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Abstract

A release note is a technical document that de-
scribes the latest changes to a software product
and is crucial in open source software devel-
opment. However, it still remains challenging
to generate release notes automatically. In this
paper, we present a new dataset called RNSum,
which contains approximately 82,000 English
release notes and the associated commit mes-
sages derived from the online repositories in
GitHub. Then, we propose classwise extractive-
then-abstractive/abstractive summarization ap-
proaches to this task, which can employ a mod-
ern transformer-based seq2seq network like
BART and can be applied to various reposi-
tories without specific constraints. The exper-
imental results on the RNSum dataset show
that the proposed methods can generate less
noisy release notes at higher coverage than the
baselines. We also observe that there is a signif-
icant gap in the coverage of essential informa-
tion when compared to human references. Our
dataset and the code are publicly available.

1 Introduction

Recently, there has been considerable interest in
applying natural language processing (NLP) tech-
niques to support software development (Iyer et al.,
2016; Yin and Neubig, 2018; Panthaplackel et al.,
2020). One such task involves the automatic gener-
ation of release notes. A release note is a technical
document that describes the latest changes to a
software product, which is necessary for software
developers to adjust their codes accurately for using
the updated software. Since release notes are time-
consuming to write manually, several studies have
been done to explore automatic release note gen-
eration. Moreno et al. (2014) proposed ARENA,

Figure 1: An example data in RNSum; this example
is derived from the release of tag v2.6.4 in https:
//github.com/vuejs/vue.

an automatic release notes generator, which first
extracts and summarizes the changes in the source
code and then integrates them with the informa-
tion provided by version-control and issue-tracking
systems. Pokorný (2020) developed Glyph, which
classifies commit messages into predefined release-
note categories (e.g., Features, Bug Fixes) using
pre-trained word embeddings and produces the cat-
egorized commit messages as the final release note.

Despite the progress reported in these previous
studies, usable release note generators are far from
realization. We attribute this difficulty mainly to
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two problems. First, the existing resources for auto-
matic release note generation are scarce; for exam-
ple, Glyph was trained on only 5,000 commit mes-
sages, which is too little for obtaining a sufficiently
generalized model. Second, the existing methods
have limited applicability; for example, ARENA re-
quires an issue tracker hosted on Jira, thus prevent-
ing it from being used for most GitHub repositories.
Also, Glyph’s predefined release-note categories
do not include deprecations and removals, which
are often indispensable in release notes.

To alleviate the above problems, we introduce
RNSum, a new large-scale dataset for automatic
release note generation via commit logs summa-
rization. An example data in RNSum is shown in
Figure 1. RNSum consists of approximately 82,000
release notes derived from online repositories on
GitHub. The contents of each release note are fur-
ther categorized into four release-note classes: (1)
Features, (2) Improvements, (3) Bug Fixes, and
(4) Deprecations+ (Deprecations, Removals, and
Breaking Changes). The release notes are associ-
ated with the commit messages that were used by
human maintainers to write the release notes.

The difficulty of this task is that there is no ex-
plicit alignment between each commit message
and the release note categories. For example, in
Figure 1, the first commit message (“chore: make
documentation clearer (#9450)”) is not reflected
in the release notes. In contrast, the second com-
mit message (“fix: empty scoped slot should return
undefined fix #9452”) is reflected as the third re-
lease note in the Bug Fixes class. We propose two
approaches to this task: Classwise Extractive-then-
Abstractive Summarization (CEAS) and Classwise
Abstractive Summarization (CAS) models, which
learn to produce categorized release notes given
unlabeled commit messages in extractive and ab-
stractive manners, respectively. The two proposed
models can leverage modern transformer-based
sequence-to-sequence (seq2seq) architectures (e.g.,
BART (Lewis et al., 2020)) and can be used for var-
ious repositories without any special constraints.

