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Abstract

Fast and reliable evaluation metrics are key to
R&D progress. While traditional natural lan-
guage generation metrics are fast, they are not
very reliable. Conversely, new metrics based
on large pretrained language models are much
more reliable, but require significant computa-
tional resources. In this paper, we propose Fru-
galScore, an approach to learn a fixed, low cost
version of any expensive NLG metric, while
retaining most of its original performance. Ex-
periments with BERTScore and MoverScore on
summarization and translation show that Fru-
galScore is on par with the original metrics (and
sometimes better), while having several orders
of magnitude less parameters and running sev-
eral times faster. On average over all learned
metrics, tasks, and variants, FrugalScore re-
tains 96.8% of the performance, runs 24 times
faster, and has 35 times less parameters than
the original metrics. We make our trained met-
rics publicly available1 and easily accessible
via Hugging Face, to benefit the entire NLP
community and in particular researchers and
practitioners with limited resources.

1 Introduction

Automatic evaluation metrics are the only way
to monitor the training of, evaluate, and compare
across models in a systematic, large-scale way, and
are thus a critical component of the research and
development ecosystem in machine learning. To
get adopted in practice, evaluation metrics need to
be both reliable and affordable, i.e., fast and easy
to compute.

While some metrics meet these criteria, such as
precision and recall in information retrieval, root
mean square error in regression, etc., finding suit-
able metrics is still an open problem in the field
of Natural Language Generation (NLG) (Novikova
et al., 2017).

*Equal contribution
1https://github.com/moussaKam/FrugalScore

Indeed, historical n-gram matching metrics such
as ROUGE (Lin, 2004) for summarization, BLEU
(Papineni et al., 2002) and METEOR (Banerjee and
Lavie, 2005) for translation, while affordable, are
not very reliable, as they are based on surface-form
matching only, i.e., lexical similarity, and have thus
no sense of semantic similarity. For instance, it
makes little sense to use ROUGE for the evaluation
of abstractive summarization systems (which are
becoming the norm), or whenever the generated
text paraphrases the original text.

Following the advent of transfer learning in NLP,
new NLG metrics based on large pretrained lan-
guage models have recently been proposed, such as
BERTScore (Zhang et al., 2019) and MoverScore
(Zhao et al., 2019). By relying on contextual em-
beddings, these metrics capture semantics and are
therefore much more reliable. However, due to the
sheer size of the underlying models, these metrics
pose environmental issues (Strubell et al., 2019),
take time to compute, and require access to sig-
nificant computational resources, so they are not
accessible by everyone in the NLP community.

For example, we were not able to run some of the
best variants of BERTScore2, based on DeBERTa-
Large and DeBERTa-XLarge (He et al., 2020) on
a 12GB GPU. Even when enough GPU memory
is available, relying on such large models is still
associated with extended runtimes, which can im-
pede the progress of experiments when used once
or more per epoch for validation and monitoring
purposes.

To address this problem, we propose in this pa-
per FrugalScore, an approach to learn a lightweight
version of BERTScore, MoverScore, and more gen-
erally any metric based on a large pretrained lan-
guage model.

Our contributions can be summarized as follows:
1) Our compact models have several orders of mag-
nitude less parameters than the original metrics and

2From BERTScore’s authors: https://tinyurl.com/8cwyter2
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run several times faster, while retaining most of
their original performance. We even outperform
the original metrics in some cases3.
2) Our metrics are not only faster because of the
much smaller amount of parameters, but also be-
cause they do not rely on any similarity function.
3) Regardless of how expensive the original metric
is, querying our trained metrics always has the
same low, fixed cost. This decoupling is a major
advantage as the size of the pretrained language
models has recently been growing tremendously
(e.g., Brown et al. (2020)).

2 Background

Related work falls into two categories: unsuper-
vised and supervised metrics.

2.1 Unsupervised metrics

To address the limitations of ROUGE and BLEU,
variants based on static word embeddings (Mikolov
et al., 2013) were developed, e.g., ROUGE-WE
(Ng and Abrecht, 2015), BLEU2VEC (Tättar and
Fishel, 2017), and MEANT 2.0 (Lo, 2017). While
using word vectors is a progress over strict n-gram
matching, static embeddings are still very limited
as they do not capture polysemy, i.e., the fact that
words have different meanings in different con-
texts.

More recently, the focus has shifted to harness-
ing the power of the contextualized embeddings
produced by large pretrained language models. For
instance, the Sentence Mover’s Similarity (Clark
et al., 2019) represents sentences as the average of
their ELMo word embeddings (Peters et al., 2018)
and measures the minimum cost of transforming
one summary into the other, using a modified ver-
sion of the Word Mover’s Distance (Kusner et al.,
2015). BERTR (Mathur et al., 2019) computes
approximate recall based on the pairwise cosine
similarity between the BERT embeddings (Devlin
et al., 2018) of the words in automatic and refer-
ence translations. Mark-Evaluate (Mordido and
Meinel, 2020) is a family of metrics that consider
contextualized word or sentence embeddings de-
rived from BERT as population samples, to evalu-
ate language generation with population estimation
methods used in ecology.

Finally, the recently introduced BERTScore
(Zhang et al., 2019) and MoverScore (Zhao

3Hence the name FrugalScore, as frugal engineering is
defined as “achieving more with fewer resources”.

et al., 2019) are general-purpose NLG evaluation
metrics that are becoming widely used. The main
difference between BERTScore and MoverScore
lies in the function used to compute the similarity
between the representations of the two sequences
x = ⟨x1, ...,xk⟩ and y = ⟨y1, ...,yl⟩. We
experimented with these two metrics, so we
provide more details about them in what follows.

