
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 974 - 990

May 22-27, 2022 c©2022 Association for Computational Linguistics

Modeling Multi-hop Question Answering as Single Sequence Prediction

Semih Yavuz Kazuma Hashimoto Yingbo Zhou
Nitish Shirish Keskar Caiming Xiong

Salesforce Research
{syavuz,k.hashimoto,yingbo.zhou,nkeskar,cxiong}@salesforce.com

Abstract

Fusion-in-decoder (FID) (Izacard and Grave,
2021) is a generative question answering (QA)
model that leverages passage retrieval with a
pre-trained transformer and pushed the state of
the art on single-hop QA. However, the com-
plexity of multi-hop QA hinders the effective-
ness of the generative QA approach. In this
work, we propose a simple generative approach
(PATHFID) that extends the task beyond just an-
swer generation by explicitly modeling the rea-
soning process to resolve the answer for multi-
hop questions. By linearizing the hierarchical
reasoning path of supporting passages, their
key sentences, and finally the factoid answer,
we cast the problem as a single sequence predic-
tion task. To facilitate complex reasoning with
multiple clues, we further extend the unified
flat representation of multiple input documents
by encoding cross-passage interactions. Our ex-
tensive experiments demonstrate that PATHFID
leads to strong performance gains on two multi-
hop QA datasets: HotpotQA and IIRC. Besides
the performance gains, PATHFID is more inter-
pretable, which in turn yields answers that are
more faithfully grounded to the supporting pas-
sages and facts compared to the baseline FID
model.

1 Introduction

Leveraging knowledge to make complex reasoning
has been a fundamental problem of artificial intel-
ligence. Open-domain question answering (QA)
(Voorhees, 1999) is an integral part of such a line of
research with impactful applications (Esteva et al.,
2020; Zhang et al., 2020), where the task is to
answer general domain questions by gathering evi-
dence from a large collection of documents. While
super-human level performance has been achieved
on single-passage reading comprehension dataset
like SQuAD (Rajpurkar et al., 2016), open-domain
QA still has a long way to go, especially for ques-
tions requiring more complex reasoning. The main

challenge in the task of complex QA, namely multi-
hop QA, is that it requires a QA system to combine
multiple pieces of evidence from multiple docu-
ments (Welbl et al., 2018; Talmor and Berant, 2018;
Yang et al., 2018). Even for single-hop QA, it has
been shown challenging for extractive QA models
to effectively aggregate evidence from the com-
bined pool of multiple passages, which has been
the focus of recent work (Clark and Gardner, 2018;
Min et al., 2019; Guu et al., 2020).

Recent work (Lewis et al., 2020b; Min et al.,
2020) has demonstrated the promise of a genera-
tive approach at combining evidences from mul-
tiple passages for answer generation. Thanks
to large pre-trained transformers like T5 (Raffel
et al., 2020), Izacard and Grave (2021) introduced
fusion-in-decoder (FID) that leverages passage re-
trieval with generative models for open-domain
QA, achieving state-of-the-art scores across several
single-hop QA benchmarks. However, we observe
that the success of the FID model does not extend
to multi-hop QA, which is corroborated by the find-
ings in (Xiong et al., 2021). Further, the FID model
is a rather opaque model in terms of interpretation
of the answer generation process. This capability
becomes especially important for multi-hop QA,
which requires sequential reasoning across multiple
evidences from the pool of retrieved passages.

In this work, we propose PATHFID, a genera-
tive QA model that learns to generate an answer
along with a reasoning path to improve its capa-
bility of multi-hop reasoning. PATHFID extends
multi-hop QA beyond just answer generation by
explicitly modeling the full reasoning path to re-
solve the answer with a generative sequence-to-
sequence model. To this end, we cast the problem
as a single sequence prediction task that simulta-
neously models reasoning path consisting of sup-
porting passages and facts, and eventually the fac-
toid answer. Furthermore, we extend PATHFID to
allow for cross-passage interactions between the

974

Figure 1: An example of multi-hop question from HotpotQA dataset. It requires fusing multiple evidences (supporting facts)
from multiple passages in a certain order to arrive at the correct answer. We formulate the entire problem as a single sequence
prediction of the linearized hierarchical path ending with the answer.

retrieved passages to obtain more expressive repre-
sentations from the encoder to facilitate modeling
a complex reasoning chain by the decoder. Fig-
ure 1 shows an example of our task formulation,
and Figure 2 shows an overview of our approach.
We evaluate our proposed approach on two multi-
hop QA datasets: HotpotQA (Yang et al., 2018)
and IIRC (Ferguson et al., 2020). Our extensive
experiments demonstrate that (i) PATHFID leads
to significant performance gains over FID on an-
swer generation, (ii) PATHFID is the first generative
model unlocking the possibility of generating the
reasoning path jointly with the answer while achiev-
ing competitive performance on supporting fact ex-
traction metric as well. Besides the performance
gains, PATHFID is able to expose the underlying
reasoning process behind the answer generation,
which allows us to conduct a much finer-grained
qualitative and quantitative analysis on the model’s
behavior, providing insights into further improv-
ing and better understanding generative models for
multi-hop QA.

2 Problem Setup and Background

In this section, we formally introduce the problem
setup and establish the necessary background.

2.1 Multi-hop Question Answering

We first describe the multi-hop QA task in a general
way. We assume that a collection of K passages
are given for a question q: Dq = {p1, p2, . . . , pK},
where Dq can be a pre-defined set, or it can also
be an output from a text retrieval system (e.g.,
DPR (Karpukhin et al., 2020) and MDR (Xiong
et al., 2021)) in an open-domain QA setting. That
is, in the case of the open-domain setting, Dq is
a subset of a large collection of passages, such as

Wikipedia. The task is to generate an answer string
a given q and Dq. In addition, we aim at identify-
ing which passages provide evidence, and which
sentences in them are describing the evidence. Fig-
ure 1 shows a comprehensive example of the task
definition, where we can see that some sentences
(called supporting facts) in the two paragraphs are
crucial to answer the question. Moreover, there is a
reasoning flow: the question → the first paragraph
→ the second paragraph, which is called a reason-
ing path in previous work (Asai et al., 2020). The
overall task is then to predict the reasoning path
along with the supporting facts, and the answer.

2.2 Fusion-in-Decoder Model (FID)
Fusion-in-Decoder (FID) is a generative reader
based on a sequence-to-sequence architecture, ini-
tialized from pre-trained models such as T5 (Raf-
fel et al., 2020) or BART (Lewis et al., 2020a).
It consists of an encoder (Enc) and a decoder
(Dec). First, it constructs a single block of text
bn := question: q title: tn context: pn
of concatenated evidence from each passage-title
pair (pn, tn) together with the question (q). Then,
each of the resulting evidence block bn is indepen-
dently encoded into |bn| × d-dimensional output
representations, which are then concatenated to
form a unified input representation

X = [Enc(b1);Enc(b2); . . . ,Enc(bN)] (1)

of dimension (
∑

n |bn|)×d where |bn| denotes the
length of the n-th block bn in number of tokens.
Note that, the motivation behind this strategy is to
avoid the expensive quadratic self-attention com-
putation on the encoder-side, effectively reducing
the complexity from O((

∑
|bn|)2) to O(

∑
|bn|2).

Then, the overall answer generation is modeled

975

as a conditional generation pθ(a|X) given X con-
suming the unified input representation X, where
θ represents the set of all model parameters. The
model is trained to minimize the cross-entropy loss
for generating answer tokens on the decoder side.
At inference time, FID first computes X based on
the retrieved passages, and then decodes the answer
token by token following pθ(ai|a<i,X) with the
learned model parameters θ.

