic element class or instrumen-
tality class during the earlier stage in training, and
to predict the exact word from magnesium, iron,
and desk later.

Inspired by Bengio et al. (2009), we choose cur-
riculum learning to achieve this. Curriculum learn-
ing usually defines a score function and a pacing
function, where the score function maps from a
training example to a difficulty score, while the
pacing function determines the amount of the easi-
est/hardest examples that will be added into each

epoch. We use a simple scoring function which

treats HCP as an easier task than token prediction.

Therefore, there is no need to sort all training ex-

amples. The pacing function determines whether

the current training step is a HCP step, i.e. whether

tokens will be substituted with their hypernyms.
Our pacing function can be defined as:

b t<axN
P(y:dt):{o t>ax N @
or
b—bx Lo t<axN
P(y:dt):{o N saxN ©

where P(y = c|t) is the probability that the current
step ¢ is a hypernym class prediction step. NV is the
total training steps. a and b are hyper-parameters.
So, Eq. 4 is a constant pacing function in the first a*
N steps, while Eq. 5 is a linear decay function. We
plot these two functions in Figure 3. According to
our experimental results Tab. 5, these two functions
are both effective in improving the language model.

4 Experiments

We conduct experiments on two datasets.
WikiText-103 (Merity et al., 2016) is a large word-
level dataset with long-distance dependencies for
language modeling. There are 103M tokens and
28K articles (3.6K tokens per article on average).
The original vocabulary size is 271121, among
which we find 3383 hypernym classes for 71567
tokens with d = 6 and f = 6000 (Section 3.1).
ARX1V (Lazaridou et al., 2021) is collected from
publicly available arXiv abstracts' with an average
of 172 words per abstract and partitioned into
training (1986—Sept 2017), evaluation (Aug—Dec
2017), and test (2018-2019). Following Lazaridou
etal. (2021), we use the BPE (Sennrich et al., 2015)
tokenization for this dataset. The final vocabulary
size is 48935, and we find 1148 hypernym classes
for 5969 tokens among the vocabulary with d = 6
and f = 1000.

Several variants of the Transformer model have
been used for our experiments:

* small model: 12 layers, 10 heads, hidden size
300, batch size 256, training steps 100k;

* base model: 16 layers, 10 heads, hidden size
410, batch size 64, training steps 200k;

"https://arxiv.org/help/oa/index

1355

Model #Param. Valid PPL Test PPL
LSTM+Neural cache (Grave et al., 2017b) - - 40.8
Transformer small 91M 34.5 36.5

+ HCP 34.1 35.9
Transformer base 151M 29.2 30.7

+ HCP 29.1 30.2
Transformer-XL base, M=150 (Dai et al., 2019) 151M - 24.0
Segatron-XL base (Bai et al., 2021), M=150 151M - 22.5

+ HCP 21.9 22.1
Transformer Large 25TM 24.0 25.8 (80k steps)

+ HCP 23.7 25.3 (80k steps)
Adaptive Input (Baevski and Auli, 2019) 247TM - 18.7 (286k steps)
Transformer-XL large, M=384 (Dai et al., 2019) 257TM - 18.3 (400k steps)
Compressive Transformer, M=1024 (Rae et al., 2020) 257M 16.0 17.1 (400k steps)
Segatron-XL large, M=384 (Bai et al., 2021) 257TM - 17.1 (350k steps)

+ HCP 16.1 17.0 (350k steps)

Table 1: Results on WikiText-103 dataset with different models.

e large model: 18 layers, 16 heads, hidden size
1024 batch size 128.

The input lengths are 150 for the base model
and 384 for the large model. The memory
length is equal to the input length for both train-
ing and testing. The hyper-parameters used for
the ARXIV dataset are as same as the WikiText-
103, except the ARXIV base model’s input length
is 384. The number of training steps varies greatly
for the large model in previous work, so we experi-
ment on both the lower (80k) higher (350k) ends.

