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Abstract

A central quest of probing is to uncover how
pre-trained models encode a linguistic property
within their representations. An encoding,
however, might be spurious—i.e., the model
might not rely on it when making predictions.
In this paper, we try to find an encoding that the
model actually uses, introducing a usage-based
probing setup. We first choose a behavioral
task which cannot be solved without using
the linguistic property. Then, we attempt to
remove the property by intervening on the
model’s representations. We contend that, if
an encoding is used by the model, its removal
should harm the performance on the chosen
behavioral task. As a case study, we focus
on how BERT encodes grammatical number,
and on how it uses this encoding to solve the
number agreement task. Experimentally, we
find that BERT relies on a linear encoding of
grammatical number to produce the correct
behavioral output. We also find that BERT uses
a separate encoding of grammatical number for
nouns and verbs. Finally, we identify in which
layers information about grammatical number
is transferred from a noun to its head verb.

1 Introduction

Pre-trained language models have enabled re-
searchers to build models that achieve impressive
performance on a wide array of natural language
processing (NLP) tasks (Devlin et al., 2019; Liu
et al., 2019; Raffel et al., 2020). How these models
encode and use the linguistic information necessary
to perform these tasks, however, remains a mystery.
Over recent years, a number of works have tried to
demystify the inner workings of various pre-trained
language models (Alain and Bengio, 2016; Adi
et al., 2017; Elazar et al., 2021), but no compre-
hensive understanding of how the models work
has emerged. Such analysis methods are typically
termed probing, and are methodologically diverse.

In our assessment, most research in probing can
be taxonomized into three distinct paradigms. In
the first paradigm, diagnostic probing, researchers
typically train a supervised classifier to predict a
linguistic property from the models’ representa-
tions. High accuracy is then interpreted as an indi-
cation that the representations encode information
about the property (Alain and Bengio, 2016; Adi
et al., 2017; Hupkes et al., 2018; Conneau et al.,
2018). A second family of methods, behavioral
probing, consists in observing a model’s behavior
directly, typically studying the model’s predictions
on hand-picked evaluation datasets (Linzen et al.,
2016; Goldberg, 2019; Warstadt et al., 2020; Et-
tinger, 2020). Finally, causal probing methods
rely on interventions to evaluate how specific com-
ponents impact a model’s predictions (Giulianelli
et al., 2018; Vig et al., 2020b; Elazar et al., 2021).

In this paper, we will investigate how linguis-
tic properties are encoded in a model’s representa-
tions, where we use the term encoding to mean the
subspace on which a model relies to extract—or
decode—the information. While probing has been
extensively used to investigate whether a linguistic
property is encoded in a set of representations, it
still cannot definitively answer whether a model ac-
tually uses a certain encoding. Diagnostic probes,
for instance, may pick up on a spurious encod-
ing of a linguistic property, i.e., an encoding that
allows us to extract our target property from the
representation, but which the model being probed
may not actually use to make a prediction.

Combining the three paradigms above, we in-
stead seek to find encodings that are actually used
by a pre-trained model, which we term functional
encodings. To that end, we take a usage-based
perspective on probing. Under this perspective, a
researcher first identifies a linguistic property to
investigate (e.g., grammatical number), and selects
a behavioral task which requires knowledge of this
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property (e.g., selecting a verb’s inflection which
agrees in number with its subject). The researcher
then performs a causal intervention with the goal
of removing a specific encoding (of the linguis-
tic property under consideration) from the model’s
representations. If the encoding is a functional en-
coding, i.e., an encoding that the model indeed uses
to make a prediction, then the intervention should
prevent the model from solving the task.1 Finally,
once a functional encoding is discovered, we can
use it to track how the property’s information flows
through the model under investigation.

As a case study, we examine how BERT (Devlin
et al., 2019) uses grammatical number to solve a
number agreement task. In English, grammatical
number is a binary morpho-syntactic property: A
word is plural or singular. In turn, subject–verb
number agreement is a behavioral task; it inspects
whether a model can predict the correct verbal
inflection given its subject’s number. For a model
to solve the task, it thus requires information about
the grammatical number of the subject and the
verb. Our goal is to find how the model encodes
this information when using it to make predictions.
In other words, we want to find the structure from
which the model decodes number information
when solving the task.