3 PATHFID Reader for Multi-hop QA

In this section, we introduce a generative reader
(PATHFID) for K-hop QA that jointly generates
an alternating sequence of passage-level and fact-
level clues on the reasoning path by more explicit
fusion of evidence from the pool of input passages
to arrive at the correct answer.

3.1 Overview of PATHFID

As illustrated in Figure 2, PATHFID employs a sin-
gle sequence-to-sequence architecture that indepen-
dently encodes the input passages after inserting
special fact markers (<fi>) before the i-th sentence
of each passage. Conditioning on the concatenation
of token-level input representations per passage, its
decoder then generates the linearized hierarchical
reasoning path obtained by concatenating the se-
quence of passage titles and their corresponding
supporting fact pointers followed by the answer.
Each segment on the reasoning path is separated
by special markers in a way that makes it possible
to uniquely recover the individual segment predic-
tions after decoding in the inference time.

3.2 Extending Multi-hop QA beyond Answer
Generation

The opaqueness of the FID model, which makes
understanding of the reasoning process more diffi-
cult, motivated our approach and its emphasis on
exposing the reasoning path. Instead of only model-
ing answer generation, we propose to jointly model
it with the full reasoning path in an hierarchical
fashion to derive the answer in a unified way using
multi-task maximum likelihood training.

3.2.1 Global Input Representation
We utilize the core input encoding architecture
from FID approach (Section 2.2) by introducing a
new passage representation that will facilitate sup-
porting fact generation on the reasoning path as il-
lustrated in Figure 2. To this end, we independently
encode each input passage-title pair (pn, tn) along

with the question q as a separate block b
path
n :=

question: q title: tn context: p
path
n

where we redefine the context representation by in-
serting special tokens (<fi>) before each sentence
of the passage as

ppath
n := <f1> s(1)n <f2> s(2)n · · · <fln> s(ln)n (2)

where s
(i)
n denotes the i-th sentence of passage pn,

and ln is the number sentences it contains. Hav-
ing redefined the input blocks (bpath

n) per passage,
we then compute the global input representation
similar to Eq. 1 by

Xpath
q = [Enc(b

path
1);Enc(b

path
2); . . . ;Enc(b

path
N)]

(3)

Note that sentence indicators (<fi>) are shared
across all passages, encouraging a more hierarchi-
cal passage representation by explicitly breaking
them down into sentence-level sub-blocks using
the same indicator tokens.

3.2.2 Hierarchical Reasoning Path as a
Sequence

The hierarchical design of reasoning path is in-
spired by the human reasoning process for multi-
hop QA task. More precisely, if a question q re-
quires K-hop reasoning, then we process these
K passages in a sequential order alternating be-
tween their passage-level and sentence-level evi-
dence until we reach the answer. To this end, let
Rq = {pr1 , pr2 , . . . , prK} with ri ∈ [1, N] denote
the sequence of passages from the larger pool Dq

reflecting this reasoning process for locating the
answer a for question q. As shown in Figure 2,
we define the hierarchical reasoning path as a lin-
earized sequence of blocks of passage titles and
supporting facts followed by the answer block

Ypath
q := [Tr1 ;Er1 ;Tr2 ;Er2 ; · · · ;TK ;ErK ;A] (4)

where Tri represents the i-th title block obtained
by inserting a special token (<title-i>) before
the title trj and A denotes the answer block derived
by prepending a special token (<answer>) to the
answer a as illustrated in Figure 2. On the other
hand, i-th supporting fact block is defined as the
sequence of fact indicators following <facts-i>
token by

Eri := <facts-i> <fj1> <fj2> · · · <fjmi
> (5)

976

Figure 2: PATHFID model overview. Each question+passage block is encoded in parallel, which are then concatenated in to a
long flat sequence of vector representations. The decoder then consumes this long sequence and generates the full reasoning
path, which is then uniquely parsed into the final answer along with the supporting facts exposing the underlying reasoning.

where {j1, j2, . . . , jmi} denote the indices of key
sentences to leverage from passage pri to transi-
tion to the next evidence on the reasoning process
Rq for question q, and 1 ≤ mi ≤ lri denotes the
number of supporting facts. Note that fact indica-
tors <fi> are shared between the contexts ppath

n of
input blocks (Eq. 2) and supporting fact blocks
(Eq. 5) on the target reasoning path to allow the
decoder to follow along the sequential reasoning
Rq by pointing to the facts Eri of passage pri .

3.3 Encoding Cross-Passage Interactions
(PATHFID+)

PATHFID enables more explicit evidence fusion
through the reasoning path to guide the model to
towards correct answer in a structured way. How-
ever, it still relies on the decoder to combine all
the clues together, which might still struggle due to
lack of cross-passage interactions as input blocks
are encoded independently. To address this poten-
tial limitation, we propose PATHFID+, where we
further extend PATHFID in a way that enables cross-
passage interaction by redefining the input block
consisting of a pair of passages (pn1 , pn2) as

bpath+
n1,n2

:= question: q

<title-1> tn1 <context-1> ppath
n1

<title-2> tn2 <context-2> ppath
n2

assuming that a set of passage pairs (pn1 , pn2) are
available for model to consume. In particular, we

derive a set of pairs of passages from the initial
set Dq by D+

q = {(p∗, p1), (p∗, p2), . . . , (p∗, pN)}
where p∗ corresponds to the first passage that is pos-
sible to immediately hop to from question q, which
may be determined by another model, or by execut-
ing the original PATHFID on Dq in our case. Global
input representation X

path+
q is obtained similarly

(Eq. 3) by except encoding the new blocks bpath+
n1,n2

allowing for cross-passage interactions, while the
target reasoning path Y

path+
q remains the same as

Y
path
q . Note that <title-i> special markers are

shared between new input block b
path+
n1,n2 and target

reasoning path Y
path+
q to provide the model with

additional clue regarding the first passage on the
reasoning path while still relaying the complete
evidence fusion to the decoder via information re-
dundancy encoded in X

path+
q .

3.4 Training and Inference

Having defined global input representation X
path
q ,

the decoder autoregressively generates the rea-
soning path Y

path
q per token at each step by fol-

lowing self-attention, cross-attention on the en-
tire X

path
q , and feed-forward modules. So, the

overall reasoning path generation is modeled as
conditional generation pθpath(Y

path
q |Xpath

q). The
model then is trained to minimize J(θpath) =

−
∑|Ypath

q |
i=1 log pθ(yi|y<i,X

path
q) with teacher forc-

ing over a training set of {(q, a,Dq)}.

977

In the inference, the decoder consumes the in-
put representation X

path
q computed by encoder, and

generates the full reasoning path token by token.
We then post-process the decoded sequence using
the answer indicator (<answer>) to first obtain
the answer, followed by recursively parsing the
remaining sequence using the special separator to-
kens (<title-k>, <facts-k>) to reconstruct
the title and retrieve its relevant sentences at each
hop k. As illustrated in Figure 2, the final result of
the inference can be summarized into a dictionary
which maps each generated passage title to the list
of sentence pointers as well as the final answer.