We evaluate the proposed models and the previ-
ous systems on the RNSum dataset and report that
our approaches generate less noisy release notes
at higher coverage than the baselines given only
unlabeled commit messages. We also perform hu-
man evaluations carefully to assess how well the
systems could generate release notes in terms of
quality (precision) and coverage (recall), revealing

CM RN
Dataset Text Class Text Class Size
Mauczka et al. (2015) ✓ ✓ 967
Levin and Yehudai (2017) ✓ ✓ 1,151
Safdari (2018) ✓ ✓ 3,377
RNSum (ours) ✓ ✓ ✓ 81,996

Table 1: Comparison of RNSum with the existing
datasets on commit logs. CM and RN denote the com-
mit message and release note, respectively.

that there still remains a significant gap in the cov-
erage when compared to human references. Our
dataset and the source code are publicly available.1

2 Task Formulation

Here, we define the automatic release note gener-
ation task. The input is a set of commit messages
(sentences), x = {x1, . . . , xn}. Given the input
commit messages x, our goal is to generate labeled
release notes yc for each predefined release-note
class c ∈ C. Each labeled release note is a col-
lection of sentences, i.e., yc = yc,1, yc,2, . . . . Ac-
cording to Moreno et al. (2014), the major contents
of most release notes can be categorized into the
following classes: Fixed Bugs, New Features, New
Code Components (CC), Modified CC, etc. Based
on their observations, we define the release-note
classes C comprising the following four categories:
Features (F), Improvements (I), Bug Fixes (B), and
Deprecations+ (D; Deprecations, Removals, and
Breaking Changes).2 Our classes do not include
Refactoring, Document Changes, and Library Up-
dates because most of the maintainers on GitHub
omitted these changes in their release notes.

Our dataset can be interpreted as a collection of
quintuples, namely {x,yF,yI,yB,yD}. For sim-
plicity, we also use (x,y) instead of the quintuple
representation. It is worth noting that the labeled
release notes yc can be empty. For example, in
Figure 1, the software update is related to improve-
ments and bug fixes. Thus, the release note contains
only the Improvements and Bug Fixes classes, and
yF = yD = ∅.
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3 Related Work

Release Note Generation Automatic release
note generation has been studied by several re-
search groups. Moreno et al. (2014) proposed
ARENA, which transforms the extracted source-
code changes into the corresponding natural lan-
guage release notes. However, ARENA relies on
a versioning system and an issue tracker hosted
on Jira, which makes it difficult or even impossi-
ble to use in a variety of software projects, espe-
cially those hosted on GitHub. Klepper et al. (2016)
proposed a semi-automatic algorithm to generate
the release notes depending on expected types of
readers, e.g., team members, customers, and users.
However, no experiments were reported in their
work. Recently, a publicly available release note
generator, Glyph (Pokorný, 2020), was developed.
Glyph is a simple learning-based model that clas-
sifies each input commit message into one of five
labels: Features, Bug Fixes, Improvements, Non-
functional, and Other. These categorized commit
messages are then used as the final release notes.
The Glyph model was trained on 5,000 commit
logs using Facebook’s fastText framework (Joulin
et al., 2017). We summarize the comparison of our
dataset with the three data sources used in Glyph
in Table 1. These existing datasets annotate only
the commit message with the release note classes,
making it difficult to use for release note generation.
Also, the data size is quite small.

To address the limitations of these three studies,
we built a new large-scale dataset called RNSum,
which contains approximately 82,000 release notes
with commit messages. We reviewed the release
notes carefully and redefined the four classes. We
also propose classwise summarization methods to
automatic release note generation, which can be
applied to all English repositories on GitHub.

Classwise Summarization There are several re-
ported studies that use class information for sum-
marization. Cao et al. (2017) and Yang et al. (2018)
proposed using text categories to improve text sum-
marization. Liang et al. (2019) proposed a clinical
note extractive summarization system that gener-
ates summaries based on specific disease names. In

1https://github.com/nlab-mpg/RNSum-Da
taset. For licensing reasons, RNSum does not contain
textual content of the release notes and the commit messages
but only their URLs. To enable users to obtain the contents
easily, we provide scripts using the GitHub API.

2The Improvements class includes improvements to the
existing features instead of the addition of new features.

contrast to these studies, we developed classwise
summarization methods for release note generation,
which we confirm through experiments to be more
effective than the baselines.