In our experiments, we make three findings.
First, our experiments provide us with strong evi-
dence that BERT relies on a linear functional en-
coding of grammatical number to solve the number
agreement task. Second, we find that nouns and
verbs do not have a shared functional encoding of
number; in fact, BERT relies on disjoint sub-spaces
to extract their information. Third, our usage-based
perspective allows us to identify where number in-
formation (again, as used by our model to make
predictions) is transferred from a noun to its head
verb. Specifically, we find that this transfer occurs
between BERT’s 3rd and 8th layers, and that most of
this information is passed indirectly through other
tokens in the sentence.

2 Paradigms in Probing

A variety of approaches to probing have been pro-
posed in the literature. In this paper, we taxonomize
them into three paradigms: (i) diagnostic probing,
(ii) behavioral probing, and (iii) causal probing.

1See Ravfogel et al. (2021) for a similar pipeline.

Diagnostic Probing. Traditionally, probing pa-
pers focus on training supervised models on top of
fixed pre-trained representations (Adi et al., 2017;
Hall Maudslay et al., 2020). The general assump-
tion behind the work is that, if a probe achieves
high accuracy, then the property of interest is en-
coded in the representations. Many researchers
have expressed a preference for linear classifiers in
probing (Alain and Bengio, 2016; Ettinger et al.,
2016; Hewitt and Manning, 2019), suggesting that
a less complex classifier gives us more insight into
the model. Others, however, called this criterion
into question (Tenney et al., 2019b,a; Voita and
Titov, 2020; Papadimitriou et al., 2021; Sinha et al.,
2021; Pimentel et al., 2020a; Pimentel and Cot-
terell, 2021). Notably, Hewitt and Liang (2019)
proposed that complex classifiers may learn to ex-
tract a property by themselves, and may thus not
reflect any true pattern in the representations. Fur-
ther, Pimentel et al. (2020b) showed that, under
a weak assumption, contextual representations en-
code as much information as the original sentences.
Ergo, it is not clear what we can conclude from
diagnostic probing alone.

Behavioral Probing. Another probing paradigm
analyzes the behavior of pre-trained models on
carefully curated datasets. By avoiding the use of
diagnostic probes, they do not fall prey to the crit-
icism above—tasks are directly performed by the
model, and thus must reflect the pre-trained models’
acuity. One notable example is Linzen et al. (2016),
who evaluate a language model’s syntactic ability
via a careful analysis of a number agreement task.
By controlling the evaluation, Linzen et al. could
disentangle the model’s syntactic knowledge from
a heuristic based on linear ordering. In a similar
vein, a host of recent work makes use of carefully
designed test sets to perform behavioral analysis
(Ribeiro et al., 2020; Warstadt et al., 2020; Warstadt
and Bowman, 2020; Lovering et al., 2021; Newman
et al., 2021). While behavioral probing often yields
useful insights, the paradigm typically treats the
model itself as a blackbox, thus failing to explain
how individual components of the model work.

Causal Probing. Finally, a third probing
paradigm relies on causal interventions (Vig et al.,
2020b; Tucker et al., 2021; Ravfogel et al., 2021).
In short, the researcher performs causal interven-
tions that modify parts of the network during a
forward pass (e.g., a layer’s hidden representations)
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to determine their function. For example, Vig et al.
(2020a) fix a neuron’s value while manipulating the
model’s input to evaluate this neuron’s role in me-
diating gender bias. Relatedly, Elazar et al. (2021)
propose a method to erase a target property from a
model’s intermediate layers. They then analyze the
effect of such interventions on a masked language
model’s outputs.

3 Probing for Usage

Under our usage-based perspective, our goal is to
find a functional encoding—i.e., an encoding that
the model actually uses when making predictions.
We achieve this by relying on a combination of
the paradigms discussed in §2. To this end, we
first need a behavioral task that requires the model
to use information about the target property. We
then perform a causal intervention to try to remove
this property’s encoding. We explain both these
components in more detail now.

Behavioral Task. We first require a behavioral
task which can only be solved with information
about the target property. The choice of task and
target property are thus co-dependent. Further,
we require our model to perform well on this task.
On one hand, if the model cannot achieve high
performance on the behavioral task, we cannot be
sure the model encodes the target property, e.g.,
grammatical number, at all. On the other hand, if
the model can perform the task, it must make use
of the property.

Causal Intervention. Our goal in this work is
to answer a causal question: Can we identify a
property’s functional encoding? We thus require
a way to intervene in the model’s representations.
If a model relies on an encoding to make predic-
tions, removing it should harm the model’s perfor-
mance on the behavioral task. If follows that, by
measuring the impact of our interventions on the
model’s behavioral output, we can assess whether
our model was indeed decoding information from
our targeted encoding.