BERTScore first computes the pairwise cosine sim-
ilarity between the representations of the tokens
in each sequence, and uses greedy matching to
match each token to the most similar one in the
other sequence. Given two pre-normalized vector
sequences x and y, BERTScore computes:

RBERT =
1

|x|
∑
xi∈x

max
yj∈y

xT
i yj (1)

and:

PBERT =
1

|y|
∑
yi∈y

max
xj∈x

yT
i xj (2)

The F1-score is classically obtained as:

FBERT = 2
PBERTRBERT

PBERT +RBERT
(3)

MoverScore uses an n-gram generalization of the
Word Mover’s Distance (WMD) (Kusner et al.,
2015) as their (dis)similarity function. More specif-
ically, they solve for the optimal transportation flow
matrix F ∈ R|x|×|y| between the two weighted se-
quences of n-grams:

WMD(x,y) = minF ⟨C,F ⟩ (4)

s.t. F1 = fx, F T1 = fy

Where C is the transportation cost matrix (Cij is
the Euclidean distance between xi and yj) and
fx ∈ R|x|

+ and fy ∈ R|y|
+ are the n-gram weight

vectors.

Note that by directly learning BERTScore’s
and MoverScore’s full internal mapping (from se-
quence pairs to final scalar scores), FrugalScore
internalizes their similarity functions. This does
not only provide a speedup at inference time, but
also improves performance, as shown in section 5.
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2.2 Supervised metrics

Related to our work are also supervised metrics,
which are directly trained on human evaluations.
ROSE (Conroy and Dang, 2008) is a linear com-
bination model of different variants of ROUGE
using canonical correlation. BEER (Stanojević and
Sima’an, 2014) is a learning-to-rank approach us-
ing word and character n-gram matching, and token
ordering, as features to maximize correlation with
human rankings of machine translation systems. S3

(Peyrard et al., 2017) trains a regression model that
takes the evaluation scores of several existing met-
rics and many hand-crafted features as input, and
learns the best combination of them to approximate
human summary judgments. DPMFcomb (Yu et al.,
2015) and Blend (Ma et al., 2017) are combined
metrics incorporating a vast amount of lexical, syn-
tactic and semantic based translation evaluation
metrics using ranking and regression SVMs respec-
tively. RUSE (Shimanaka et al., 2018) evaluates
machine translation with a neural regressor based
on universal sentence embeddings (e.g., InferSent
(Conneau et al., 2017)). NUBIA (Kane et al., 2020)
consists of three modules: a feature extractor based
on RoBERTa (Liu et al., 2019) and GPT-2 (Rad-
ford et al., 2019) fine-tuned on language evaluation
tasks, an aggregator trained to predict the qual-
ity of the hypothesis given the reference using the
extracted features, and a calibrator mapping all pre-
dictions between 0 and 1.
Differences. Like the aforementioned efforts, Fru-
galScore is a learned metric. However, it does not
rely on any intermediate or handcrafted features,
and, most importantly, it does not require training
on human annotations. Supervision in FrugalScore
is conducted on a synthetic dataset, as a trick to
expose and learn the internal mapping of the unsu-
pervised metrics to be learned. Last but not least,
unlike all aforementioned methods, compression is
central to FrugalScore, which is based on miniature
versions of the models used by the original metrics.

2.3 Knowledge distillation

Knowledge distillation (KD) (Hinton et al., 2015) is
the process of transferring knowledge from a large
teacher model to a smaller student model to accom-
plish model compression (Buciluǎ et al., 2006). It
was originally proposed in the domain of computer
vision and speech recognition, then successfully
adapted to NLP (Sanh et al., 2019). Distillation
can be accomplished in three ways: (1) offline,

where a teacher is first pre-trained, then a student is
trained under the guidance of the teacher (Hinton
et al., 2015); (2) online, where the student and the
teacher are trained simultaneously (Zhang et al.,
2018); and (3) self, where the same model plays
the role of student and teacher, e.g., transferring the
knowledge of a later exit layer into an earlier one of
the same multi-exit network (Phuong and Lampert,
2019). Previous studies on KD mainly focused on
classification problems (Gou et al., 2021). A few
attempts have been made on regression problems
(Chen et al., 2017; Saputra et al., 2019; Takamoto
et al., 2020), in which special losses were proposed
to train the student with respect to both the teacher’s
regression outputs and ground truth scores. Differ-
ent from conventional distillation, our work is more
similar to data-free KD (Kang and Kang, 2021),
where the student is trained in the absence of the
dataset used to train the teacher. To transfer knowl-
edge, we first create a synthetic dataset by anno-
tating sequence pairs with a large model (teacher),
and then train a miniature model (student) on that
dataset, in an offline and regression setting.

2.4 Differences with BLEURT

A work closely related to ours is BLEURT (Sellam
et al., 2020). However, there are a number of signifi-
cant differences with our approach. First, BLEURT
continues the pretraining of an already pretrained
BERT-based model on a synthetic dataset in a self-
supervised way, whereas FrugalScore is directly
trained to learn the scores of the metric of interest,
in a supervised fashion.

Also, BLEURT’s synthetic dataset is made by
perturbing Wikipedia sentences with mask-filling,
backtranslation, and word dropping, whereas we
use other data sources than Wikipedia such as sum-
marization and translation datasets, and only NLG
models to induce perturbations.

When creating its synthetic dataset, BLEURT
automatically annotates the (original, perturbed)
sequence pairs with numerical and categorical “sig-
nals”: BLEU, ROUGE, BERTscore, backtransla-
tion likelihood, textual entailment (probability of
three labels: entail, contradict, and neutral, given
by BERT fine-tuned on MNLI), and backtransla-
tion flag. On the other hand, FrugalScore simply
and directly annotates the sequence pairs with the
metric to be learned.

After pretraining, BLEURT is fine-tuned on hu-
man judgments, in a way similar to the supervised
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metrics described in subsection 2.2. BLEURT does
not learn to generate a scalar until that final fine-
tuning phase, so it cannot be used as a metric before
that. Conversely, FrugalScore is trained from the
start to be a metric, and the fine-tuning phase is
optional.