4 RNSum Dataset

4.1 Dataset Construction

We collected the release notes and their associ-
ated commit messages from several repositories on
GitHub using the GitHub API.3

Repositories First, we selected all public reposi-
tories that did not fork any repositories. A reposi-
tory that did not fork means a repository that was
not copied from others. Then, we filtered out repos-
itories with less than 50 stars, assuming that repos-
itories with many stars tend to contain high-quality
release notes, which are suitable for learning reli-
able release note generation. These filtering steps
resulted in 337,048 repositories as of March 2021.

Release Notes with Classes We listed the past
releases for each repository. For each of the four
predefined classes, we manually created a vocabu-
lary with up to 30 entries. For example, the vocab-
ulary for the Improvements class contained terms
such as “improvements”, “enhancements”, and “op-
timizations.” We show the vocabularies used in this
work in the Appendix. Then, for each release, we
searched for the presence of terms in the vocabu-
laries over the entire body text (including the subti-
tles). We retained the release notes in which at least
one class-relevant term was detected in the body
text. We removed the repositories where only a
single release note class appeared throughout them-
selves.

Commit Messages On GitHub, the release notes
are NOT tied to their corresponding commit mes-
sages. Therefore, we synchronized the release
notes and commit messages using version tags
(strings) and heuristic matching rules. Specifi-
cally, we first listed the version tags (e.g., v3.7.1,
v2.6.0) of the release notes in a repository. Then,
the tags with beta versions, such as rc, alpha, and
beta, were removed, and the tags were sorted
chronologically. Next, considering all adjacent
tag pairs, we retained only those that satisfied the
heuristic matching rules. The heuristic matching
rules focused on only the numerical parts of the ver-
sion tags (e.g., v3.7.1→ “371”) and compared

3https://api.github.com
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# repositories 7,216
# release notes (RN) 81,996
Avg. # release note sentences per RN 3.3
Avg. # commit messages per RN 14.9
Avg. # release notes tokens per RN 63.3
Avg. # commit message tokens per RN 260.4
Total # unique tokens 833,984

Table 2: Statistics of the RNSum dataset.

Figure 2: Relationship between the release notes and
corresponding commit messages in terms of the num-
bers of tokens.

the number of digits and the magnitude of the num-
ber.4 For example, given a chronologically sorted
version tags, v3.6.3.1→ v3.6.4→ v2.6.1
→ v3.7.0→ v3.8.0, only one tag pair, namely
v3.7.0 → v3.8.0, can be retained. Then, for
each retained tag pair, (vt−1, vt), we compared the
two versions using the GitHub API and collected
the list of commit messages for the version tag (or
release note) vt.

Postprocessing We filtered out release notes that
were too complex, with more than 50 sentences and
more than 250 commit messages, because it was
computationally difficult to handle such large data.
Finally, we obtained a total of 7,216 repositories
and 81,996 release notes.

4.2 Dataset Analysis

We investigate the statistics of the RNsum dataset.
Table 2 summarizes the results. Our dataset con-
sists of 81,996 release notes from 7,216 repositories
in total. The average number of release note sen-
tences and commit messages per release note is 3.3
and 14.9, respectively. The average number of to-
kens in release notes and commit messages are 63.3

4The details of the heuristic rules are described in the
Appendix.

and 260.4, respectively.5 The number of unique
word types (i.e., vocabulary size) is 833,984, which
is significantly large because many project-specific
terms such as class and method names are detected.

We plot each data point in RNSum in Fig-
ure 2, where each point is represented by a two-
dimensional vector of the number of tokens in the
release notes and the commit messages. There is a
correlation between the release notes and the corre-
sponding commit messages regarding the number
of tokens. Also, RNSum contains a wide variety of
data of diverse sizes.

We also examine the word overlap rate of the
commit messages against the release notes. We
remove special symbols such as URL, hash values,
and issue numbers by using the spaCy POS tagger.6

The resulting overlap rate is 56.7%, indicating that
extractive approaches (e.g., Glyph), which simply
classify commit messages into a fixed set of prede-
fined classes, has a limitation to achieving higher
recall.7 The result also indicates that information
outside the commit messages (e.g., pull requests,
issues associated with the commit messages) may
improve the performance further, which we leave
left for future work.