4 Grammatical Number and its Usage

The empirical portion of this paper focuses on a
study of how BERT encodes grammatical number
in English. We choose number as our object of
study because it is a well understood morpho-
syntactic property in English. Thus, we are able
to formulate simple hypotheses about how BERT

passes information about number when performing
number agreement. We use Linzen et al.’s (2016)
number agreement task as our behavioral task.

4.1 The Number Agreement Task

In English, a verb and its subject agree in grammati-
cal number (Corbett, 2006). Consider, for instance,
the sentences:

(1) a. The boy goes to the movies.
b. *The boy go to the movies.
c. The boy that holds the keys goes to the movies.
d. *The boy that holds the keys go to the movies.

In the above sentences, both (1-a) and (1-c) are
grammatical, but (1-b) and (1-d) are not; this is
because, in the latter two sentences, the highlighted
verb does not agree in number with its subject.

The subject–verb number agreement task
evaluates a model’s ability to predict the correct
verbal inflection, measuring its preference for
the grammatical sentence. In this task, the
probed model is typically asked to predict the
verb’s number given its context. The model is
then considered successful if it assigns a larger
probability to the correct verb inflection:

context: The boy that holds the keys [MASK] to the movies.

success: p(goes | context) > p(go | context)

failure: p(go | context) > p(goes | context)

In this setting, the subject is usually called the cue
of the agreement, and the verb is called the target.

Examples similar to the above are often designed
to study the impact of distractors (the word keys
in (1-c) and (1-d)) on the model’s ability to predict
the correct verb form. Success on the task is
usually taken as evidence that a model is able to
track syntactic dependencies. In this regard, this
phenomena has been studied in a variety of settings
to investigate the syntactic abilities of neural
language models (Gulordava et al., 2018; Marvin
and Linzen, 2018; Newman et al., 2021; Lasri et al.,
2022). In this work, however, we do not use this
task to make claims about the syntactic abilities of
the model, as done by Linzen et al. (2016). Instead,
we employ it as a case study to investigate how
BERT encodes and uses grammatical number.

4.2 Related Work on Grammatical Number

A number of studies have investigated how gram-
matical number is encoded in neural language mod-

8820



els.2 Most of this work, however, focuses on di-
agnostic probes (Klafka and Ettinger, 2020; Tor-
roba Hennigen et al., 2020). These studies are thus
agnostic about whether the probed models actually
use the encodings of number they discover. Some
authors, however, do consider the relationship be-
tween how the model encodes grammatical num-
ber and its predictions. Notedly, Giulianelli et al.
(2018) use a diagnostic probe to investigate how an
LSTM encodes number in a subject–verb number
agreement setting. Other approaches (Lakretz et al.,
2019; Finlayson et al., 2021) have been proposed
to apply interventions at the neuron level and track
their effect on number agreement. In this work,
we look for functional encodings of grammatical
number—encodings which are in fact used by our
probed model when solving the task.

5 From Encoding to Usage

We discuss how to identify and remove an encoding
from a set of contextual representations using di-
agnostic probing. Our use of diagnostic probing is
thus twofold. For a model to rely on an encoding of
our property when making predictions, the property
must be encoded in its representations. We thus
first use diagnostic probing to measure the amount
of information a representation contains about the
target linguistic property. In this sense, diagnostic
probing serves to sanity-check our experiments—if
we cannot extract information from the representa-
tions, there is no point in going forward with our
analysis. Second, we make use of diagnostic prob-
ing in the context of amnesic probing (Elazar et al.,
2021), which allows us to determine whether this
probe finds a functional or a spurious encoding of
the target property.

5.1 Estimating Extractable Information
In this section, we discuss how to estimate the
amount of extractable number information in our
probed model’s representations. This is the probing
perspective taken by Pimentel et al. (2020b) and
Hewitt et al. (2021) in their diagnostic probing
analyses. The crux of our analysis relies on the fact
that the encoding extracted by diagnostic probes
is not necessarily the functional encoding used by
our probed model. Nevertheless, for a model to use
a property in its predictions, this property should

2We focus on grammatical number here. There is, however,
also a vast literature investigating how BERT encodes number
from a numeracy point of view (Wallace et al., 2019; Geva
et al., 2020; Spithourakis and Riedel, 2018).

at least be extractable, which is true due to the data
processing inequality. In other words, extractability
is a necessary, but not sufficient, condition for a
property to be used by the model.