Also, BLEURT was designed for the evaluation
of translation. The authors only test whether it
can be applied to a different task by experimenting
on the WebNLG (data-to-text) dataset (Gardent
et al., 2017). Conversely, we focus on learning
general text similarity metrics (e.g., BERTscore
and MoverScore), so FrugalScore is task-agnostic
by design.

Finally, and above all, the objective of Fru-
galScore is model compression, whereas that of
BLEURT is metric learning.

3 Our approach

Developing FrugalScore requires three phases, one
of which is optional.
Phase 1. We create a synthetic dataset (see subsec-
tion 3.1) by sampling pairs of more or less related
sequences and annotating them with the expensive
metrics to be learned. This is a one-time operation
that does not need to be repeated regardless of the
model used in Phase 2.
Phase 2. We continue the pretraining (see subsec-
tion 3.2) of a miniature pretrained language model
on the synthetic dataset built by Phase 1. Here, the
miniature model learns the internal mapping of the
expensive metric, including any similarity function
applied to the representations. Note that a different
miniature is trained for each metric to be learned
(we leave learning metric combinations as future
work).

The miniature can then be used in inference
mode to generate scores for any never-seen pair
of sequences.
Phase 3 (optional). We fine-tune the miniature on
human annotations, which, as shown in section 6,
can boost performance.

3.1 Synthetic dataset

The objective here was to generate pairs of se-
quences mimicking the (reference, candidate) pairs
found in NLG datasets, which are usually semanti-
cally related and in many cases paraphrasing one
another. We sampled our sequences from a variety
of data sources, listed next.

Summarization. For each document in the well-
known CNN/DailyMail dataset (Nallapati et al.,
2016), our goal was to generate several summaries
differing in terms of structure and quality. To this
purpose, we used different pretrained seq2seq sum-
marization models: BART-base and BART-large
(Lewis et al., 2019), mBART (Liu et al., 2020), and
BARThez (Kamal Eddine et al., 2021). BART is a
seq2seq autoencoder with a Transformer architec-
ture.

The four models were fine-tuned for one epoch
on 50k examples randomly sampled from the train-
ing set of CNN/DM, and were used to generate
summaries for the whole training set of 287,112
documents, using greedy decoding.

Note that we kept the 50K documents used for
fine-tuning in the final generation pool, in order to
create quality differences among summaries. In-
deed, models are expected to better summarize the
documents used for training than never-seen docu-
ments.

We also used the human reference summaries, so
that in the end, each document was associated with
5 summaries, resulting in 10 pairs of summaries
per document.
Backtranslation. We also generated paraphrases
with backtranslation, by sampling sentences from
the OpenSubtitle English monolingual corpus (Li-
son and Tiedemann, 2016), and translating them
to French, Arabic and German with OPUS-MT
(Tiedemann and Thottingal, 2020), before trans-
lating them back to English. We used OPUS-MT
because of its ready-to-use checkpoints available
for many language pairs. We ended up with 4 varia-
tions for each sentence (including the original one),
resulting in 6 paraphrase pairs per sentence.
Denoising. To avoid bias towards summarization
and translation, we also generated pairs of related
sequences such that the first element in the pair was
a Wikipedia segment and the second element was
a BART-denoised version of it (Lewis et al., 2019).

More precisely, we sampled 2M segments from
Wikipedia such that the number of unigrams in
these segments was uniformly distributed between
1 and 200. Our assumption was that enforcing vari-
ations in sequence length would help the learned
metric to generalize.

We then applied BART’s text infilling and sen-
tence permutation perturbation strategies to each
segment. That is, multiple text spans were sampled
and replaced with a [MASK] special token. The
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lengths of the spans were sampled from a Poisson
distribution (λ = 3). 50% of the tokens within
the input segment were masked and 20% of the
masked text was replaced with random tokens (cre-
ating pathological examples to increase the robust-
ness of the learned metric). The sentences in the
input segment were then shuffled.

We finally used a BART-Base checkpoint4 from
the Fairseq library (Ott et al., 2019) to try to re-
construct the perturbed versions of the original se-
quences, hence creating variants of them.
Annotating pairs. We sampled 4.5M sequence
pairs uniformly from each aforelisted source.
These pairs were then annotated with the metrics
to be learned. Note that this is a one-time opera-
tion that does not need to be repeated regardless of
which models are trained downstream.

In this work, we experimented with two recent
expensive NLG metrics that rely on large pretrained
language models, BERTScore (Zhang et al., 2019)
and MoverScore (Zhao et al., 2019), presented in
section 2. However, it is important to note that our
method can be used with any other NLG metric.

Note that for BERTScore, we used the F-1 score
FBERT , as recommended by the authors (Zhang
et al., 2019). For MoverScore, still following the
authors (Zhao et al., 2019), we used the variant
operating on unigrams and the IDF to compute the
vectors of weights.

3.2 Metric learning

We continue the pretraining of three BERT minia-
tures5 on our synthetic dataset: BERT-Tiny (L = 2,
H = 128), BERT-Small (L = 4, H = 512) and
BERT-Medium (L = 8, H = 512), where L is the
number of layers and H is the dimension of the em-
bedding space. These models have respectively 25
times, 3.78 times, and 2.64 times less parameters
than BERT-base. The concept of BERT miniatures
was introduced by Turc et al. (2019) to test whether
pretraining small models from scratch was compet-
itive to distilling very large models. The miniature
models have already been pretrained on masked
language model and next sentence prediction ob-
jectives.

We continue pretraining using the standard
method introduced by Devlin et al. (2018). We con-
catenate the two sequences x = ⟨x1, ..., xk⟩ and
y = ⟨y1, ..., yl⟩ in a given pair, separating them

4https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz
5https://huggingface.co/google

with a special [SEP] token. A special [CLS] to-
ken is also added at the beginning of the resulting
sequence. The sequence of contextualised embed-
dings ⟨z[CLS],x1, ...xk, z[SEP],y1, ...,yl⟩ is then
obtained. We finally add a fully connected layer
on top, that linearly projects the z[CLS] vector to a
scalar s.