4 Experiments

4.1 Datasets and General Setup
We conduct experiments on two multi-hop question
answering datasets: HotpotQA and IIRC.
HotpotQA (Yang et al., 2018) is a large-scale
human-annotated dataset including 113K multi-
hop questions. It focuses on using documents from
Wikipedia as the source of information for answer-
ing questions rather than knowledge bases as in
other multi-hop QA datasets (Welbl et al., 2018;
Talmor and Berant, 2018). The questions in Hot-
potQA are not constrained by the fixed knowledge-
base schema, hence they can cover more diverse
topics. The answer for each question in HotpotQA
is extracted from 10 paragraphs in the distrac-
tor setting, while it is allowed to use the entire
Wikipedia for the full wiki setting. There are two
main question types bridge (80%) and compari-
son (20%) in the corpus, where each question is
designed in a way that extracting the correct an-
swer requires reasoning over multiple evidence dis-
tributed across two passages. While comparison
questions do not require the these passages to be
processed in a particular order, bridge questions
often require identifying the bridge entity in the
first passage to correctly hop to the second one
that contains the answer. Each question is also
provided with the annotation of 2 supporting pas-
sages and up to 5 corresponding relevant sentences
as their supporting facts. Since our proposed ap-
proach is a reader model that reasons over a given
set of evidence documents, we primarily focus our
experiments on the distractor setting1.
IIRC (Ferguson et al., 2020) is a dataset of more
than 13K human-written questions over paragraphs

1See Appendix B for PATHFID results in open-domain
setting using MDR (Xiong et al., 2021) as the retriever.

from English Wikipedia, where crowdworkers had
access only to initial paragraph and list of hyper-
links to other relevant Wikipedia articles, with
the missing information occurring in one or more
linked documents. This annotation design encour-
aged less lexical overlap between the questions
and the contexts that actually contain the answer.
This dataset presents unique challenges compared
to HotpotQA because (1) it additionally requires
discrete/numerical reasoning and identification of
unanswerable questions, which adds up to 4 differ-
ent possible answer types (span, binary, numerical,
unanswerable), and (2) about 30% of questions
require reasoning over more than 2 passages in-
cluding the main passage.
Evaluation Metrics. We use standard metrics
exact-match (EM) and F1 scores for measuring the
quality of predicted answers. For HotpotQA exper-
iments, we are also able to evaluate PATHFID on
supporting fact predictions using the official met-
rics (Support-EM, Support-F1), which measures
the performance of the reader model in correctly
identifying the supporting facts from the relevant
passages. Note that this metric implicitly requires
correctly identifying relevant passages among the
distractors as well. For our experiments on IIRC
dataset, similar to the baseline model constructed
in the original work (Ferguson et al., 2020), we
follow the evaluation methods used by DROP (Dua
et al., 2019).
Implementation Details. We use pre-trained T5-
large encoder-decoder (Raffel et al., 2020) to ini-
tialize the models in our experiments. We train the
model with batch size of 64 with constant learn-
ing rate of 1e-4 for 10 epochs. We use maximum
length of 256 (resp. 512) tokens for input blocks of
PATHFID (resp. PATHFID+), while the maximum
target sequence length is set to be 64. However, the
sequence truncation is performed on the reasoning
path excluding answer part for sequences of length
longer than 64 tokens. All the experiments are con-
ducted on a machine with 4 or 8 many 40GB A100
GPUs. Our code is based on Huggingface Trans-
formers (Wolf et al., 2019). Please see Appendix
for further details on the hyperparameter settings.

4.2 Main Experiments: HotpotQA

4.2.1 Overall Results

We present our main results on the HotpotQA dis-
tractor setting in Table 1. We report results on the
HotpotQA development set in comparison with the

978

Answer Support
Methods EM F1 EM F1

Baseline (Yang et al., 2018) 44.4 58.3 22.0 66.7
DFGN (Qiu et al., 2019) 55.4 69.2 - -
QFE (Nishida et al., 2019) 53.7 68.7 58.8 84.7
SAE (Tu et al., 2020) 61.3 74.8 58.1 85.3
SAE-large (Tu et al., 2020) 67.7 80.8 63.3 87.4
Graph Recurrent Retriever (Asai et al., 2020) (base) 52.7 65.8 57.4 84.6
Graph Recurrent Retriever (Asai et al., 2020) (wwm) 68.0 81.2 58.6 85.2
Gated Memory Flow (Shao et al., 2021) 69.6 83.0 64.7 89.0
This Work
FID* (Izacard and Grave, 2021) 64.4 77.8 - -
PATHFID 65.8 78.9 59.3 85.7
PATHFID+ 72.7 84.2 64.9 88.7

Table 1: Results on the development set of HotpotQA distractor setting in comparison with previous work. FID* indicates that
the reported results are obtained by our implementation following the training details in the paper.

Criterion FID PATHFID PATHFID+
Pred Answer Grounded in Gold Passages 93.9 95.3 97.7
Pred Answer Grounded in Gold Supports 90.8 92.1 95.6

Gold Answer Grounded in Pred Passages - 96.2 98.0
Gold Answer Grounded in Pred Supports - 95.3 97.4

Pred Answer Grounded in Pred Passages - 96.4 97.5
Pred Answer Grounded in Pred Supports - 90.3 94.3

Table 2: How faithfully grounded are the gold/predicted an-
swers in gold/predicted supporting facts?

previous published methods. PATHFID reader pro-
vides 1.4% absolute gain on answer EM score in
comparison to FID model. Moreover, it achieves
competitive supporting fact predictions of 59.3%
support-EM and 85.7% support-F1 as a result of
path generation compared to strong extractive mod-
els such as (Asai et al., 2020). In summary, PATH-
FID establishes the usefulness of modeling the full
reasoning path along with answer generation for
multi-hop QA. More notably, PATHFID+ achieves
a quite significant performance gain across all the
central evaluation metrics, demonstrating the im-
portance of cross-passage interactions. Overall re-
sults validate the effectiveness of the two central
modeling contributions of our proposed method.
Next, we present further analysis and discussion
on the unique advantages of PATHFID approach
under a few central questions which motivated our
research at the first place.

4.2.2 Analysis

How faithfully grounded are the generated an-
swers on supporting facts? In Table 2, we present
a detailed analysis comparing different models in
terms of the faithfulness of their generated an-

swers on both gold and predicted supporting facts.
The first row focuses on the passage-level answer
grounding computed by the percentage of the an-
swers found in one of the gold supporting passages,
while the second row reports the same analysis
on sentence-level. We can observe that PATHFID

models significantly improves on how faithfully
the generated answers are grounded on the support-
ing facts both at passage-level and sentence-level
granularities. The next two rows provide further
insight into the quality of the generated support-
ing facts by PATHFID models by measuring how
often the gold answer can be found in them. This
analysis shows that the generated supporting facts
are of quite high-quality including the gold answer
for more than 95.3% and 96.2% at sentence-level
and passage-level, respectively. The last two rows
measure the faithfulness of the generated answers
on the model generated supporting facts, which is
not applicable to FID model as it does not perform
supporting fact prediction. We observe that the
generated answers are quite faithfully grounded on
the predicted supporting facts, showing the path
generation not only improves the answer EM per-
formance but also successfully grounds them on the
evidence it generates as part of the full reasoning
path.