4.1 Main results

Our main results are shown in Table 1. We can
see that all architectures could benefit from HCP:
Transformer-small improved 0.6 ppl, Transformer-
base improved 0.5, Segatron-XL base improved
0.4, Transformer-large improved 0.5, and Segatron-
XL large improved 0.1. We also plot the validation
perplexities of small and large models trained with
and without HCP in Figure 4. In the beginning, the
perplexity of the HCP models is higher due to the
mixed training steps from the two tasks, but we can
see that HCP perplexity goes down faster than the
baseline method. And after fully switching to token
prediction, HCP outperforms the baseline method
quickly and the gap between these two methods
remains stable. These results suggest that HCP is
indeed effective in improving LM training.

For experiments on the ARX1V dataset, we first

—— Transformer-small
—— Transformer-small-HCP

Valid PPL

20k 40k 60k

Training Steps

80k

—— Transformer-large
29 —— Transformer-large-HCP

Valid PPL
NONNN
& o o N

N
w

20k 40k 60k

Training Steps

80k

Figure 4: Valid perplexity curves during the training of
small and large models with WikiText-103

compare the Segatron-XL base model trained with
and without HCP. The results are shown in Table 2.
The improvements over the validation set and test
set are 0.6 and 0.75 respectively. For the large
model, we use the same model architecture and

1356

Model #Param. Valid PPL Test PPL

Segatron-XL base 59M 22.39 24.21
+ HCP 21.79 23.46

Transformer-XL large (Lazaridou et al., 2021) 287M - 23.07

Segatron-XL large
+ HCP

283M 21.28 22.99 (80k steps)
283M 20.93 22.60 (80k steps)

Table 2: Results on ARXIV dataset with different models.

1.0 4.0 4.0
pacing function —— baseline_freq<500 —— baseline_freq<300

0.8 3.9 —— HCP_freq<500 —— HCP_freq<300
2 - _39
= =38 _|
506 g &
3 3.7 3.8
S o~ s}
S04 - -
Q S 36 o
& e © 3.7
fo.2 s =
B 3.5

0.0 3.4 3.6

0 12k 24k 36k 48k 60k 12k 24k 36k 48k 60k 12k 24k 36k 48k 60k
Training Steps Training Steps Training Steps
5.2
—— baseline_freq<100 5.4 —— baseline_freq<50 —— baseline_freq<20

5.0 —— HCP_freq<100 —— HCP_freq<50 5.4 —— HCP_freq<20
= 5.2 =0
o 4.8 o o
o o o 5.2
k=3 ©5.0 o
Sas 3 3
k) kel k)
T 44 T 48 5 5.0
> > >

4.2 4.6

4.8
4.0 4.4
12k 24k 36k 48k 60k 12k 24k 36k 48k 60k 12k 24k 36k 48k 60k
Training Steps Training Steps Training Steps

Figure 5: Frequency-stratified validation log(perplexity) of baseline model (Transformer-small) and HCP

model (Transformer-small-HCP) with WikiText-103.

hyper-parameters as the WikiText-103 large model
but change the vocabulary to BPE sub-tokens. The
final perplexity outperforms its counterparts about
0.4 and outperforms a larger model trained with
1024 input sequence length over 0.47, while our
model length is 384.

4.2 Generalization on Rare Tokens

In addition to the overall perplexity comparison, we
also conduct comparisons with frequency-stratified
validation subsets, to show the perplexity of tokens
that has been replaced with the hypernym classes
during training. Results are shown in Figure 5. We
can see that, after the first 12k hypernym class pre-
diction steps, there is a large gap between our HCP
model and the baseline model as the HCP model
only learn to predict the hypernym class instead of
the token itself. After that, in the next 12k steps,
HCP’s PPL decreases faster, achieves similar PPL

at 24k steps, and finally outperforms the baseline
method in all frequency groups. The results show
that our proposed training method can benefit the
learning of the replaced tokens in various frequen-
cies. Strikingly, we observe that, for the baseline,
more training steps lead to a degradation of per-
formance for rare tokens, a behavior that deserves
investigation in future work.