The model is trained to minimize the mean
square error (MSE) loss between the learned metric
si and the metric to be learned ŝi (i.e., the annota-
tion of the pair):

l =
1

N

N∑
i=1

||si − ŝi||2 (5)

When pretraining is over, the models can be further
fine-tuned on smaller human-annotated datasets
as shown in section 6, or directly used to generate
scores for unseen examples as shown in section 4.

Setup. We use a batch size of 32 and the Adam op-
timizer (Kingma and Ba, 2014) with a learning rate
of 3 × 10−5, linear decay, and a warm-up for 6%
of the total training steps, and we train the model
for three epochs. We conducted the pretraining on
a single TITAN RTX GPU (24GB). It took 10, 24
and 33 hours, respectively for the tiny, small, and
medium miniatures. We rely on the Transformers
library (Wolf et al., 2019) for all pretraining and
fine-tuning experiments.

4 Experiments

In this section, FrugalScore is used in inference
mode to generate scores directly after pretraining,
i.e., no fine-tuning is performed (see section 6 for
fine-tuning results).

We evaluate on two text generation tasks: sum-
marization and translation. We use evaluation
datasets containing (reference, candidate) sequence
pairs annotated with human scores assessing the
quality of the candidates given the references. We
measure the effectiveness of FrugalScore by mea-
suring the Pearson correlation of its scores with
the human judgments and comparing it to that of
the original metrics. We also take the number of
parameters and the runtime into account.
Text summarization. We use 4 different multi-
document summarization datasets from the Text
Analysis Conference (TAC)6: TAC-2008, TAC-
2009, TAC-2010 and TAC-2011.

6https://tac.nist.gov/
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Metric Model Scores
(TAC)

Runtime
(TAC)

Scores
(WMT)

Runtime
(WMT) Params

a BERTScore BERT-Tiny 55.4/47.5 1m 27s 37.6 1m 22s 4.4M

b BERTScore BERT-Small 61.6/51.5 2m 20s 39.1 1m 42s 29.1M

c BERTScore BERT-Medium 62.7/52.4 2m 28s 39.8 2m 04s 41.7M

d BERTScore BERT-Base 64.7/54.7 3m 28s 41.9 2m 09s 110M

e BERTScore RoBERTa-Large 64.2/55.4 5m 17s 43.2 3m 03s 355M

f BERTScore DeBERTa-XLarge 64.5/56.0 6m 20s 44.5 3m 49s 900M

g MoverScore BERT-Base 66.5/55.4 301m 29s 44.0 64m 32s 110M

i FrugalScored BERT-Tiny 64.9/53.5 1m 28s 38.4 1m 18s 4.4M

ii FrugalScored BERT-Small 64.7/53.7 2m 29s 41.3 1m 35s 29.1M

iii FrugalScored BERT-Medium 64.8/54.2 3m 41s 41.9 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 60.0/50.1 1m 28s 37.5 1m 18s 4.4M

v FrugalScoree BERT-Small 64.1/53.8 2m 29s 40.5 1m 35s 29.1M

vi FrugalScoree BERT-Medium 63.9/52.1 3m 41s 41.7 1m 55s 41.7M

vii FrugalScoref BERT-Tiny 61.7/51.0 1m 28s 38.0 1m 18s 4.4M

viii FrugalScoref BERT-Small 66.0/54.9 2m 29s 41.5 1m 35s 29.1M

ix FrugalScoref BERT-Medium 65.5/54.9 3m 41s 43.0 1m 55s 41.7M

x FrugalScoreg BERT-Tiny 67.3/55.1 1m 28s 39.8 1m 18s 4.4M

xi FrugalScoreg BERT-Small 65.9/54.7 2m 29s 42.8 1m 35s 29.1M

xii FrugalScoreg BERT-Medium 66.2/55.1 3m 41s 43.6 1m 55s 41.7M

Table 1: Scores are summary-level (TAC) and segment-level (WMT) Pearson correlations averaged over 2008 to
2011 for TAC (pyramid score/responsiveness) and over all source languages for WMT-2019. Runtimes include
preprocessing. Subscripts refer to row labels and indicate which metric-model combination was used to annotate
pairs (e.g., for FrugalScored, it is row d, i.e., BERTScore-BERT-Base).

These datasets respectively contain 48, 44, 46
and 44 clusters of documents and 58, 55, 43 and
51 systems are used to generate summaries. Each
cluster forms a topic to be summarized and has 4
reference summaries. There are approximately 10k
pairs in each dataset. Each pair is annotated with
two human judgment scores: the Pyramid Score
(Harnly et al., 2005) and the Responsiveness (Dang
et al., 2008). The former measures the proportion
of important semantic units (SCUs) in the refer-
ence summaries captured by the system summary,
while the latter reflects the content coverage and
the readability of each summary.
Machine translation. Our evaluation corpus is
from the WMT-20197 shared task (Li et al., 2019).
We consider all the to-English pairs: Chinese,
Czech, German, Finnish, Russian, Lithuanian
and Kazakh to English. For each language, we
use the test set that contains several thousands of
reference-candidate pairs annotated with human
ratings that assess the translation quality.

7http://www.statmt.org/wmt19/

5 Results

Table 1 reports the results averaged over the 4 TAC
datasets and the 7 WMT to-English language pairs.
Details are provided in Appendices A and B.

We benchmarked the metrics in terms of Pear-
son correlations with human scores, runtimes, and
numbers of parameters. We used two approaches to
compute the Pearson correlations: summary-level
(or segment-level) and system-level.

In the former approach, a score is attributed to
each of the output candidates, while in the latter
approach, one single overall score is attributed to
the system (by averaging its individual scores).

Rows a to c correspond to BERTScore with
BERT miniatures as the underlying model. They
are simple baselines added for the sake of com-
parison, to see what we get when BERTScore is
used with the same number of parameters as Fru-
galScore.