In the end, we examine the distributions of re-
lease note classes. There is an obvious class imbal-
ance: Bug Fixes accounts for 60.0%, while Depre-
cations+ accounts for only 4.2%. This class imbal-
ance problem makes the task more challenging.

5 Proposed Methods

Automatic release note generation can be viewed as
a task of summarizing commit messages x into the
labeled release notes yc. In this paper, we introduce
Classwise Extractive-then-Abstractive Summariza-
tion (CEAS) and Classwise Abstractive Summa-
rization (CAS) models, which we instantiate by
modern transformer-based sequence-to-sequence
(seq2seq) networks and can be universally used in
various repositories without any special constraints.

5We used spaCy to tokenize the release notes and the
commit messages.

6We remove tokens with the following POS tags: PUNCT,
PROPN, SYM, NUM, SPCAE, and X.

7Therefore, as described in Section 5, our classwise ex-
tractive summarization method uses a generation model to
transform the extracted commit messages into release notes.
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5.1 Classwise Extractive-then-Abstractive
Summarization

The Classwise Extractive-then-Abstractive Sum-
marization (CEAS) model consists of two neural
modules: a classifier F and a generator G. First,
CEAS uses F to classify each commit message into
five release-note classes: Features, Improvements,
Bug Fixes, Deprecations+, and Other. Then, com-
mit messages classified as the same class are con-
catenated to form a single document. The commit
messages classified as Other are discarded. Then,
CEAS applies G to the four labeled documents in-
dependently and generates release notes for each
class.

In this task, the direct correspondences between
commit messages and release notes are not known.
Therefore, to train the classifier F , we assign
pseudo labels to each input commit message us-
ing the first ten characters of each commit message.
The detail of assigning pseudo labels is described in
the Appendix. If pseudo labeling generates commit
messages whose class does not appear in the gold
release notes, we omit such examples in training.
For example, in Figure 1, if the pseudo labeling gen-
erates commit messages of Features, the commit
messages are discarded because the class Features
does not appear in the gold release notes.

5.2 Classwise Abstractive Summarization

We model the Classwise Abstractive Summariza-
tion (CAS) approach by two different methods. The
first model, which we call CAS-Single, consists
of a single seq2seq network and generates a sin-
gle long release note text given a concatenation of
input commit messages. The output text can be
divided into classwise segments based on special
class-specific endpoint symbols, like “<Features>”
and “</Features>.” In training, we concatenate all
the gold labeled release notes y into one long doc-
ument by inserting the classwise endpoint symbols
and train the network to generate the target text.

The second method, which we call CAS-Multi,
consists of four different seq2seq networks Gc,
each of which corresponds to one of the release-
note classes (Features, Improvements, etc.). We
train each network Gc to generate the correspond-
ing release notes yc independently given a concate-
nation of the input commit messages.

6 Experimental Setup

6.1 Data

We divided the RNSum dataset into training, val-
idation, and test splits, each containing 74K, 4K,
and 4K examples. To avoid data leaks, examples
derived from the same repository did not belong to
multiple splits. We also removed the training exam-
ples with release note text (after concatenation) of
longer than 500 tokens to shorten the training time.

6.2 Evaluation Metrics

Since a release note yc can consist of multiple
sentences, we concatenate the sentences by insert-
ing spaces and represent the release note as one
long text in evaluation. Following the conventional
summarization literature, we employ ROUGE (Lin,
2004) as the automatic evaluation metric. We also
employ BLEU (Papineni et al., 2002) to evaluate
the fluency of generated release notes. Specifically,
we compute ROUGE-L (F1), BLEU-3, and BLEU-
4 scores. 8 We skip a test example if the reference
text is empty. It is also important for the system
not to generate release notes when the reference re-
lease note is empty (i.e., yc = ∅). To evaluate such
ability, we also compute Specificity, i.e., TN

TN+FP ,
where positive means that the generated release
note is NOT empty.

6.3 Baselines

As baseline systems for comparison, we develop
Glyph (Pokorný, 2020) and a clustering-based com-
mit message classifier. These baselines are extrac-
tive summarization methods because these meth-
ods generate release notes by just classifying each
input commit message into a fixed set of release-
note classes. In contrast, CEAS and CAS employ
seq2seq generators to transform input commit mes-
sages into novel texts.