We further conduct pairwise model comparisons
with tokens that have been replaced during HCP
training on the WikiText-103 test set. Given two
models, we compare the prediction probabilities
for each occurrence of a target token, and register
a “win” for the model with a higher probability.
We then calculate the percentage of winnings (as
well as ties) for each model by tallying over all
occurrences of the token. The results are then strat-
ified by token frequency and plotted in Figure 6.
The better model is placed on the right in both

1357

I Baseline_better Indistinguishable [HCP_LM_better
all_tokens
freq<1000

freq<500

—
o
(=3
=]
B

;

0,

=

ﬁgg

freq<400

)
oy
(%)
39,

) 8 £
o § =) o
o3 (=3

2]

freq<300
freq<100
freq<50

freq<30

oy
o
32

freq<20

freq<10

'i

5:88%)

0% 25% 50% 75%

freq<5

100%

(a) Baseline model and HCP model

I SubOpt_better indistinguishable || Baseline_better

va s [
17:04%)

0% 25% 50% 75%

all_tokens
freq<1000
freq<500
freq<400
freq<300
freq<100
freq<50
freq<30
freq<20
freq<10
freq<5

100%

(b) Baseline model and sub-optimal model

Figure 6: Pairwise comparison results. The baseline model and HCP model are trained without and with hypernym
class prediction respectively. The sub-optimal model is trained without HCP and trained with different hyper-
parameters, whose perplexity is increased by 0.9 compared with the baseline model.

sub-figures.

In Figure 6(a), we see that HCP outperforms
the baseline model on all frequency strata. Inter-
estingly, the performance gap widens as frequency
decreases, indicating that HCP is beneficial in mod-
eling rare tokens. In Figure 6(b), we compare the
baseline model against an under-optimized model
of identical architecture but slightly different hyper-
parameters.” Here, the (optimal) baseline outper-
forms the sub-optimal model on all but the least
frequent stratum, suggesting the possibility that per-
plexity reduction (resulting from hyperparameter
tuning in this case) might be achieved by improv-
ing frequent word prediction at the expense of rare
words. This is inline with observations made re-
cently in vision tasks (Sagawa et al., 2020).

4.3 Ablation study

We conduct ablation studies with WikiText-
103 dataset and Transformer small model to in-
vestigate how to map words to hypernym classes,
how to select curriculum learning pacing functions
and to show why we use curriculum training.

4.3.1 Hypernym-path Depth

The hypernym classes are chosen from the
hypernym-paths in WordNet. Considering that a
hypernym-path consists of multiple hypernyms, it

’The sub-optimal model has batch size 128 instead of the
optimal 64, and the perplexity gap between these two models
is observed to be slightly larger than that between HCP and
the baseline (0.9 vs 0.5).

Depth Valid PPL #Classes
Baseline 34.5 0
d=14 34.54 145
d=5 34.29 1169
d=26 34.05 3383
d=17 34.37 6604
d=28 34.25 9063

Table 3: Clustering words into classes with different
layer’s hypernym parents. The average depth is 8.03.
#Classes denotes the total number of hypernym classes.

is not straightforward to tell which layer is the best.
But the best depth d should be some layer in the
middle. Because a small depth might map multi-
ple distant words into the same class, while a large
depth will result in too many classes which are hard
for a model to learn. The extreme examples could
be d = 1 and d = oo, corresponding to mapping
all candidate words into the class “Entity.n.01” and
mapping each word into itself respectively. In Ta-
ble 3, we show evaluation results among different
depth selections. We find that depth 6th is the best
choice, with the lowest valid perplexity. The re-
sults also confirm our assumption that the best one
would be some middle layer.

4.3.2 Filter Frequency

In addition to the hypernym-path depth, we also
investigate how to select frequency threshold f. As
we mentioned above, our target is to map similar

1358

FilterFreq. Valid PPL #Rep.
Baseline 34.5 0

f =3000 34.14 70859
f =5000 34.50 71735
f =6000 34.05 71971
f=7000 34.32 72153
f =8000 34.35 72291
f=o00 40.10 73067

Table 4: Ignoring words whose frequency more than a
threshold f during hypernym class clustering. #Rep.
denotes the number of tokens in the vocabulary that
will mapped.