We quantify the amount of extractable informa-
tion in a set of representations in terms of a di-
agnostic probe’s V-information (Xu et al., 2020),
where the V-information is a direct measure of the
amount of extractable information in a random vari-
able. We compute the V-information as:3

IV(R → N) = HV(N)−HV(N | R) (1)

where R and N are, respectively, a representation-
valued and a number-valued random variables, V
is a variation family determined by our diagnostic
probe, and the V-entropies are defined as:

HV(N) = inf
q∈V

En∼p(n) log
1

q(n)
(2)

HV(N | R) = inf
q∈V

En,r∼p(n,r) log
1

q(n | r)
(3)

Further, if we denote our analyzed model’s (i.e.,
BERT’s) hidden representations as:

rt,l = model(sentence)t,l (4)

we define our linear diagnostic probe as:

pθ(nt = SING | sentence) = σ(θ⊺ rt,l+ b) (5)

where rt,l ∈ R768, t is a sentence position and l is a
layer, nt is the binary number label associated with
the word at position t, σ is the sigmoid function,
θ is a real-valued column parameter vector and
b is a bias term. In this case, we can define our
variational family as V = {pθ | θ ∈ R768}.

5.2 Intervening on the Representations
We now discuss how we perform a causal interven-
tion to prevent the analyzed model from using a
given encoding. The goal is to damage the model
and make it “forget” a property’s information. This
allows us to analyze whether that encoding actu-
ally influences the probed model’s predictions—
i.e., whether this encoding is indeed functional. To
this end, we employ amnesic probing (Elazar et al.,
2021).4 In short, we first learn a linear diagnos-
tic classifier, following eq. (5). We then compute

3See App. B for a detailed description of V-information.
4In particular, this intervention consists in applying iter-

ative null-space projection to the representations, originally
proposed by Ravfogel et al. (2020). We note that Ravfogel
et al. (2022a,b) recently proposed two new methods to remove
information from a set of representations.
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the projector onto the kernel (or null) space of this
linear transform θ, shown below:

Pnull = I− θθ⊺

||θ||22
(6)

By iterating this process, we store a set of param-
eter vectors θ(k) and their associated projectors
P

(k)
null until we are unable to extract the property.

The composition of these projectors makes it pos-
sible to remove all linearly extractable number in-
formation from the analyzed representations. We
can then apply the resulting composition to the said
representations to get a new set of vectors:

r′t,l = P
(k)
null · · · P

(2)
nullP

(1)
null rt,l (7)

After learning the projectors, we can measure
how erasing a layer’s encoding impacts: (i) the
subsequent layers, and (ii) our model’s perfor-
mance on the number agreement task. Removing
a functional encoding of grammatical number
should cause a performance drop on the number
agreement task. Further, looking at both (i) and
(ii) allows us to make a connection between the
amount of information we can extract from our
probed model’s layers and its behavior. We are
thus able to determine whether the encodings
revealed by our diagnostic probes are valid from
a usage-based perspective—are they actually used
by the probed model on a task that requires them?5

6 Experimental Setup

Data. We perform our analysis on Linzen et al.’s
(2016) number agreement dataset, which consists
in sentences extracted from Wikipedia. In this
dataset, each sentence has been labeled with the po-
sition of the cue and target, along with their gram-
matical number. We assume here that this dataset
is representative of the number agreement task; this
may not be true in general, however.

Model. In our experiments, we probe BERT (De-
vlin et al., 2019).6 Specifically, BERT is a bidirec-
tional transformer model with 12 layers, trained
using a masked language modeling objective. As
BERT has been shown to perform well on this
dataset (Goldberg, 2019), we already know that our
probed model passes our first requirement; BERT
does use number information in its predictions.

5Our method differs from amnesic probing mostly in that
all our analyses are based on a behavioral task which we know
a priori to require the property we investigate.

6We focus on bert-base-uncased, as implemented in the
transformers library (Wolf et al., 2020).

Figure 1: The amount of V-information BERT
representations hold about grammatical number, as
estimated with linear diagnostic probes.

Distinguishing Nouns and Verbs. While
number is a morpho-syntactic property common to
nouns and verbs, we do not know a priori if BERT
relies on a single subspace to encode number in
their representations. Though it is possible for
BERT to use the same encoding, it is equally
plausible that each part of speech would get its own
number encoding. This leads us to perform our
analyses using independent sets of representations
for nouns and verbs; as well as a mixed set which
merges both of them. Further, verbs are masked
when performing the number agreement task, so
their representations differ from those of unmasked
verbs. Ergo, we analyze both unmasked, and
masked tokens at the target verb’s position—which
for simplicity we call verbs and masked verbs,
respectively. This leaves us with four probed
categories: nouns, verbs, masked verbs, and mixed.