It is important emphasize here that extractive
reader models can be guaranteed to output perfectly
grounded answers simply by locating the answer in
their predicted supporting facts. On the other hand,
it is difficult for generative models to ensure 100%
answer grounding simply due to its generative na-

979

Answer-EM Support-EM
Comparison Bridge Comparison Bridge

Supp Facts FID PATHFID FID PATHFID FID PATHFID FID PATHFID

2 70.4 71.8 63.3 64.6 - 86.7 - 70.0
3 66.1 68.2 62.7 63.1 - 43.4 - 30.7
4 62.2 63.8 64.3 66.5 - 5.4 - 26.2
>=5 83.3 87.5 60.0 65.0 - 0.0 - 3.8

Table 3: Performance breakdown on Answer-EM and Support-EM by question type and the number of gold supporting facts
(rows). Since FID does not generate supporting facts, corresponding columns are left empty.

ture. However, we are able to provide additional
evidence validating the answers generated by PATH-
FID are significantly grounded in the supporting
facts it generates, which might implicitly indicate
that the generated reasoning path tightly aligns with
the model’s underlying process for answer genera-
tion. Although this is a strong evidence, it is still
quite implicit in exposing the model’s prediction
process, so we see our approach as a step in the
right direction rather than a complete solution.

Performance breakdown by the number of sup-
porting facts and question types. In Table 3, we
compare the performance of models by breaking
them down based on the number of gold supporting
sentences and the question type (e.g., bridge and
comparison). Our first observation is that PATH-
FID provides consistent improvement on answer-
EM score over FID across both the question types
and different number of supporting facts required
to answer the question. The high variance in the
answer-EM score on comparison questions can be
attributed to the strictness of exact-match metric as
well as the imbalanced nature of the dataset where
only 5% of the comparison questions have more
than 3 supporting facts. Surprisingly, both FID and
PATHFID models perform considerably well on the
comparison questions even when it requires at least
5 supporting facts.

A more important motivation behind the per-
formance breakdown analysis was to understand
how the supporting fact prediction of PATHFID

would change as the number of gold supporting
facts grows. Although it starts degrading on ex-
amples with more than 2 supporting facts, it still
achieves more than 25% Support-EM for bridge
questions with up to 4 supporting facts. Recalling
the average performance on the whole dataset is
less than 60%, we conclude this result might be sat-
isfactory enough, especially for a fully generative

Figure 3: PATHFID model evolution on the HotpotQA Dev set
during training. T1-EM, T2-EM, indicate the model’s accu-
racy on predicting the title-1 and title-2 on the reasoning path.
Similarly F1-EM, and F2-EM denote the model’s accuracy on
predicting set of supporting facts in passage-1 and passage-2.

model on a very strict evaluation metric.

Analyzing the evolution of sub-tasks during
joint training with PATHFID. In Figure 3, we
present the evolution of PATHFID model on the Hot-
potQA development set at every 500 training steps.
We observe that while the model more quickly
picks up the patterns for title generation, it takes
much longer for it to reach to a reasonable level of
fact prediction. As one would expect, the general
trend in the evolution of different segments (title-1,
facts-1, title-2, facts-2, answer) of the reasoning
path mostly follows the difficulty of the correspond-
ing sub-task although all the sub-tasks are jointly
formulated and trained in an end-to-end fashion.
On the other hand, it seems counter-intuitive for
model to reach to a better accuracy on predicting
the facts of the second passage (F2-EM) on the
reasoning path earlier despite having a better accu-
racy on (T1-EM). However, one can also interpret
it as a result of stronger feedback provided by the
answer segment of the reasoning path as most of
the ground-truth answers are contained in the facts
of the second passage.

980

Generated-Title EM Reconstructed-Title EM
Reasoning Path Passage-1 Passage-2 Passage-Chain Passage-1 Passage-2 Passage-Chain

[t1-t2] 74.3 74.8 71.6 75.4 75.4 72.9
[t1-t2-answer] 74.8 75.0 71.8 75.8 75.8 73.3
[t1-f1-t2-f2-answer] 75.0 75.1 71.9 76.0 75.6 73.3

Table 4: The effect of joint training as a case study on title prediction performance of PATHFID variants trained with different
target reasoning paths. Generated-Title column corresponds to ordered passage chain prediction performance in exact-match
(EM), while Reconstructed-Title version is computed after applying title reconstruction post-processing described in Section D.

Answer
Methods EM F1

IIRC* (Ferguson et al., 2020) 63.9 69.2
FID** (Izacard and Grave, 2021) 63.4 69.1
This Work
PATHFID 65.2 70.5
PATHFID+ 68.1 72.9

Table 5: Experimental results on IIRC dataset in model-free
retrieval setting comparing the proposed method against two
baselines. * indicates that the result is taken directly from
the original paper (Ferguson et al., 2020) (see their Table-3),
while ** indicates that we obtain the result of FID with our
implementation.

4.3 Experiments: IIRC

In addition to our main experiments presented in
greater detail, we also conduct experiments on
IIRC dataset to verify the generalization of the pro-
posed approach. To this end, we closely follow
the authors’ model-free retrieval setting (referred
to as Oracle L+C in Table-3) because the model
checkpoints for the baseline retrieval model are not
available in the public release. We use a python
script2 provided in the open-sourced repository to
replicate the same setting for a fair comparison.

In Table 5, we present the results on the devel-
opment set for our proposed PATHFID and PATH-
FID+ in comparison with the baseline reported
in the original paper (Ferguson et al., 2020) and
our implementation of the FiD (Izacard and Grave,
2021) baseline. FID model obtains a compara-
ble F1 with IIRC baseline with a slightly worse
exact-match performance. However, the proposed
PATHFID approach is able to provide 1.3% and
1.4% improvement in F1 score over the two base-
lines. Furthermore, PATHFID+ extension leads to
the best performance achieving 4.7% and 4.2% EM
score improvement in absolute value over the FID

2https://github.com/jferguson144/
IIRC-baseline/blob/main/make_drop_style.
py

baseline and IIRC baseline, respectively. Our exper-
imental results validate the benefit of the proposed
approach on the IIRC dataset, suggesting strong
evidence for the generalizability of our approach.

4.4 Analyzing the Benefit of Joint Training

In Table 4, we present the results of a case study
where we analyze the benefit of multi-task training
on the passage chain prediction. The first row of
the table shows the results for training PATHFID

only to predict the sequence of titles for the gold
passages (i.e., [t1-t2]), which is just a subsequence
of the full reasoning path obtained by discarding
facts and the answer. The second row is another
variant, where we add the answer back to the lin-
earized target sequence while still excluding the
segments corresponding to the facts. The last row
correspond to the full reasoning path generation,
which is corresponding to the original formulation
of PATHFID as described in Section 3 and illus-
trated in Figure 2. Comparing first two rows in
Table 4, we can immediately observe that including
answer segment in the target reasoning path (i.e.,
[t1-t2-answer]) boosts the performance across the
board although in principle it makes the task more
complicated while utilizing the same underlying
model capacity. Further including segments corre-
sponding to FACTS (sentences within supporting
passages) in addition to answer segment (i.e., [t1-
f1-t2-f2-answer] – full reasoning path) boosts the
title-EM even further, especially before applying
title reconstruction post-processing step. Although
the objective of the first task (i.e., [t1-t2]) is per-
fectly aligned with the evaluation metric used in
Table 4, the performance of the resulting model
remains inferior compared to jointly modeling the
same task with the answer (and/or supporting facts)
prediction. These two observations elicit a com-
pelling evidence regarding the benefit of jointly
modeling the sub-tasks of multi-hop QA as single
sequence capturing the full reasoning path.