Glyph Glyph is a publicly available commit mes-
sage classifier, which groups each input commit
message into the following five classes: Features,
Improvements, Bug Fixes, Non-functional, and
Other. The text classification model relies simply
on pretrained word embeddings in fastText (Joulin
et al., 2017). Since the Non-functional class is not
included in our task, we exclude the commit mes-
sages classified as Other or Non-functional from

8We calculate the BLEU and ROUGE scores using torch-
text https://github.com/pytorch/text and Hug-
gingFace framework (Lhoest et al., 2021), respectively.
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the output. It must be noted here that Glyph cannot
generate the Deprecations+ class.

Clustering We also develop a clustering-based
classifier for this task. This method classifies
each input commit message based on the closest
cluster centroid using Euclidean distance. First,
we train a Continuous Bag-of-Words (CBOW)
model (Mikolov et al., 2013) with a window size of
5 on 10 million commit messages collected from
GitHub and obtained 300-dimensional word em-
beddings for this domain.9 Then, we embed each
input commit message using the averaged embed-
dings of the first three tokens (without punctua-
tions).10 Then, we perform the K-means clustering
algorithm on the commit message embeddings in
the RNSum training set and obtain k(> 4) clusters.
We determine the correspondence between the clus-
ter IDs and the release-note classes (Features, Bug
Fixes, Improvements, Deprecations+) based on the
best alignment m that maximizes the total BLEU
scores on the RNSum training set D, i.e.,

m∗ = argmax
m∈kP4

∑
(x,y)∈D

∑
c∈C

BLEU(fm(c)(x),yc)

where m(c) denotes a cluster ID corresponding to
the release-note class c, and fk(x) is the commit
messages classified as the cluster k. In inference,
input commit messages classified as the remaining
k − 4 clusters are removed in the output. To deter-
mine the optimal number of clusters k, we tested
k ∈ [5, 20] and found that 11 provided the best
validation score.

6.4 Implementation Details

CEAS We employ BERT (Devlin et al., 2019)
and CodeBERT (Feng et al., 2020) as the com-
mit message classifier F . CodeBERT is a bimodal
pre-trained model for programming language and
natural language. Specifically, we apply a multi-
layer perceptron to the CLS embedding of the in-
put. When training the classifier, class-identifiable
words, such as “fix:” and “feat:”, are removed be-
cause they can be too strong class indicators. We
describe the detail of removing class-identifiable
words in the Appendix. We employ BART (Lewis

9We used the gensim library (Řehůřek and Sojka, 2010).
We removed words with frequencies lower than 300 occur-
rences.

10We also tested the average embeddings of all tokens or
all nouns. The averaging of the first three tokens consistently
outperforms these two counterparts.

Method ROUGE-L (F1) BLEU-3 BLEU-4 Specificity
RNSum Test

Glyph 12.4 3.9 3.1 0.40
Clustering 10.7 4.4 3.5 0.62
CEAS(BERT) 26.7 4.7 4.1 0.91
CEAS(CodeBERT) 25.8 4.2 3.6 0.90
CAS-Single 23.8 3.3 2.8 0.94
CAS-Multi 25.5 4.8 4.2 0.98

RNSum Test (Cleaned)
Glyph 13.7 3.0 2.3 0.39
Clustering 13.4 3.1 2.4 0.62
CEAS(BERT) 36.5 2.7 2.6 0.91
CEAS(CodeBERT) 34.7 2.4 2.3 0.90
CAS-Single 29.5 5.8 5.4 0.95
CAS-Multi 35.9 3.4 3.1 0.97

Table 3: Results on the RNSum test set. We also show
the results on the cleaned version, where we filtered out
infrequent tokens like URLs and hash values.

et al., 2020) as the generator G (or Gc). We used
the HuggingFace (Wolf et al., 2020) BertTokenizer,
AutoTokenizer, and BARTTokenizer for tokeniza-
tion. The learning rate was set to 4e-5, and we
used the AdamW (Loshchilov and Hutter, 2019)
optimizer. Mini-batch size was set to 20 for the
classifier and 2 for the generator. To mitigate the
class imbalance problem, we also used upsampling
for the infrequent classes (Features, Improvements,
and Deprecations+). We used the validation set to
perform early stopping with a patience of 3 epochs.