7 Experiments and Results

In our experiments, we focus on answering two
questions: (i) How is number information encoded
in BERT’s representations? and (ii) How is number
information transferred from a noun to its head
verb for the model to use it on the behavioral
task? We answer question (i) under both extractabil-
ity and usage-based perspectives. In §7.1, we
present our sanity-check experiments that demon-
strate that grammatical number is indeed linearly
extractable from BERT’s representations. In §7.2
and §7.3, we use our causal interventions: we iden-
tify BERT’s functional encodings of number; and
analyze whether these functional encodings are
shared across parts of speech. Finally, in §7.4 and
§7.5 we investigate question (ii), taking a closer
look at the layers in which information is passed.
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Figure 2: Cosine similarities between the learned parameter vectors of our diagnostic probes. The matrices display
similarities between different layers for a given word category (top), and across categories (bottom).

7.1 What do diagnostic probes say about
number?

Fig. 1 presents diagnostic probing results in all
four of our analyzed settings.7 A priori, we expect
that verbs’ and nouns’ representations should
already contain a large amount of V-information
about their grammatical number at the type-level.
As expected, we see that the V-information is near
its maximum for both verbs and nouns in all layers;
this means that nearly 100% of the uncertainty
about grammatical number is eliminated given
BERT’s representations. Further, the mixed cat-
egory results also reach a maximal V-information,
which indicates that it is possible to extract
information linearly about both categories at the
same time. On the other hand, the V-information
of masked verbs is 0 at the non-contextual layer
and it progressively grows as we get to the upper
layers.8 As we go to BERT’s deeper layers, the
V-information steadily rises, with nearly all of the
original uncertainty eliminated in the mid layers.
This suggests that masked verbs’ representations
acquire number information in the first 7 layers.

However, from these results alone we cannot con-
firm whether the encoding that nouns and verbs use
for number is shared or disjoint. We thus inspect
the encoding found by our diagnostic probes, eval-
uating the cosine similarity between their learned
parameters θ (ignoring the probes’ bias terms b
here). If there is a single shared encoding across
categories, these cosine similarities should be high.
If not, they should be roughly zero. Fig. 2 (left)
shows that nouns and verbs might encode num-
ber along different directions. Specifically, noun

7We further present accuracy results in App. A.
8We note that, in Fig. 1, layer 0 corresponds to the non-

contextual representations (i.e. the word embeddings be-
fore being summed to BERT’s position embeddings). Non-
contextual layers thus contain no information about the num-
ber of a masked verb, as the mask token contains no informa-
tion about its replaced verb’s number.

representations on the first 6 layers seem to have
a rather opposite encoding from verbs, while the
later layers are mostly orthogonal. Further, while
masked verbs and verbs do not seem to share an
encoding in the first few layers, they are strongly
aligned from layer 6 on (Fig. 2; center).

We now know that there are encodings from
which we can extract number from nouns and verbs,
and that these encodings are disjoint. However, we
still do not know whether the encoding is spurious
or functional.

7.2 Does the model use these encodings?

The patterns previously observed suggest there is a
linear encoding, from which grammatical number
can be extracted from BERT’s representations. We,
however, cannot determine whether these encod-
ings are actually those used by the model to make
predictions. We now answer this question taking
our proposed usage-based perspective, studying the
impact of linearly removing number information
at both the cue and target positions.9 We evaluate
the model’s change in behavior, as evaluated by its
performance on the number agreement (NA) task.

Fig. 3a and Fig. 3c show the decrease in how
much information is extractable at the target
position after the interventions are applied. Fig. 3b
and Fig. 3d show BERT’s accuracy drops on the
NA task (as measured at the output level). By
comparing these results, we find a strong alignment
between the information lost across layers and the
damage caused to the performance on the task—
irreversible information losses resulting from
our intervention are mirrored by a performance
decrease on the NA task. This alignment confirms
that the model indeed uses the linear information
erased by our probes. In other words, we have
found the probed property’s functional encoding.

9The number of dimensions removed by our amnesic
projectors in each layer and category is presented in Tab. 1.