words into the same class, where predicting a hyper-
nym class might be easier than predicting multiple
different words. After the mapping process, low-
frequency words can be clustered into hypernym
classes with higher frequency. Table 4 shows the
results of different f. We can see that f = 6000
achieves the best results while f = oo (without
filter) is the worst. We hypothesize this might be
due to two reasons. First, for some high-frequency
common words, the model can learn them well al-
ready, while mapping them into hypernym classes
may be superfluous or even harmful. Second, in-
cluding frequent words skews the marginal distri-
bution over hypernym classes, causing hypernym
prediction to be more class-imbalanced, which in
turn might lead to collapsed representation in the
resulting LM (Fang et al., 2021). This hypothesis
deserves further investigation. It should be noted
that although the difference of #Rep.Tokens looks
minor, the difference in the token’s appearance is
significant. For example, f = oo maps only 776
additional tokens compared with f = 8000, but
each token’s appearance is more than 8000, which
explains the different perplexities in Table 4.

4.3.3 Pacing Function

Table 5 shows the results of models trained with var-
ious curriculum pacing functions. We also report
the validation perplexities of the tokens that have
ever been replaced with hypernym class (Rep.PPL)
during training and tokens without hypernym
class (NonRep.PPL).

For the constant pacing function, we fix b = 1
and change the value of a, In this case, the models
are always training with HCP in the first a * 100k
steps and then switch to the token prediction train-
ing, which is a pre-training pacing function. We can

see that all models outperform the baseline model
over the validation perplexity. Rep.PPL improves
from 348 to 339. The perplexity of NonRep.PPL
between baseline model and HCP models are sim-
ilar, except the model trained with ¢ = 4, which
indicates the pre-training should not take up too
many steps.

For the linear pacing function, we choose some
specific a and b to achieve the same HCP steps as
the constant functions above. For simplicity, we
also set a = b. In Table 5, we can see that the over-
all perplexity of the linear functions is similar to the
corresponding constant functions, where the Non-
Rep.PPL is slightly decreased while the Rep.PPL
is slightly increased. We conduct a grid search over
different pacing functions with Transformer small
model and WikiText-103, and finally, use the con-
stant function with ¢ = 0.12 and b = 0.8 for all
base models and large models.

Curriculum hyper-parameters could be trans-
ferred to the ARXIV dataset successfully. However,
we tune the frequency threshold f on each dataset,
because different tokenization methods change the
frequency distribution. All HCP models in Table 2
are using d = 6, f = 1000, and the constant pacing
function with ¢ = 0.12 and b = 0.8.

4.3.4 Other Training Objectives

We also experimented with two other methods to in-
corporate hypernym information into LM training.
Although neither method has yielded any empiri-
cal gain, we nonetheless report these methods and
offer possible explanations for their failure.

Multi-objective Training Multi-objective (or
multi-task) training consists in a weighted sum of
token and hypernym prediction losses. We set the
weight of the hypernym prediction loss to 0.2. The
prediction of a token is calculated with Eq. 1. The
prediction of a hypernym class is calculated with
Eq. 3, where x can be the output vector from any
layer in the Transformer LM. Table 6 lists the re-
sults using the last layer and the 8th layer. Using
the last layer significantly undermines the original
token prediction results. Using the 8th layer is bet-
ter but the final perplexity is still no better than
the baseline model. Simply forcing the language
model to predict the hypernym class for each token
is harmful to LM performance. We also tried to re-
place Eq. 3 with Eq. 2, by mixing Vy, and V _, to-
gether when predicting the hypernym classes (mix
vocab). This significantly improves multi-objective

1359

Constant Func. HCP steps Valid PPL NonRep.PPL Rep.PPL
a=0b=0 0 34.5 22.07 348.87
a=0.1 b=1 10k 34.18 22.08 339.30
a=0.2 b=1 20k 34.15 22.07 339.34
a=0.3 b=1 30k 34.26 22.07 338.14
a=0.4 b=1 40k 34.39 22.26 338.31
Linear Func.

a=0.45 b=0.45 10k 34.14 22.04 340.55
a=0.64 b=0.64 20k 34.05 21.96 341.33
a=0.78 b=0.78 30k 34.26 22.05 346.77
a=0.90 b=0.90 40k 34.56 22.12 354.40

Table 5: Training N steps hypernym class prediction among 100k training steps with different pacing functions.
NonRep.PPL denotes non-replaced tokens’ perplexity, and Rep.PPL denotes replaced tokens’ perplexity.