981

https://github.com/jferguson144/IIRC-baseline/blob/main/make_drop_style.py
https://github.com/jferguson144/IIRC-baseline/blob/main/make_drop_style.py
https://github.com/jferguson144/IIRC-baseline/blob/main/make_drop_style.py

5 Related Work

Multi-hop question answering. Research on
multi-hop QA aims to tackle complex questions
that require reasoning across multiple pieces of ev-
idence in multiple documents (Welbl et al., 2018;
Yang et al., 2018; Ferguson et al., 2020). In partic-
ular, the HotpotQA dataset (Yang et al., 2018) pro-
vides both the closed and open-domain settings to
evaluate multi-hop reading comprehension models.
Compared to single-hop QA, such complex ques-
tions pose additional challenges for both reader
and retriever models since they are required to cap-
ture relationships between documents, instead of
independently processing each document. This is
challenging because the number of document com-
binations exponentially grows due to the sequential
nature of the process. Two recent works (Nie et al.,
2019; Asai et al., 2020) have tackled this challenge
by leveraging hyperlink structure in the underlying
Wikipedia corpus, while Xiong et al. (2021) has
taken a recursive approach to extend the dense re-
trieval process to handle sequential search. Most of
the reading comprehension (RC) models in existing
work (Xiong et al., 2019; Chen et al., 2019; Nishida
et al., 2019; Qi et al., 2021; Li et al., 2020; Xiong
et al., 2021) follow an extractive architecture (De-
vlin et al., 2019) for selection of the answer spans
and their corresponding supporting evidence with
minor modifications such as initializing the back-
bone model from a stronger or larger pre-trained
models (Clark et al., 2020). On the other hand,
some recent works (Inoue et al., 2021) take a more
abstractive approach and generate question-focused
summaries of input paragraphs as concise explana-
tions to be fed to the RC module.
Generative question answering. Especially after
the emergence of the SQuAD dataset (Rajpurkar
et al., 2016), neural extractive QA models have
been widely studied. An underlying assumption is
that we can extract a short text span (or a phrase)
as an answer, but it is not always the case in reality.
Motivated by this, the generative QA approach has
also been investigated (Hewlett et al., 2017; Fan
et al., 2019). Recent advances on pre-trained trans-
formers have pushed this direction; for example,
Lewis et al. (2020a) jointly trained a generative
QA model along with a text retrieval model, and
Roberts et al. (2020) explored an ambitious ap-
proach to directly generate an answer without any
evidence documents. We focused on the fusion-
in-decoder model (Izacard and Grave, 2021); they

claimed that the decoder might be good at aggregat-
ing information across multiple documents. How-
ever, we have shown that it is not trivial in the multi-
hop reasoning task, and pushed the model’s ability
to jointly learn to predict reasoning paths. Besides
question answering, jointly learning multiple in-
trinsic capabilities required by the final objective
with a generative approach has been shown useful
in modeling other NLP tasks such as task-oriented
dialogues (Neelakantan et al., 2019; Hosseini-Asl
et al., 2020; Peng et al., 2021).
Open-domain question answering. Open-domain
QA (Voorhees, 1999) is practically important,
which requires a system to retrieve relevant doc-
uments to answer a given question. The task is
recently gaining much attention, thanks to the de-
velopment of large-scale datasets like HotpotQA,
SQuAD Open (Chen et al., 2017), Natural Ques-
tions Open (Kwiatkowski et al., 2019; Lee et al.,
2019), etc. Pre-trained transformer models like
BERT (Devlin et al., 2019) have accelerated the
development of neural text retrievers (Lee et al.,
2019; Karpukhin et al., 2020; Asai et al., 2020;
Xiong et al., 2021; Liu et al., 2021) in the retriever-
reader framework (Chen et al., 2017). We have
investigated the effectiveness of our method in the
multi-hop open-domain QA task (see Appendix B)
using an existing external retriever component.

6 Conclusion

In this work, we propose a generative question an-
swering (QA) approach that models multi-hop QA
as a single sequence prediction task. It learns to
generate an answer along with a reasoning path to
improve its capability of multi-hop reasoning. Our
experiments on prominent multi-hop QA bench-
marks, HotpotQA and IIRC, validate the promise
and effectiveness of our proposed method PATH-
FID and its extension PATHFID+. Future work will
explore (1) our PATHFID approach more closely
with text retrieval models in open-domain QA sce-
narios and (2) more explicit grounding on the input
information to make our approach even more inter-
pretable and controllable.

Acknowledgments

The authors would like to thank the members of
Salesforce AI Research team for fruitful discus-
sions, as well as the anonymous reviewers for their
helpful feedback.

982

References

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
Richard Socher, and Caiming Xiong. 2020. Learning
to retrieve reasoning paths over wikipedia graph for
question answering. In International Conference on
Learning Representations.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational
Linguistics.

Jifan Chen, Shih-Ting Lin, and Greg Durrett. 2019.
Multi-hop question answering via reasoning chains.
CoRR, abs/1910.02610.

Christopher Clark and Matt Gardner. 2018. Simple and
effective multi-paragraph reading comprehension. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computa-
tional Linguistics.

Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma
Hashimoto, Wenpeng Yin, Dragomir R. Radev, and
Richard Socher. 2020. Co-search: COVID-19 in-
formation retrieval with semantic search, question
answering, and abstractive summarization. CoRR,
abs/2006.09595.

Angela Fan, Yacine Jernite, Ethan Perez, David
Grangier, Jason Weston, and Michael Auli. 2019.
ELI5: long form question answering. CoRR,
abs/1907.09190.

James Ferguson, Matt Gardner, Hannaneh Hajishirzi,
Tushar Khot, and Pradeep Dasigi. 2020. IIRC: A

dataset of incomplete information reading compre-
hension questions. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational
Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
pages 3929–3938.

Daniel Hewlett, Llion Jones, Alexandre Lacoste, and
Izzeddin Gur. 2017. Accurate supervised and semi-
supervised machine reading for long documents. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A sim-
ple language model for task-oriented dialogue. In
Advances in Neural Information Processing Systems.

Naoya Inoue, Harsh Trivedi, Steven Sinha, Niranjan Bal-
asubramanian, and Kentaro Inui. 2021. Summarize-
then-answer: Generating concise explanations for
multi-hop reading comprehension. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume.
Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

983

https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://openreview.net/forum?id=SJgVHkrYDH
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
http://arxiv.org/abs/1910.02610
https://aclanthology.org/P18-1078
https://aclanthology.org/P18-1078
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1246
https://aclanthology.org/N19-1246
http://arxiv.org/abs/2006.09595
http://arxiv.org/abs/2006.09595
http://arxiv.org/abs/2006.09595
http://arxiv.org/abs/1907.09190
https://aclanthology.org/2020.emnlp-main.86
https://aclanthology.org/2020.emnlp-main.86
https://aclanthology.org/2020.emnlp-main.86
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://aclanthology.org/D17-1214
https://aclanthology.org/D17-1214
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://aclanthology.org/2021.emnlp-main.490
https://aclanthology.org/2021.emnlp-main.490
https://aclanthology.org/2021.emnlp-main.490
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://aclanthology.org/Q19-1026
https://aclanthology.org/P19-1612
https://aclanthology.org/P19-1612

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020b.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems.

Shaobo Li, Xiaoguang Li, Lifeng Shang, Xin Jiang, Qun
Liu, Chengjie Sun, Zhenzhou Ji, and Bingquan Liu.
2020. Hopretriever: Retrieve hops over wikipedia to
answer complex questions. CoRR, abs/2012.15534.