8823



(a) Information loss (measured at the
target) after erasing nouns’ number
information at the cue position.

(b) NA perfor-
mance drop after
erasing number at
the cue position.

(c) Information loss (measured at the
target) after erasing masked verbs’
number at the target position.

(d) NA perfor-
mance drop after
erasing number at
the target position.

Figure 3: Effect of our causal interventions on information recovery in subsequent layers (triangular matrices) and
on the number agreement task (bar charts). Information loss is measured at the target position by a diagnostic probe;
we display the probing accuracy drop compared to when no intervention was performed. The legend in the bar
charts indicates what category the amnesic projectors have been trained on. Majority represents the difference in
performance between BERT and a trivial baseline which always guesses the majority label.

7.3 Does BERT use the same encoding for
verbs and nouns?

We now return to the question of whether nouns
and verbs share a functional encoding of number,
or whether BERT encodes number differently for
them. To answer this question, we investigate the
impact of removing a category’s encoding from
another category, e.g. applying an amnesic projec-
tor learned on verbs to a noun. In particular, we
measure how these interventions decrease BERT’s
performance in our behavioral task. Figs. 3b and 3d
presents these results.

We observe that each category’s projector has
a different impact on performance depending
on whether it is applied to the cue or the target.
Fig. 3b, for instance, shows that using the verb’s,
or masked verb’s, projector to erase information
at the cue’s (i.e., the noun’s) position does not hurt
the model. It is similarly unimpactful (as shown in
Fig. 3d) to use the noun’s projectors to erase a tar-
get’s (i.e., the masked verb’s) number information.
Further, the projector learned on the mixed set of
representations does affect the cue, but has little
effect on the target. Together, these results confirm
that BERT relies on rather distinct encodings of
number information for nouns and verbs.10

10A potential criticism of amnesic probing is that it may
remove more information than necessary. Cross-testing our
amnesic probes, however, results in little effect on BERT’s
behavior. It is thus likely that they are not overly harming our
model. Further, we also run a control experiment proposed
by Elazar et al., removing random directions at each layer
(instead of the ones found by our amnesic probes). These
results are displayed in the appendix in Tab. 1.

These experiments allow us to make stronger
claims about BERT’s encoding of number infor-
mation. First, the fact that our interventions have
a direct impact on BERT’s behavioral output con-
firms that the encoding we erase actually bears
number information as used by the model when
making predictions. Second, the observation from
Fig. 2—that number information could be encoded
orthogonally for nouns and verbs—is confirmed
from a usage-based perspective. Indeed, using
amnesic probes trained on nouns has no impact
when applied to masked verbs, and amnesic probes
trained on verbs have no impact when applied to
nouns. These fine-grained differences in encoding
may affect larger-scale probing studies if one’s goal
is to understand the inner functioning of a model.
Together, these results invite us to employ diagnos-
tic probes more carefully, as the encoding found
may not be actually used by the model.

7.4 Where does number erasure affect the
model?

Once we have found which encoding the model
uses, we can pinpoint at which layers the infor-
mation is passed from the cue to the target. To
that end, we observe how interventions applied in
each layer affect performance. We know number
information must be passed from the cue to the tar-
get’s representations—otherwise the model cannot
solve the task. Therefore, applying causal interven-
tions to remove number information should harm
the model’s behavioral performance when applied
to: (i) the cue’s representations before the trans-
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fer occurs; (ii) the target’s representations after the
transfer occurred.

Interestingly, we observe that target interven-
tions are only harmful after the 9th layer; while
noun interventions only hurt up to the 8th layer
(again, shown in Fig. 3). This suggests that the cue
passes its number information in the first 8 layers,
and that the target stops acquiring number informa-
tion in the last three layers. While we see a clear
stop in the transfer of information after layer 8,
Fig. 3a shows that the previous layers’ contribution
decreases slowly up to that layer. We thus conclude
that information is passed in the layers before layer
8; however, we concede that our analysis alone
makes it difficult to pinpoint exactly which layers.