Rows d to g correspond to the expensive metrics
that are learned by FrugalScore (in the respective
sections of the bottom half of the table). They
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are BERTScore and MoverScore metrics where
the underlying model is a large pretrained lan-
guage model: BERT-Base (L = 12, H = 512),
RoBERTa-Large (L = 24, H = 1024) (Liu
et al., 2019), and DeBERTa-XLarge (L = 24,
H = 1536) (He et al., 2020).

Finally, rows i to xii correspond to Fru-
galScore. Subscripts refer to row labels and in-
dicate which metric-model combination was used
to annotate pairs. I.e., FrugalScored learned the
metric of row d, i.e., BERTScore with BERT-Base.

First, results show that all FrugalScores, regard-
less of which metric they learned, significantly
outperform the BERTScores with miniature mod-
els. These results suggest that FrugalScore is a
better approach than using an existing metric with
a lightweight underlying model. The reason for this
is probably that in FrugalScore, the knowledge of
the original unsupervised metric (based on a large
model) is explicitly transferred to the miniature via
the continuation of its pretraining on the synthetic
dataset. That is, the miniature is actually learning
a metric. Whereas, on the other hand, plugging a
compressed version of a general-purpose language
model into the original unsupervised metric just
makes it lose expressiveness and capacity.

Second, we can clearly see that FrugalScore re-
tains most of the performance of the original metric,
while running several times faster and reducing the
number of parameters by several orders of mag-
nitude. On average over all metrics, tasks, and
miniatures, FrugalScore retains 96.8% of the origi-
nal performance, runs 24 times faster, and has 35
times less parameters.

More precisely, on average across all met-
rics, FrugalScore-Tiny retains 97.7/94.7% of
the original performance on TAC (pyramid
score/responsiveness), while running 54 times
faster and having 84 times less parameters. Its
small and medium versions retain near full perfor-
mance in terms of responsiveness (98 and 97.7%)
and even slightly outperform the original metrics
in terms of pyramid score, while at the same time
reducing the runtime and the number of parameters
by 32 (resp. 21) and 13 (resp. 9) times.

On WMT, FrugalScore-Tiny retains 88.58% of
the performance of the original metrics, while run-
ning 14 times faster (and still having 84 times less
parameters), while the small and medium versions
of FrugalScore retain 95.71 % and 98.06% of the
original performance while still offering a 32 times

(resp. 21) speedup and having 13 times (resp. 9)
less parameters, on average.

Interestingly, FrugalScore even improves the per-
formance of the original metrics in some cases.
For example, on TAC, FrugalScoreg with BERT-
Tiny (row x) improves the performance of the
original MoverScore metric based on BERT-Base
(row g) from 66.5 to 67.3 in terms of pyramid
score, while reducing the number of parameters
by 25 and running 50 times faster. Other exam-
ples, also for TAC with the pyramid score, include
FrugalScoref with BERT-Small (row viii, +1.5
point) and FrugalScoref with BERT-medium (row
ix, +1 point).

Finally, the results of FrugalScore for different
miniature sizes show that, on WMT, using larger
models always improves performance (e.g., row x
→ xi→ xii). But interestingly, on TAC, this ob-
servation does not hold (e.g., row vi→ viii→
ix), and sometimes, FrugalScore with the smallest
miniature (BERT-Tiny) is superior (e.g. rows i
and x). This finding suggests that the impact of the
pretrained language model size is task-dependent.

To sum up, results clearly show the effective-
ness of FrugalScore in learning a cheaper, lighter,
and faster version of the original metrics, while
retaining most of their original performance. The
system-level correlations, provided in Appendices
C and D, corroborate these positive results.

We also provide the correlations between the
original and the learned metrics in Appendices E
and F. It is interesting to note that a greater cor-
relation with the original metric is not always as-
sociated with a better performance. E.g., the tiny
version of FrugalScoreg is the best (row x), while
it is the less correlated with the original metric.

6 Fine-tuning on human annotations

We test two hypotheses in this section: (1) whether
fine-tuning on a human-annotated dataset is bene-
ficial, and (2) when fine-tuning on human annota-
tions, whether continuing pretraining on our syn-
thetic dataset is useful.

Because we cannot use the same dataset for fine-
tuning and evaluation, we fine-tune a BERT-Small
on each year of TAC 2008-2011 for 4 epochs, us-
ing two other years as the validation set, and the
remaining year as the test set. The best epoch
is selected based on validation performance. We
use a batch size of 32 and a learning rate of 2e-5
that linearly decreases to zero. Finally, we experi-
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Pretraining
Continued TAC-2008 TAC-2009 TAC-2010 TAC-2011 Average

TAC-2008
no

-
67.70.57 66.10.18 63.60.36 65.8

yes 74.40.13 71.30.04 67.30.13 71.0

TAC-2009
no 61.40.41 -

66.90.24 62.70.55 63.7
yes 65.80.25 70.70.32 66.00.18 67.5

TAC-2010
no 59.70.47 67.30.7 -

62.40.47 63.1
yes 64.70.19 74.30.24 67.20.11 68.7

TAC-2011
no 57.61.39 64.71.03 66.50.66 -

62.9
yes 63.90.31 72.00.44 71.60.44 69.2

Table 2: Summary-level Pearson correlations with human judgments (Pyramid scores), averaged over 3 runs
(standard deviation as subscript). Rows correspond to the training sets and columns to the test sets.

ment with two scenarios: fine-tuning the miniature
directly without continuing its pretraining on our
synthetic dataset, and fine-tuning it after the pre-
training continuation (with annotations generated
by BERTScore-BERT-Base).
Results. Results are reported in Table 2 in terms
of summary-level Pearson correlations with human
evaluations (Pyramid), averaged over 3 runs with
different random seeds.

First, it is obvious that everywhere, continuing
the pretraining on our synthetic dataset leads to a
significant boost in performance. This is in accor-
dance with Sellam et al. (2020), who found that
pretraining was beneficial even in a supervised set-
ting.