Ye Liu, Kazuma Hashimoto, Yingbo Zhou, Semih
Yavuz, Caiming Xiong, and Philip Yu. 2021. Dense
hierarchical retrieval for open-domain question an-
swering. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2021. Association for
Computational Linguistics.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard EM ap-
proach for weakly supervised question answering. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association
for Computational Linguistics.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. AmbigQA: Answering am-
biguous open-domain questions. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics.

Arvind Neelakantan, Semih Yavuz, Sharan Narang,
Vishaal Prasad, Ben Goodrich, Daniel Duckworth,
Chinnadhurai Sankar, and Xifeng Yan. 2019. Neu-
ral assistant: Joint action prediction, response gen-
eration, and latent knowledge reasoning. CoRR,
abs/1910.14613.

Yixin Nie, Songhe Wang, and Mohit Bansal. 2019.
Revealing the importance of semantic retrieval for
machine reading at scale. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational
Linguistics.

Kosuke Nishida, Kyosuke Nishida, Masaaki Nagata,
Atsushi Otsuka, Itsumi Saito, Hisako Asano, and
Junji Tomita. 2019. Answering while summarizing:
Multi-task learning for multi-hop QA with evidence

extraction. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching. Transactions of the Association
for Computational Linguistics.

Peng Qi, Haejun Lee, Oghenetegiri "TG" Sido, and
Christopher D. Manning. 2021. Retrieve, read,
rerank, then iterate: Answering open-domain ques-
tions of varying reasoning steps from text.

Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and
Christopher D. Manning. 2019. Answering complex
open-domain questions through iterative query gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP). Associ-
ation for Computational Linguistics.

Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li,
Weinan Zhang, and Yong Yu. 2019. Dynamically
fused graph network for multi-hop reasoning. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the parame-
ters of a language model? In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Compu-
tational Linguistics.

Nan Shao, Yiming Cui, Ting Liu, Shijin Wang, and
Guoping Hu. 2021. Memory augmented sequential
paragraph retrieval for multi-hop question answering.
CoRR, abs/2102.03741.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Association for Computa-
tional Linguistics.

984

https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
http://arxiv.org/abs/2012.15534
http://arxiv.org/abs/2012.15534
https://aclanthology.org/2021.findings-emnlp.19
https://aclanthology.org/2021.findings-emnlp.19
https://aclanthology.org/2021.findings-emnlp.19
https://aclanthology.org/D19-1284
https://aclanthology.org/D19-1284
https://aclanthology.org/2020.emnlp-main.466
https://aclanthology.org/2020.emnlp-main.466
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
http://arxiv.org/abs/1910.14613
https://aclanthology.org/D19-1258
https://aclanthology.org/D19-1258
https://aclanthology.org/P19-1225
https://aclanthology.org/P19-1225
https://aclanthology.org/P19-1225
https://aclanthology.org/2021.tacl-1.49
https://aclanthology.org/2021.tacl-1.49
https://aclanthology.org/2021.tacl-1.49
http://arxiv.org/abs/2010.12527
http://arxiv.org/abs/2010.12527
http://arxiv.org/abs/2010.12527
https://aclanthology.org/D19-1261
https://aclanthology.org/D19-1261
https://aclanthology.org/D19-1261
https://aclanthology.org/P19-1617
https://aclanthology.org/P19-1617
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://aclanthology.org/2020.emnlp-main.437
https://aclanthology.org/2020.emnlp-main.437
http://arxiv.org/abs/2102.03741
http://arxiv.org/abs/2102.03741
https://aclanthology.org/N18-1059
https://aclanthology.org/N18-1059

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2020. Select, an-
swer and explain: Interpretable multi-hop reading
comprehension over multiple documents. In AAAI.

Ellen M. Voorhees. 1999. The trec-8 question answer-
ing track report. In In Proceedings of TREC-8, pages
77–82.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel.
2018. Constructing datasets for multi-hop reading
comprehension across documents. Transactions of
the Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick
Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas
Oguz. 2021. Answering complex open-domain ques-
tions with multi-hop dense retrieval. In International
Conference on Learning Representations.

Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Hong Wang,
Shiyu Chang, Murray Campbell, and William Yang
Wang. 2019. Simple yet effective bridge reasoning
for open-domain multi-hop question answering. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Edwin Zhang, Nikhil Gupta, Raphael Tang, Xiao Han,
Ronak Pradeep, Kuang Lu, Yue Zhang, Rodrigo
Nogueira, Kyunghyun Cho, Hui Fang, and Jimmy
Lin. 2020. Covidex: Neural ranking models and key-
word search infrastructure for the COVID-19 open
research dataset. In Proceedings of the First Work-
shop on Scholarly Document Processing. Association
for Computational Linguistics.

Chen Zhao, Chenyan Xiong, Corby Rosset, Xia
Song, Paul Bennett, and Saurabh Tiwary. 2020.
Transformer-xh: Multi-evidence reasoning with ex-
tra hop attention. In International Conference on
Learning Representations.

985

https://aclanthology.org/Q18-1021
https://aclanthology.org/Q18-1021
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=EMHoBG0avc1
https://openreview.net/forum?id=EMHoBG0avc1
https://aclanthology.org/D19-5806
https://aclanthology.org/D19-5806
https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259
https://aclanthology.org/2020.sdp-1.5
https://aclanthology.org/2020.sdp-1.5
https://aclanthology.org/2020.sdp-1.5
https://openreview.net/forum?id=r1eIiCNYwS
https://openreview.net/forum?id=r1eIiCNYwS

A Visualizing the Correlation between
Evidence and Answer

Figure 4: Visualizing the correlation between evidence and
answer prediction for COMPARISON questions.

Figure 5: Visualizing the correlation between evidence and
answer prediction for BRIDGE questions.

In Figure 4 and 5, we visualize the correlation
between supporting evidence and answer predic-
tion performances for comparison and bridge ques-
tion types, respectively. To obtain these plots,
we first split the examples into 10 buckets where
n-th bucket contains the examples with support-
F1 score in (10 ∗ (n − 1), 10 ∗ n] percentile for
n = {1, 2, . . . , 10}. Then, we take the average an-
swer prediction accuracy (both EM and F1) over
these examples for each bucket, and report this
number on the y-axis of the plot at the correspond-
ing support-F1 bucket on the x-axis, while drop-
ping the empty buckets. Note that x = 0 corre-
sponds to examples with support-F1 score of 0.
Also note that the size of a data point on the figure
reflects the number of examples in the correspond-
ing bucket as also indicated by the legend. From
Figures 4 and 5, we can observe that the accuracy of
the generated answers is significantly lower, 30%
for bridge and 10% for comparison, for the first
bucket with zero support-F1 compared to buckets
with positive support-F1 score. This suggests that
the model has a difficult time figuring out the an-

swer when the supporting evidence prediction is
poor. Another observation that holds for both cat-
egories is the general trend of increased answer
quality as the supporting fact prediction improves.
Combining these two points provide additional ev-
idence (in addition to Table 2 in the main paper)
implicitly supporting the answer generation pro-
cess of PATHFID being grounded on the generated
supporting facts, which is generated as the prefix of
the answer segment in the full decoded reasoning
path sequence during inference.

B Case Study: Full-Wiki Setting with
Multi-hop Dense Retriever

In this subsection, we evaluate PATHFID

in open domain setting of HotpotQA lever-
aging a recently proposed multi-hop dense
retriever (MDR) (Xiong et al., 2021) for
passage retrieval. Unlike distractor setting,
MDR returns a set of passage pairs DMDR

q =

{(p(1)1 , p
(2)
1), (p

(1)
2 , p

(2)
2), . . . , (p

(1)
N , p

(2)
N)} for

question q, where each passage p
(i)
n comes with a

title t
(i)
n , being retrieved from Wikipedia corpus.