Valid PP Test PPL NonRep.PPL Rep.PPL

Baseline 34.50 36.46 22.07 348.87
Adaptive Softmax 36.32 38.16 22.48 435.93
Multi-obj
last layer 46.06 48.49 27.81 627.23
8th layer 43.42 45.37 26.13 597.66
8th layer + mix vocab 35.97 38.02 22.98 365.27
Hypernym Class Prediction 34.05 35.87 21.96 341.33

Table 6: Results obtained by alternative strategies for integrating hypernymy information into the LM: adaptive
softmax and multi-objective training. Both under-perform the proposed HCP method.

training. Learning to predict the hypernym class
from a mixed vocabulary Vi, U V_, is better than
only hypernym classes Vy,.

Adaptive Softmax Another method is the
adaptive-softmax (Grave et al., 2017a), where the
model first predict the hypernym probability among
V1 U V_y and then predict the token probability
among the tokens with the same hypernym class.
In Table 6, we can see that the adaptive-softmax

is no better than the multi-objective trained model.

By looking into the poor perplexity of Rep.PPL,
we find this method cannot improve the prediction
of tokens in V.. We believe this is due to the noise
of hypernym class mapping, where we choose the
first synset path as the token’s hypernym synset
without considering the context. Such noise will
affect the adaptive-softmax prediction but is not an
issue for curriculum training as the final training
stage is fully trained with the original text.

5 Conclusion

In this work, we propose a new LM training strat-
egy with WordNet’s super-subordinate relation and
curriculum learning. Although WordNet is an ex-
ternal resources, it’s not clear how to get lower
perplexity using WordNet before this work. Con-
sistent perplexity reduction can be observed over
various models. Both rare and frequent tokens can
be modeling better with our proposed method while
other optimization method may sacrifice the perfor-
mance on rare tokens.

We’d like to address the limitations of this work:
other methods to map words to classes; LM experi-
ments with other languages; pre-training LM with
our proposed method and testing on downstream
tasks. We hope to investigate these directions in
the future.

1360

References

Alexei Baevski and Michael Auli. 2019. Adaptive in-
put representations for neural language modeling. In
International Conference on Learning Representa-
tions.

He Bai, Peng Shi, Jimmy Lin, Yuqing Xie, Luchen Tan,
Kun Xiong, Wen Gao, and Ming Li. 2021. Sega-
tron: Segment-aware transformer for language mod-
eling and understanding. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(14):12526—
12534.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The journal of machine learning re-
search, 3:1137-1155.

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum Learning.
In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML °09, page
41-48, New York, NY, USA. Association for Com-
puting Machinery.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-
ouza, Jenifer C. Lai, and Robert L. Mercer. 1992.
Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467—480.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Ido Dagan, Lillian Lee, and Fernando CN Pereira.
1999. Similarity-based models of word cooccur-
rence probabilities. Machine learning, 34(1):43-69.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978-2988, Florence, Italy.
Association for Computational Linguistics.

Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam,
and Marc’ Aurelio Ranzato. 2020. Residual energy-
based models for text generation. In International
Conference on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Cong Fang, Hangfeng He, Qi Long, and Weijie J. Su.
2021. Exploring deep neural networks via layer-
peeled model: Minority collapse in imbalanced
training. Proceedings of the National Academy of
Sciences, 118(43).