Second, even if a direct comparison is not pos-
sible, we can remark when looking at the TAC
Pyramid score of row ii) in Table 1 (FrugalScored-
BERT-Small) that fine-tuning after pretraining
seems very beneficial too. Indeed, after fine-tuning,
we reach on average 71, 67.5, 68.7, and 69.2 (de-
pending on the split), which represents overall a
gain of 4.4 points over the non-fine-tuned model
(score of 64.7).

7 Impact of data sources

To test the importance of each data source intro-
duced in subsection 3.1, we created a training set
containing sequence pairs uniformly and equally
sampled from each source. We annotated these
pairs with the BERTScore-BERT-Base metric and
we used them to continue the pretraining of a BERT-
Small miniature.

We also considered pairs drawn at random from
the pairs generated with the other strategies. The
motivation for random pairs was to sample “nega-
tive examples”, as seeing only “positive examples”
(pairs of related sequences) could bias the learned

no_summ.

no_translation

no_denoising
no_random

0.5

0.0

0.5

1.0

1.5

2.0

no_summ.

no_translation

no_denoising
no_random

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1: Relative improvement in Pearson correlation
compared to a dataset covering all sources. Left: TAC.
Right: WMT.

metric towards considering any two unrelated se-
quences as similar.

We then continued the pretraining of the BERT-
Small miniature four times, excluding each time
the pairs coming from a specific data source. We
evaluated the learned metric on TAC-2008 to 2011
and on WMT-2019. Figure 1 shows the average
improvements in the Pearson correlation with hu-
man judgments relative to training a model on all
sources. Note that when training on all four sources,
we sampled 30k pairs from each source (120k to-
tal), and when excluding a source, we sampled 40k
pairs from each source (120k total).

We can clearly see that excluding the random
pairs improves performance while excluding any
of the other data sources decreases performance.
In other words, all our data sources are beneficial,
and it is not necessary to add “negative examples”.
We hypothesise that this is due to the fact that
NLG datasets typically do not contain completely
unrelated pairs of sentences. Interestingly, the
pairs generated with the backtranslation strategy
have the greatest impact on performance.
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8 Conclusion

We proposed FrugalScore, an approach to learn
a fixed, low-cost version of any expensive NLG
evaluation metric. Experiments on summarization
and translation tasks show that our FrugalScore ver-
sions of BERTScore and MoverScore retain most
of the original performance in terms of the correla-
tion with human judgments, while running several
times faster and having several orders of magnitude
less parameters. On average over all learned met-
rics, tasks, and variants, FrugalScore retains 96.8%
of the performance, runs 24 times faster, and has
35 times less parameters than the original metrics.
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A Detailed TAC evaluation per year

Metric Model TAC-2008 TAC-2009 TAC-2010 TAC-2011 Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 52.1/44.4 62.2/51.9 54.6/49.9 52.7/43.6 55.4/47.5 1m 27s 4.4M

b BERTScore BERT-Small 56.0/47.8 70.0/54.6 61.1/54.5 59.1/49.2 61.6/51.5 2m 20s 29.1M

c BERTScore BERT-Medium 57.3/48.5 70.6/55.3 63.1/56.2 59.7/49.5 62.7/52.4 2m 28s 41.7M

d BERTScore BERT-Base 61.3/52.2 73.2/58.7 63.3/56.8 61.0/51.2 64.7/54.7 3m 28s 110M

e BERTScore RoBERTa-Large 56.4/50.9 71.1/58.3 69.1/61.4 60.3/50.8 64.2/55.4 5m 17s 355M

f BERTScore DeBERTa-XLarge 60.9/54.5 73.9/60.4 62.6/56.0 61.5/53.0 64.5/56.0 6m 20s 900M

g MoverScore BERT-Base 64.7/54.2 73.9/58.2 64.7/57.0 62.6/52.5 66.5/55.4 301m 29s 110M

i FrugalScored BERT-Tiny 60.9/50.0 72.5/56.4 64.8/57.5 61.4/50.0 64.9/53.5 1m 28s 4.4M

ii FrugalScored BERT-Small 61.9/51.8 73.0/57.3 62.6/55.8 61.3/50.0 64.7/53.7 1m 35s 29.1M

iii FrugalScored BERT-Medium 62.0/52.2 73.3/58.1 62.6/56.0 61.3/50.6 64.8/54.2 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 54.8/46.4 66.8/54.2 61.8/53.1 56.4/46.7 60.0/50.1 1m 28s 4.4M

v FrugalScoree BERT-Small 59.1/49.6 72.7/55.7 68.1/59.8 63.0/50.1 64.1/53.8 2m 29s 29.1M

vi FrugalScoree BERT-Medium 57.9/48.4 71.8/54.4 65.7/57.0 60.3/48.5 63.9/52.1 3m 41s 41.7M

vii FrugalScoref BERT-Tiny 57.8/48.5 68.6/55.7 63.0/54.8 57.5/47.8 61.7/51.0 1m 28s 4.4M

viii FrugalScoref BERT-Small 60.1/51.0 73.5/57.5 67.3/59.5 63.1/51.7 66.0/54.9 2m 29s 29.1M

ix FrugalScoref BERT-Medium 59.0/50.3 73.3/57.4 67.2/60.2 62.4/51.5 65.5/54.9 3m 41s 41.7M

x FrugalScoreg BERT-Tiny 63.6/51.7 74.4/57.3 68.0/60.1 63.2/51.2 67.3/55.1 1m 28s 4.4M

xi FrugalScoreg BERT-Small 63.2/52.5 73.1/57.1 65.1/57.6 62.3/51.5 65.9/54.7 2m 29s 29.1M

xii FrugalScoreg BERT-Medium 63.8/53.2 73.6/57.7 65.3/57.5 62.1/51.8 66.2/55.1 3m 41s 41.7M

Table 3: Summary-level Pearson correlation (pyramid score/responsiveness).