7.5 Where does attention pruning affect
number transfer?

Finally, in our last experiments, we complement
our analysis by performing attention removal to
investigate how and where information is transmit-
ted from the cue to the target position. This causal
intervention first serves the purpose of identifying
the layers where information is transmitted. Fur-
ther, we wish to understand whether information is
passed directly, or through intermediary tokens. To
this end, we look at the effect on NA performance
after: (i) cutting direct attention from the target
to the cue at specific layers, (ii) cutting attention
from all tokens to the cue (as information could be
first passed to intermediate tokens, which the target
could attend to in subsequent layers).11 Specifi-
cally, we perform these interventions in ranges of
layers (from layer i up to j). We report number
agreement accuracy drops in Fig. 4.12

The diagonals from this figure show that remov-
ing attention from a single layer has basically no
effect. Further, cutting attention from layers 6 to 10
suffices to observe near-maximal effect for direct
attention. Interestingly, it is at those layers where
we see a transition from it being more harmful to
apply amnesic projectors to the cue or to the tar-
get (in §7.4). However, while those layers play a
role in carrying number information to the target
position, the drop is relatively modest when cutting
only direct attention (≈ 10%). Cutting attention
from all tokens to the cue, in turn, has a significant
effect on performance (up to ≈ 40%), and is maxi-

11Klafka and Ettinger (2020), for instance, showed that
number information of a given token was distributed to neigh-
boring tokens in the upper layers

12We detail these interventions in App. C.

(a) Removing attention from
the target to the cue only

(b) Removing attention from
all tokens to the cue

Figure 4: Number agreement task performance drops
after performing attention removal. The attention cut
is performed on a range of layers. Rows and columns,
respectively, represent the first and last intervened layer.

mal for layers 2 to 8. This first suggests that, while
other clues in the sentence could indicate the target
verb’s number (such as a noun’s determiner), the
noun itself is the core source of number informa-
tion. Further, this shows the target can get informa-
tion from intermediate tokens, instead of number
being passed exclusively through direct attention.13

8 Conclusion

Our analysis of grammatical number allows us
to track how a simple morpho-syntactic property,
grammatical number, is encoded across BERT’s
layers and where it is transferred between them be-
fore being used on the model’s predictions. Using
carefully chosen causal interventions, we demon-
strate that forgetting number information impacts
both: (i) BERT’s behavior and (ii) how much in-
formation is extractable from BERT’s inner layers.
Further, the effects of our interventions on these
two, i.e., behavior and information extractability,
line up satisfyingly, and reveal the encoding of
number to be orthogonal for nouns and verbs. Fi-
nally, we are also able to identify the layers in
which the transfer of information occurs, and find
that the information is not passed directly but
through intermediate tokens. Our ability to con-
cretely evaluate our interventions’ impact is due
to our focus on grammatical number and the num-
ber agreement task—which directly align probed
information and behavioral performance.

Ethics Statement

The authors foresee no ethical concerns with the
work presented in this paper.

13See App. E for further experiments.
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A Diagnostic Probing Cross-Evaluation

In addition to comparing the angles of our diagnostic probes trained on different categories, we performed
cross-evaluation of our trained diagnostic probes. In this setting, we trained probes on one category
and tested them on the others. Fig. 5 presents our cross-evaluation results. The performance of probes
evaluated in one category, but trained on another, again suggests that BERT encodes number differently
across lexical categories. Interestingly, in the lower layer, the probe tested on nouns (top-left) guesses
the wrong number systematically when trained on verbs, and vice-versa (top-right). This can be due to
token ambiguity, as some singular nouns (e.g. “hit") are also plural verbs. This is further evidence that the
encoding might be different for nouns and verbs, though this analysis still cannot tell us whether this is
true from our usage-based perspective. Additionally, the mixed results (Fig. 5; bottom-right), show it is
possible to linearly separate both nouns and verbs with a single linear classifier trained on both categories,
reaching perfect performance on all other categories, including masked-verbs (bottom-left).

Figure 5: Probes cross-evaluation. Each plot corresponds to a test category, and colors correspond to the category
used for training. Solid lines represent the percentage of majority-class (plural vs singular) tokens; dashed lines
represent the percentage of majority-class tokens per lemma, averaged across lemmas.

B V-information and mutual information

While a probing classifier’s performance is often measured with accuracy metrics, in their analysis,
Pimentel et al. (2020b) defined probing as extracting a mutual information. Formally, we write

I(R;N) = H(N)−H(N | R) (8)

where R and N are, respectively, a representation-valued and a number-valued random variables. The
mutual information, however, is a mostly theoretical value—hard to approximate in practice.