CAS We employ BART as the seq2seq network.
All the CAS-Single and CAS-Multi networks are
initialized with the same pretrained parameters,
but the parameters are untied across the models
and trained independently. We used the Hugging-
Face (Wolf et al., 2020) BARTTokenizer for to-
kenization. Mini-batch size was set to 2 for the
CAS-Single network and 8 for each network in
CAS-Multi. Other training settings are the same as
CEAS.

7 Results and Discussion

7.1 Automatic Evaluation Results

We show automatic evaluation results in Table 3.
We also show the results on the cleaned version
of the test set, where we removed URLs, hash val-
ues, and email addresses, which are significantly
difficult to produce accurately.

CEAS and CAS achieved ROUGE-L scores
more than 10 points higher than the baselines. In
particular, on the cleaned test set, the score gap
between the proposed methods and the baselines
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CM - fix createOptions validation issue (#294) * fix
createOptions validation issue * Update logic
- 2.5.1 (#295)

Class Bug Fixes
PR + - fix createOptions validation issue
Issues https://github.com/Microsoft/vsc

ode-azure-iot-toolkit/pull/294
- Error if create options is larger then 512 bytes
https://github.com/Microsoft/vsc
ode-azure-iot-toolkit/issues/2
93

RN - Fix deployment JSON validation issue when
create options is larger than 512 bytes

Table 4: An example provided for human evaluators.
This example requires references to pull requests (PR)
and issues. CM and RN denote commit messages and
release notes to be evaluated, respectively.

jumped to more than 20 points. These results indi-
cate that CEAS and CAS are significantly effective.
In addition, CEAS got a better ROUGE-L score
than CAS, suggesting that combining a classifier
and a generator is effective and training the clas-
sifier using pseudo labels. The high coverage of
CEAS can be achieved probably because the clas-
sifier can focus on selecting relevant commit mes-
sages for each class. Moreover, CEAS(BERT) got
higher scores than CEAS(CodeBERT), indicating
that it is better to use BERT for tasks where the
commit message is the input. CodeBERT is closer
to the domain of commit messages than BERT, but
we assume that this is because it was trained with
relatively little natural language data. Furthermore,
CAS-Multi tended to yield higher ROUGE-L than
CAS-Single, suggesting that it is also effective to
independently develop different abstractive sum-
marization models for each release-note class. Al-
though not as apparent as ROUGE-L, CAS models
(CAS-Single and CAS-Multi) generated compara-
ble or higher BLEU scores than CEAS and the
baselines. CAS models were also able to achieve
significantly higher Specificity scores (> 30 points)
compared to the baselines. These results indicate
that CAS models can generate less noisy release
notes than the baselines. We hypothesize that CAS
is trained a lot to remove noise from all commit
messages, including Other class, which strengths
the ability to deal with noise.

7.2 Human Evaluation Results
We employed twelve human evaluators to manually
assess the quality of the release notes generated by
the systems and the reference release notes. The
evaluators were graduate students or working pro-

fessionals with at least one year of experience read-
ing release notes and updating software libraries.
We randomly chose 120 release notes from the test
set. The allocations of the Features, Improvements,
Bug Fixes, and Deprecations+ classes were 40, 25,
40, and 15, respectively. We divided the evalua-
tion tasks into three groups of 40 questions, and
each group was assigned to four different evalua-
tors. We used a crowdsourcing platform, Yahoo!
Crowdsourcing,11 operated by Yahoo Japan Cor-
poration for the evaluations. In the following, we
explain the evaluation task and scoring measures.

Evaluation Task For each evaluation task, an
evaluator is given a list of input commit messages
and the target release note class. The evaluator is
also given supplemental information about pull re-
quests and issues. These supplemental data were
not used to train the models, but we included them
because they are often helpful for accurately eval-
uating the release notes. We show an example
of this case in Table 4. The release notes that
were manually prepared by the original maintain-
ers contained the words “JSON” and “larger than
512 bytes”, but this information cannot be found in
the commit messages. To accurately evaluate the
human-generated release note, pull requests and
issues are required. Thus, we instructed the evalu-
ators to check the titles, pull requests, and issues
if necessary. We selected CAS-multi for its bet-
ter performance than the CEAS and CAS-single
in terms of the quality of generated texts. For the
Deprecations+ class, we evaluated the outputs of
the CAS-Multi, the Clustering model, and the hu-
man reference because the Glyph does not produce
release notes for the Deprecations+ class.