B Detailed WMT evaluation per language

Metric Model de-en fi-en gu-en kk-en lt-en ru-en zh-en Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 29.7 32.5 33.9 52.0 40.5 30.7 44.2 37.6 1m 22s 4.4M

b BERTScore BERT-Small 30.0 33.6 34.6 52.4 42.3 31.8 49.1 39.1 1m 42s 29.1M

c BERTScore BERT-Medium 30.8 34.4 35.2 52.8 42.8 32.4 50.3 39.8 2m 04s 41.7M

d BERTScore BERT-Base 32.8 37.4 37.1 54.0 44.7 33.7 53.7 41.9 2m 09s 110M

e BERTScore RoBERTa-Large 35.3 38.7 38.7 52.0 45.3 34.3 58.3 43.2 3m 03s 355M

f BERTScore DeBERTa-XLarge 37.6 39.2 40.3 53.4 47.3 35.7 57.8 44.5 3m 49s 900M

g MoverScore BERT-Base 36.5 39.1 39.3 55.0 46.5 35.6 56.0 44.0 64m 32s 110M

i FrugalScored BERT-Tiny 30.2 32.8 34.6 52.4 39.9 31.2 47.7 38.4 1m 18s 4.4M

ii FrugalScored BERT-Small 32.6 35.9 37.1 54.1 43.5 33.6 52.3 41.3 1m 35s 29.1M

iii FrugalScored BERT-Medium 32.9 37.0 37.4 54.4 44.3 34.1 53.2 41.9 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 30.6 32.8 33.0 49.8 38.7 29.8 48.1 37.5 1m 18s 4.4M

v FrugalScoree BERT-Small 33.7 35.4 35.4 51.6 42.6 32.6 52.5 40.5 1m 35s 29.1M

vi FrugalScoree BERT-Medium 35.2 37.1 35.6 52.0 44.0 33.8 54.4 41.7 1m 55s 41.7M

vii FrugalScoref BERT-Tiny 30.8 33.1 34.4 50.8 39.4 30.4 47.1 38.0 1m 18s 4.4M

viii FrugalScoref BERT-Small 34.5 36.4 37.0 52.7 43.9 33.4 52.6 41.5 1m 35s 29.1M

ix FrugalScoref BERT-Medium 35.8 38.3 37.7 53.4 45.7 34.8 55.1 43.0 1m 55s 41.7M

x FrugalScoreg BERT-Tiny 33.0 34.0 36.2 53.6 40.5 32.7 48.6 39.8 1m 18s 4.4M

xi FrugalScoreg BERT-Small 35.6 37.4 38.9 55.0 44.8 34.8 52.8 42.8 1m 35s 29.1M

xii FrugalScoreg BERT-Medium 36.2 38.3 39.1 55.6 45.8 35.3 54.7 43.6 1m 55s 41.7M

Table 4: Segment-level Pearson correlation.
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C Detailed TAC evaluation per year (system level)

Metric Model TAC-2008 TAC-2009 TAC-2010 TAC-2011 Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 82.5/77.6 87.4/81.8 77.5/75.0 82.1/79.2 82.4/78.4 1m 27s 4.4M

b BERTScore BERT-Small 84.4/81.4 95.8/84.0 81.3/78.0 87.6/85.3 87.3/82.2 2m 20s 29.1M

c BERTScore BERT-Medium 86.3/82.7 96.0/84.6 84.0/80.6 87.8/85.5 88.5/83.3 2m 28s 41.7M

d BERTScore BERT-Base 90.6/87.5 96.5/87.5 83.7/80.9 88.3/86.4 89.8/85.6 3m 28s 110M

e BERTScore RoBERTa-Large 80.0/80.9 94.7/87.7 92.7/89.8 88.9/89.2 89.1/86.9 5m 17s 355M

f BERTScore DeBERTa-XLarge 88.0/89.8 97.5/89.8 85.7/84.0 90.7/91.8 90.5/88.9 6m 20s 900M

g MoverScore BERT-Base 95.4/89.5 96.9/85.9 85.7/84.0 88.6/86.0 91.7/86.3 301m 29s 110M

i FrugalScored BERT-Tiny 91.6/85.3 95.8/84.7 86.2/82.9 88.3/84.4 90.5/84.3 1m 28s 4.4M

ii FrugalScored BERT-Small 90.9/86.8 96.2/85.4 82.8/79.6 87.8/84.3 89.4/84.0 1m 35s 29.1M

iii FrugalScored BERT-Medium 90.6/87.0 96.6/86.3 82.5/79.6 87.6/84.9 89.3/84.5 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 86.3/81.1 95.1/87.1 84.5/80.2 84.5/80.9 87.6/82.3 1m 28s 4.4M

v FrugalScoree BERT-Small 85.1/81.7 95.7/83.6 91.2/87.5 91.7/87.5 90.9/85.1 2m 29s 29.1M

vi FrugalScoree BERT-Medium 81.6/80.7 95.7/84.1 90.9/87.5 87.6/85.3 89.0/84.4 3m 41s 41.7M

vii FrugalScoref BERT-Tiny 89.7/84.5 95.3/87.6 85.1/81.4 84.8/81.2 88.7/83.7 1m 28s 4.4M

viii FrugalScoref BERT-Small 86.8/85.1 96.7/85.4 89.5/86.2 91.6/88.7 91.2/86.3 2m 29s 29.1M

ix FrugalScoref BERT-Medium 85.4/86.3 97.2/87.2 91.1/88.9 92.3/91.0 91.5/88.3 3m 41s 41.7M

x FrugalScoreg BERT-Tiny 93.7/86.1 96.2/83.9 90.1/87 89.4/84.8 92.3/85.5 1m 28s 4.4M

xi FrugalScoreg BERT-Small 93.2/87.6 96.4/84.2 85/81.7 87.9/84.9 90.6/84.6 2m 29s 29.1M

xii FrugalScoreg BERT-Medium 93.7/87.5 96.5/84.5 84.8/81.6 87.3/84.7 90.6/84.6 3m 41s 41.7M

Table 5: System-level Pearson correlation (pyramid/responsiveness).