This setting naturally fits into how we formulate
PATHFID+, which operates on the pairs of input
passages as introduced in Section 3.3, where
we simply set D+

q = DMDR
q . For experiments

with FID and PATHFID, which operate on set of
single input passages, we simply split the pairs
into single passages, ending up with 2K passages
when using top-K retrieved paths from MDR.
We present our results for this setting in Table 6.
Similar to our observation in distractor setting,
PATHFID provides a significant (%1.8) answer
EM score improvement over FID, while also
achieving a quite competitive performance on the
supporting fact prediction compared to strong
discriminative models (Asai et al., 2020; Li et al.,
2020) optimized for better retrieval performance.
Most notably, PATHFID+ provides significant
gains over PATHFID, achieving 59.8% answer-EM
and 52.8% supporting fact EM score, showing the
importance of encoding cross-passage interactions.
It is important to note here that our results with
PATHFID+ is not directly comparable to the reader
results from MDR (Xiong et al., 2021) because
we are able to only use top-25 retrieved paths due
to hardware limitations. Finally, we also evaluate
the same PATHFID+ model on Dev∗ obtained by
adding the pair of gold passages in DMDR

q , where
we aim to isolate the error propagation from the

986

Answer Support
Methods EM F1 EM F1

GoldEn Retriever (Qi et al., 2019) - 49.8 - 64.6
Semantic Retrieval (Nie et al., 2019) 46.5 58.8 39.9 71.5
Transformer-XH (Zhao et al., 2020) 50.2 62.4 42.2 71.6
Graph Recurrent Retriever (Asai et al., 2020) (wwm) 60.5 73.3 49.3 76.1
Graph Recurrent Retriever (Asai et al., 2020) (base) 52.7 65.8 47.9 75.0
HopRetriever (Li et al., 2020) 62.1 75.2 52.5 78.9
HopRetriever-plus (Li et al., 2020) 66.6 79.2 56.0 81.8
MDR-Electra (Top-50 paths) (Xiong et al., 2021) 61.7 74.3 - -
MDR-FiD (Top-50 paths) (Xiong et al., 2021) 61.7 73.1 - -
Our Models
FID* (Top-25 paths) 54.0 66.0 - -
PATHFID (Top-25 paths) 55.8 67.9 49.0 74.1
PATHFID+ (Top-25 paths) 59.8 72.4 52.8 76.6
On Dev∗ Evaluation
PATHFID+ (Top-25 paths) 70.2 81.5 60.9 86.3

Table 6: Results for open-domain setting using MDR (Xiong et al., 2021) as the retriever. Dev∗ refers to the development set
where the retrieved passages are expanded with the gold passage (as an oracle setting) to account for the cases where the retriever
fails to retrieve the gold passages. FID* indicates our implementation.

Answer Support
Model Size Top-K Paths EM F1 EM F1
T5-BASE Top-25 56.6 69.1 51.9 75.7
T5-LARGE Top-25 59.8 72.4 52.8 76.6

Table 7: Full-wiki results with PATHFID+ comparing two
different T5 model sizes.

underlying retriever. Table 6 shows that both the
answer and supporting fact prediction performance
improves quite significantly, showing the potential
impact that developments on retriever side of the
problem can also make.

C The Effect of Model Size for Future
Reference

As discussed in Section D, fine-tuning PATHFID+
with T5-large initialization might require signif-
icant resources and non-trivial memory efficient
optimization (e.g., gradient checkpointing). To pro-
vide a baseline with a smaller model for future
research, here we include the results of PATHFID+
with T5-base initialization using the same setting
reported in Table 6 in the main paper. As presented
in Table 7, although the performance difference on
the supporting fact prediction is relatively small
(1%), answer prediction performance drops signif-
icantly (by 3.2%) when we switch from T5-large to
T5-base. However, working with T5-base is much
more efficient in terms of resources and iteration

time for building baselines, trying out new ideas
and thought experiments. So, we hope this baseline
will be helpful for future research.

D More on Training and Implementation
Details

Hop ordering. HotpotQA benchmark provides an-
notation only for unordered gold passages, without
explicitly specifying which passage corresponds
to the k-th hop (e.g., first-hop, second-hop, etc.)
on the reasoning path. In our implementation, we
combine the heuristic strategies applied by GRR
(Asai et al., 2020) and MDR (Xiong et al., 2021).
More precisely, if only one of the gold passages
contains the answer, then we take the passage that
includes the answer span as the final passage. If
the answer span is included in both passages, we
break the tie by falling back to the hyperlink-based
ordering strategy proposed by GRR (Asai et al.,
2020).
Post-processing for passage title reconstruction.
Note that PATHFID generates the titles of the pas-
sages on the reasoning path token by token includ-
ing the separator tokens. However, the decoder
might fall into some minor errors during the gener-
ation process, which may cause the resulting titles
to end up slightly different from the original ones.
To account for such minor errors, we leverage the

987

set of titles coming from the input passages and
find the most similar among them to our generated
passage titles based on token-level F1-score. We
call this process title reconstruction and apply it
while reporting the performance for supporting fact
predictions. Table 4 shows the benefit of title re-
construction for mitigating such minor generation
errors. On the other hand, the small performance
boost suggests that titles PATHFID already gener-
ates quite faithful title predictions.
Model selection. For all the models reported in
this work, we perform evaluation at every 500 steps
during training by decoding the whole development
set on a separate machine in a non-blocking fash-
ion. We then select the best model based on the
answer exact-match score performance. However,
since PATHFID variants generate more than just
the answer, it can be leveraged to optimize for a
more holistic metric including the supporting fact
prediction performance, offering further control on
model selection. We leave further exploration of
this phenomenon to future work.
Scaling to larger evidence pools for full-wiki set-
ting. As briefly noted in Appendix B, we report
results in full-wiki setting using only top-25 paths
returned by MDR (Xiong et al., 2021) due to hard-
ware constraints. More precisely, a single training
example becomes impossible to fit into GPU mem-
ory (40GB) even for top-25 paths for PATHFID+
model with T5-large initialization. To make the
training feasible, we resort to gradient checkpoint-
ing3 which trades off GPU memory with speed.
However, in this case, even with 25 retrieved paths,
training PATHFID+ for 10K steps with batch size of
64 using gradient accumulation takes 19 hours on
8 A100 GPUs with 40GB memory each, which is
one of the most prominent limitations hurdling the
progress for this line of research. Further research
on making generative approaches with large pre-
trained models more efficient without losing on the
performance side holds a great potential impact to
accelerate the progress of fully generative models
for question answering.

E Hyperparameter Settings

In Tables 9, 8 and 10, we provide the full set of
important hyperparameters used for the models re-
ported both in the main paper (HotpotQA-distractor
and IIRC) and in the Appendix B (HotpotQA-
fullwiki), respectively.