To compute this, we must first define a variational family V of interest; which we define as the set
of linear transformations representable by eq. (5). We can then compute the V-information as:

IV(R → N) = HV(N)−HV(N | R) (9)
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where V-entropies are defined as:

HV(N) = inf
θ∈V

En∼p(n) log
1

pθ(n)
(10)

HV(N | R) = inf
θ∈V

En,r∼p(n,r) log
1

pθ(n | r)
(11)

This V-information can vary in the range [0; HV(N)]; thus a more interpretable value is the V-uncertainty,
which we define here as:

UV(R → N) =
IV(R → N)

HV(N)
(12)

We note that the V-information lower-bounds the mutual information: IV(R → N) ≤ I(R;N). It
follows that, if we can extract some V-information from a set of representations, they contain at least the
same amount of information in Shannon’s (1948) more classic sense.

C Attention Intervention

Formally, let Al,h ∈ RT×T be a model’s attention weights for a given layer 1 ≤ l ≤ 12, a head
1 ≤ h ≤ 12, and a sentence with length T .14 Further, we define a binary mask matrix Ml ∈ {0, 1}T×T .
We can now perform an intervention by masking the attention weights of all heads in a layer. Given a
layer l:

Âl,h = Al,h ◦Ml, 1 ≤ h ≤ 12 (13)

where ◦ represents an elementwise product between two matrices. Now assume a given sentence with
cue position pc, and with target position pt. In our intervention (i), matrix Ml is set to all 1’s except for
Ml

pt,pc = 0; the target’s attention to the cue is thus set to zero. In intervention (ii), we set Ml
:,pc = 0 and

other positions to 1, which removes all attention to the cue.

D Removing random directions from representations

Removing directions from intermediate spaces could harm the model’s normal functioning independently
from removing our targeted property. We thus run a control experiment proposed by Elazar et al.
(2021), removing random directions at each layer (as opposed to the specific directions found by our
amnesic probes). This experiment allows us to verify that the observed information loss and decrease in
performance do not only result from removing too many directions. To do so, we remove an equal number
of random directions at each layer. The results are displayed in Tab. 1 and show that removing randomly
chosen directions has little to no effect compared to our targeted causal interventions.

E The effect of linear distance

Here, we test whether the linear distance between the cue and the target influences the effect of attention
removal. Fig. 6a shows that cutting attention from one layer has negligible effect over performance
regardless of distance, which is in line with results from the diagonals of Fig. 4. When cutting attention
from several subsequent layers (Fig. 6b), we observe that performance drop depends on the linear position,
and decreases when the model is not faced with short-range agreement. This is not surprising as many
of the attention maps attend to surrounding tokens (Kovaleva et al., 2019). Extensive analysis targeting
individual attention heads (instead of cutting all attention from a given layer) is necessary to examine both
their contribution to the model’s successes, and their dependence on linear distance.

14Our analyzed model, BERT base, has 12 layers, and 12 attention heads in each layer.
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Layer 0 1 2 3 4 5 6 7 8 9 10 11 12

Masked Verbs

Number of Directions 1 13 15 26 30 17 21 44 24 22 22 26 33
Loss in Layers 0.0 0.33 0.3 0.34 0.34 0.34 0.37 0.38 0.42 0.39 0.41 0.41 0.41
Loss in Layers (Random) 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NA Performance Drop 0.04 0.01 0.01 0.01 0.01 0.0 0.01 0.0 0.0 0.09 0.29 0.33 0.23
NA Performance Drop (Random) 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01

Nouns

Number of Directions 17 51 33 70 22 37 48 52 64 39 22 39 26
Loss in Layers 0.49 0.37 0.39 0.38 0.37 0.38 0.43 0.4 0.43 0.4 0.37 0.41 0.4
Loss in Layers (Random) 0.0 0.0 0.0 0.02 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0
NA Performance Drop 0.32 0.32 0.27 0.29 0.28 0.29 0.22 0.09 0.04 0.0 0.0 0.0 0.0
NA Performance Drop (Random) 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1: Causal intervention results using both the default or random directions. For each category, we display the
number of directions removed in each layer, the information loss resulting from amnesic interventions in each layer
and the effect on the NA task. We also display the loss in layers and performance decrease on NA resulting from the
removal of random directions as a control experiment.

(a) Cutting attention from the target to the cue onlyspace

(b) Cutting attention from all tokens to the cue

Figure 6: Agreement task performance drops resulting from attention interventions, as a function of linear distance
between the cue and the target. The rows represent distances (from 1 to 15) and columns represent the intervened
layers. Three conditions are tested: cutting attention only at current layer (left), cutting attention starting from
current layer up to the last one (middle) and from the first layer to current layer (right). The color map on the far
right represent agreement scores without intervention for each linear distance.
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