Edouard Grave, Armand Joulin, Moustapha Cissé,
David Grangier, and Hervé Jégou. 2017a. Efficient
softmax approximation for GPUs. In Proceedings
of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1302—-1310. PMLR.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2017b. Improving neural language models with a
continuous cache. In ICLR 2017, Toulon, France,
April 24-26, 2017.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Yerbolat Khassanov, Zhiping Zeng, Van Tung Pham,
Haihua Xu, and Eng Siong Chng. 2019. Enriching
rare word representations in neural language mod-
els by embedding matrix augmentation. Interspeech
2019.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’ Autume,
Sebastian Ruder, Dani Yogatama, et al. 2021. Pit-
falls of static language modelling. arXiv preprint
arXiv:2102.01951.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT:
Driving some sense into BERT. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4656-4667, On-
line. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

1361

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://ojs.aaai.org/index.php/AAAI/article/view/17485
https://ojs.aaai.org/index.php/AAAI/article/view/17485
https://ojs.aaai.org/index.php/AAAI/article/view/17485
https://arxiv.org/abs/2004.05150
https://www.jmlr.org/papers/v3/bengio03a.html
https://www.jmlr.org/papers/v3/bengio03a.html
https://doi.org/10.1145/1553374.1553380
https://aclanthology.org/J92-4003
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://link.springer.com/article/10.1023/A:1007537716579
https://link.springer.com/article/10.1023/A:1007537716579
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=B1l4SgHKDH
https://openreview.net/forum?id=B1l4SgHKDH
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1073/pnas.2103091118
https://doi.org/10.1073/pnas.2103091118
https://doi.org/10.1073/pnas.2103091118
https://proceedings.mlr.press/v70/grave17a.html
https://proceedings.mlr.press/v70/grave17a.html
https://openreview.net/forum?id=B184E5qee
https://openreview.net/forum?id=B184E5qee
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.21437/interspeech.2019-1858
https://doi.org/10.21437/interspeech.2019-1858
https://doi.org/10.21437/interspeech.2019-1858
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://arxiv.org/abs/2102.01951
https://arxiv.org/abs/2102.01951
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with re-
cursive neural networks for morphology. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104—113,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

George A. Miller. 1995. WordNet: A lexical database
for English. Commun. ACM, 38(11):39-41.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In Proceedings of the 24th International Conference
on Machine Learning, ICML ’07, page 641-648,
New York, NY, USA. Association for Computing
Machinery.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
International workshop on artificial intelligence and
statistics, pages 246-252. PMLR.

Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. WiC: the word-in-context dataset
for evaluating context-sensitive meaning represen-
tations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 1267-1273, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Tan Porada, Kaheer Suleman, Adam Trischler, and
Jackie Chi Kit Cheung. 2021. Modeling event plau-
sibility with consistent conceptual abstraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1732-1743, Online. Association for Compu-
tational Linguistics.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using
shorter inputs. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5493-5505, Online. Association for
Computational Linguistics.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learn-
ing Representations.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word sense disambiguation:
A unified evaluation framework and empirical com-
parison. In Proceedings of the 15th Conference of

the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
99-110, Valencia, Spain. Association for Computa-
tional Linguistics.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based
sparse attention with routing transformers. Transac-
tions of the Association for Computational Linguis-

tics, 9:53-68.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and
Percy Liang. 2020. An investigation of why over-
parameterization exacerbates spurious correlations.
In International Conference on Machine Learning,
pages 8346-8356. PMLR.

Timo Schick and Hinrich Schiitze. 2020. Rare words:
A major problem for contextualized representation
and how to fix it by attentive mimicking. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur.
2021. When do curricula work? In International
Conference on Learning Representations.

Zachary M. Ziegler and Alexander M. Rush. 2019. La-
tent normalizing flows for discrete sequences.

1362

https://aclanthology.org/W13-3512
https://aclanthology.org/W13-3512
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/1273496.1273577
https://doi.org/10.1145/1273496.1273577
http://proceedings.mlr.press/r5/morin05a.html
http://proceedings.mlr.press/r5/morin05a.html
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/2021.naacl-main.138
https://doi.org/10.18653/v1/2021.naacl-main.138
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.acl-long.427
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://aclanthology.org/E17-1010
https://aclanthology.org/E17-1010
https://aclanthology.org/E17-1010
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353
http://proceedings.mlr.press/v119/sagawa20a.html
http://proceedings.mlr.press/v119/sagawa20a.html
https://arxiv.org/abs/1904.06707
https://arxiv.org/abs/1904.06707
https://arxiv.org/abs/1904.06707
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=tW4QEInpni
http://arxiv.org/abs/1901.10548
http://arxiv.org/abs/1901.10548