D Detailed WMT evaluation per language (system level)

Metric Model de-en fi-en gu-en kk-en lt-en ru-en zh-en Macro Avg.
Score Runtime Params

a BERTScore BERT-Tiny 74.1 97.9 93.1 99.77 87.9 94.5 91.7 91.3 1m 22s 4.4M

b BERTScore BERT-Small 82.6 97.5 88.2 99.87 95.3 96.4 93.0 93.3 1m 42s 29.1M

c BERTScore BERT-Medium 83.7 97.7 88.2 99.86 94.4 96.2 93.5 93.4 2m 04s 41.7M

d BERTScore BERT-Base 89.1 97.8 89.7 99.72 96.9 96.9 95.8 95.1 2m 09s 110M

e BERTScore RoBERTa-Large 94.0 98.4 98.1 98.00 96.1 91.0 98.2 96.3 3m 03s 355M

f BERTScore DeBERTa-XLarge 93.9 98.3 98.2 99.18 98.7 97.1 98.4 97.7 3m 49s 900M

g MoverScore BERT-Base 88.1 99.1 91.2 98.58 96.0 97.2 96.4 95.2 64m 32s 110M

i FrugalScored BERT-Tiny 81.1 98.6 94.4 99.80 92.2 95.4 93.8 93.6 1m 18s 4.4M

ii FrugalScored BERT-Small 86.5 98.5 93.6 99.82 95.9 97.1 94.7 95.2 1m 35s 29.1M

iii FrugalScored BERT-Medium 88.3 98.3 92.1 99.79 96.4 97.2 95.4 95.4 1m 55s 41.7M

iv FrugalScoree BERT-Tiny 80.2 97.7 94.9 99.73 86.4 94.6 93.7 92.5 1m 18s 4.4M

v FrugalScoree BERT-Small 83.9 98.0 95.2 99.79 92.4 97.0 95.1 94.5 1m 35s 29.1M

vi FrugalScoree BERT-Medium 88.1 97.9 93.0 99.78 94.9 97.8 96.1 95.4 1m 55s 41.7M

vii FrugalScoref BERT-Tiny 81.3 97.9 96.1 99.81 89.8 94.7 93.7 93.3 1m 18s 4.4M

viii FrugalScoref BERT-Small 85.8 97.7 96.2 99.85 95.3 97.3 95.7 95.4 1m 35s 29.1M

ix FrugalScoref BERT-Medium 89.9 97.9 90.8 99.85 97.6 97.8 96.9 95.8 1m 55s 41.7M

x FrugalScoreg BERT-Tiny 81.8 98.9 95.6 99.73 92.1 95.6 94.4 94.0 1m 18s 4.4M

xi FrugalScoreg BERT-Small 85.4 98.8 95.8 99.52 94.9 96.8 95.3 95.2 1m 35s 29.1M

xii FrugalScoreg BERT-Medium 87.0 98.8 93.5 99.29 95.6 97.0 95.9 95.3 1m 55s 41.7M

Table 6: System-level Pearson correlation.
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E Correlation with learned metric (TAC)

Metric Model TAC-2008 TAC-2009 TAC-2010 TAC-2011 Average

i FrugalScored BERT-Tiny 91.7 94.7 97.2 95.1 94.7

ii FrugalScored BERT-Small 96.9 97.9 99.0 98.0 98.0

iii FrugalScored BERT-Medium 98.3 98.8 99.4 99.0 98.9

iv FrugalScoree BERT-Tiny 77.9 82.4 87.5 75.9 80.9

v FrugalScoree BERT-Small 86.9 90.7 91.6 89.2 89.6

vi FrugalScoree BERT-Medium 87.1 90.7 86.3 90.9 88.8

vii FrugalScoref BERT-Tiny 80.0 85.5 89.4 81.3 84.0

viii FrugalScoref BERT-Small 88.9 92.8 92.6 91.4 91.4

ix FrugalScoref BERT-Medium 89.9 92.9 92.1 93.6 92.1

x FrugalScoreg BERT-Tiny 91.1 94.8 95.7 94.8 94.1

xi FrugalScoreg BERT-Small 94.8 97.4 98.4 98.0 97.1

xii FrugalScoreg BERT-Medium 96.4 98.0 98.9 98.6 98.0

Table 7: Summary-level Pearson correlation between the FrugalScored,e,f,g and the metrics d, e, f, g used to
generate the annotations.

F Correlation with learned metric (WMT)

Metric Model de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

i FrugalScored BERT-Tiny 90.2 89.6 91.3 92.5 92.4 92.4 92.3 91.5

ii FrugalScored BERT-Small 96.3 96.1 96.8 97.2 97.2 97.3 97.3 96.9

iii FrugalScored BERT-Medium 97.5 97.5 98.0 98.2 98.3 98.3 98.3 98.0

iv FrugalScoree BERT-Tiny 71.0 74.6 78.6 82.0 82.1 82.0 81.8 78.9

v FrugalScoree BERT-Small 81.4 83.7 84.7 86.9 87.1 87.1 87.2 85.4

vi FrugalScoree BERT-Medium 85.0 87.6 87.5 89.2 89.5 89.5 89.6 88.3

vii FrugalScoref BERT-Tiny 71.6 76.4 81.3 83.9 83.7 83.6 83.5 80.6

viii FrugalScoref BERT-Small 82.2 85.5 88.6 90.1 90.1 90.1 90.1 88.1

ix FrugalScoref BERT-Medium 85.9 89.4 91.7 92.7 92.7 92.7 92.7 91.1

x FrugalScoreg BERT-Tiny 89.3 89.1 90.8 91.7 91.6 91.8 91.5 90.8

xi FrugalScoreg BERT-Small 94.5 94.7 95.7 96.1 96.0 96.1 95.9 95.6

xii FrugalScoreg BERT-Medium 95.7 96.1 96.9 97.2 97.1 97.1 97.0 96.7

Table 8: Segment-level Pearson correlation between the FrugalScored,e,f,g and the metrics d, e, f, g used to generate
the annotations.
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