3https://pytorch.org/docs/stable/checkpoint.html

parameter FID PATHFID PATHFID+
initialization t5-large t5-large t5-large
learning rate 1e-4 1e-4 1e-4
learning rate schedule constant constant constant
batch size 64 64 64
gradient checkpointing no no no
maximum input length 256 256 512
maximum output length 32 64 64
warmup ratio 0 0 0
gradient clipping norm 1.0 1.0 1.0
training epoch 10 10 10
weight decay 0 0 0

Table 8: Hyperparameters for experiments on HotpotQA Dis-
tractor setting.

parameter FID PATHFID PATHFID+
initialization t5-large t5-large t5-large
learning rate 1e-4 1e-4 1e-4
learning rate schedule constant constant constant
batch size 64 64 64
gradient checkpointing no no no
maximum input length 256 256 512
maximum output length 32 64 64
warmup ratio 0 0 0
gradient clipping norm 1.0 1.0 1.0
training epoch 10 10 10
weight decay 0 0 0

Table 9: Hyperparameters for experiments on IIRC dataset.

parameter FID PATHFID PATHFID+
initialization t5-large t5-large t5-large
learning rate 1e-4 1e-4 1e-4
learning rate schedule constant constant constant
batch size 64 64 64
gradient checkpointing yes yes yes
maximum input length 256 256 512
maximum output length 32 64 64
warmup ratio 0 0 0
gradient clipping norm 1.0 1.0 1.0
training steps 10K 10K 10K
weight decay 0 0 0
top-K path retrieval 25 25 25

Table 10: Hyperparameters for experiments on HotpotQA
Full-wiki setting.

F Qualitative Analysis

In this section, we provide examples comparing
the predictions of FID and PATHFID over bridge
and comparison question types. Each of the exam-
ple Table 11, 12, 13 in the next pages follows a
similar structure, where we include gold answer,
FID answer prediction, PATHFID answer (and full
path) prediction, and 5 supporting passages (out
of 10) for the brevity of presentation. Among the
input passages, the first two correspond to gold pas-
sages, for which we include the full content as well
as highlighting the key supporting facts/sentences
with orange color. The following three passages
are presented as a subset of the distractors, for each
of which we include a one-line content unless it
plays a crucial role in distracting at least one of
the models in making a wrong prediction. In this
case, we also add the content of this particular pas-
sage as well as highlighting the specific distractor
span/sentence causing the failure of either FID or
PATHFID.

988

Question The Memphis Hustle are based in a suburb of a city with a population of what in
2010?

Input Passages

1. Memphis Hustle: <f1> The Memphis Hustle are an American professional
basketball team of the NBA G League announced to begin play for the 2017–18
season as an affiliate of the Memphis Grizzlies of the National Basketball Asso-
ciation (NBA). <f2> Based in the Memphis suburb of Southaven, Mississippi,
the team will play their home games at the Landers Center.
2. Southaven, Mississippi: <f1> Southaven is a city in DeSoto County, Missis-
sippi, United States. <f2> It is a suburb of Memphis, Tennessee, and a principal
city in the Memphis metropolitan area. <f3> The 2010 census reported a popu-
lation of 48,982, making Southaven the third largest city in Mississippi. <f4>
Southaven is traversed from north to south by the I-55/I-69 freeway. <f5> The
city’s name derives from the fact that Southaven is located south of Whitehaven,
a neighborhood in Memphis.
3. Lakeland, Tennessee: Lakeland is a city in Shelby County, Tennessee, and a
suburb of Memphis. The population was 12,430 at the 2010 census.
4. Marion, Arkansas: Marion is a city in and the county seat of Crittenden
County, Arkansas ...
5. West Memphis, Arkansas: West Memphis is the largest city in Crittenden
County, Arkansas ...
...

Gold Answer 48,982
FID Answer 12,430
PATHFID Answer 48,982

PATHFID Output <title-1> Memphis Hustle <facts-1> <f1> <f2> <title-2> Southaven, Mississippi
<facts-2> <f1> <f2> <f3> <answer> 48,982

Table 11: BRIDGE-type question example, where PATHFID predicts the correct answer while FID fails to do so. The third
passage is the distractor causing FID to make a wrong prediction due to the highlighted sentence in red.

989

Question What government position was held by the woman who portrayed Corliss Archer
in the film Kiss and Tell?

Input Passages

1. Kiss and Tell (1945 film): <f1> Kiss and Tell is a 1945 American comedy
film starring then 17-year-old Shirley Temple as Corliss Archer. <f2> In the film,
two teenage girls cause their respective parents much concern when they start to
become interested in boys. <f3> The parents’ bickering about which girl is the
worse influence causes more problems than it solves.
2. Shirley Temple: <f1> Shirley Temple Black (April 23, 1928 – February 10,
2014) was an American actress, singer, dancer, businesswoman, and diplomat
who was Hollywood’s number one box-office draw as a child actress from 1935
to 1938. <f2> As an adult, she was named United States ambassador to Ghana
and to Czechoslovakia and also served as Chief of Protocol of the United States.
3. Meet Corliss Archer (TV series): Meet Corliss Archer is an American televi-
sion sitcom that ...
4. Meet Corliss Archer: Meet Corliss Archer, a program from radio’s Golden
Age, ran from ...
5. Charles Craft: Charles Craft (May 9, 1902 – September 19, 1968) was an
English-born ...
...

Gold Answer Chief of Protocol
FID Answer United States ambassador
PATHFID Answer Chief of Protocol of the United States

PATHFID Output <title-1> Kiss and Tell (1945 film) <facts-1> <f1> <title-2> Shirley Temple
<facts-2> <f2> <answer> Chief of Protocol of the United States

Table 12: BRIDGE-type question example, where both PATHFID and FID fail to predict the exact gold answer. Although the
generated answers are wrong, they can both be acceptable by humans. On the other hand, both answers fail in EM accuracy, but
PATHFID manages to perfectly generate the reasoning path starting from the right sentence of the correct first passage, then
jumping to correct second-hop passage, followed by identifying its key sentence (<f2>), then finally locating answer in the right
part of this evidence, but only failing in getting the span perfectly, which still rewards it with a reasonable F1 score. However,
this example is also important in showing the possible ambiguities in questions and strictness of the exact-match accuracy metric.

Question Which band, Letters to Cleo or Screaming Trees, had more members?

Input Passages

1. Screaming Trees: <f1> Screaming Trees was an American rock band formed
in Ellensburg, Washington in 1985 by vocalist Mark Lanegan, guitarist Gary Lee
Conner, bass player Van Conner and drummer Mark Pickerel. <f2> Pickerel
had been replaced by Barrett Martin by the time the band reached its most
successful period. <f3> Although widely associated with grunge, the band’s
sound incorporated hard rock and psychedelic elements. <f4> During Screaming
Trees’ existence the band released seven studio albums, five EPs, and three
compilations.
2. Letters to Cleo: <f1> Letters to Cleo are an alternative rock band from Boston,
Massachusetts, best known for the 1994 single, "Here & Now", from their full-
length debut album, "Aurora Gory Alice". <f2> The band’s members are Kay
Hanley, Greg McKenna, Michael Eisenstein, Stacy Jones, Scott Riebling, and
later, Tom Polce.
3. Change Has Come: Change Has Come was the only recording the Screaming
Trees released ...
4. Jamboree (Beat Happening album): Jamboree is the second album by Beat
Happening, released ...
5. Gary Lee Conner: Gary Lee Conner (born Lee Gary Conner on August 22,
1962 in Fort Irwin ...
...

Gold Answer Letters to Cleo
FID Answer Screaming Trees
PATHFID Answer Letters to Cleo

PATHFID Output <title-1> Screaming Trees <facts-1> <f1> <title-2> Letters to Cleo <facts-2>
<f1> <f2> <answer> Letters to Cleo

Table 13: COMPARISON-type question example, where PATHFID predicts the correct answer while FID fails to make a correct
prediction.

990