Scoring We employed a five-point scoring
scheme for evaluating the release notes. The eval-
uation scores were determined based on two cri-
teria: Percentage of necessary information (cov-
erage) and percentage of unnecessary information
(noise contamination). For the coverage-oriented
scoring, the following guidance was used for the
scoring; 5: 90% or more necessary information
(NI), 4: 70% or more NI, 3: 50% or more NI, 2:
30% or more NI, and 1: less 30% of NI. For the
noise-oriented scoring, the following guidance was
used; 5: no unnecessary information (UI), 4: less
UI, 3: slightly less UI, 2: a little UI, 1: much UI.
We use Fleiss’ Kappa to measure inter-annotator

11https://crowdsourcing.yahoo.co.jp/.
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Human Rating (%)
Method 1 2 3 4 5 Avg.

Cov. + Glyph 28 19 16 16 21 2.82
Noise Clustering 22 19 19 15 25 3.01

CAS-Multi 14 11 16 14 45 3.64
Human 13 11 13 18 45 3.71

Cov. Glyph 22 19 19 16 24 3.01
Clustering 20 19 22 14 25 3.05
CAS-Multi 19 18 24 16 23 3.05
Human 15 13 16 20 36 3.50

Noise Glyph 34 20 13 15 18 2.64
Clustering 25 19 15 16 25 2.98
CAS-Multi 8 5 8 12 67 4.24
Human 11 9 10 16 54 3.92

Table 5: Human evaluation results for the generated or
reference release notes. The numbers below the 5-point
scale indicate percentages.

agreement (Davies and Fleiss, 1982) and obtain a
score of 0.39, which indicates fair agreement.

Results We show the results of the human eval-
uations in Table 5. For all the metrics, CAS-
Multi achieves the highest human evaluation scores
among the automatic systems (See the column
of “Avg.”). In particular, in the noise-oriented
(or precision-oriented) metric, CAS-Multi signifi-
cantly improves over the baselines and even outper-
forms the human references. This fact suggests that
the abstractive summarization approach is effective
in transforming the noisy textual representations in
the commit messages. However, the CAS-Multi’s
performance is still lower than those of the human
references, suggesting the remaining challenges in
this task.

We also tested the statistical significance of the
results using a permutation test (Pitman, 1937).
Since evaluating all possible permutations would
require a considerable amount of time, we used the
approximation method. Note that sampling all per-
mutation is typically not feasible unless the dataset
size is relatively small.12 We set the number of
rounds to 10,000. We applied Cov. + Noise scores
to the test. Comparing CAS-Multi with the base-
lines, all the p-values of the permutation tests were
less than 0.001, indicating that the improvements
are statistically significant.

12http://rasbt.github.io/mlxtend/user_g
uide/evaluate/permutation_test/.

Commit Messages (Improvements):
- Add deprecation comments to channels.*, groups.*, im.*
- add test for EscapeMessage funcs
- missing assertion in bot test
- adding support for #845
- Add conversations.list to the slacktest server

Generated Release Note (Cov.: 3.0, Noise: 3.0):
- Add deprecation comments to channels.*, groups.*, im.*

Reference Release Note (Cov.: 4.5, Noise: 3.5):
- Add test for EscapeMessage function in slack
- add missing result evaluation in bot test
- Add conversations.list to the slacktest server
- adds support for listing files hidden the free tier file limit
Commit Messages (Bug Fixes):
- fix date time filter ranges
- fix formula parser
- fix excel

Generated Release Note (Cov.: 2.5, Noise: 5.0):
- Fixed date time filter ranges

Reference Release Note (Cov.: 3.2, Noise: 2.7):
- Excel export: first column not formatted.
- Formula parser issue with comma inside string.
- Not properly working Datetime filters Today, On, Be-
tween.
Commit Messages (Deprecations+):
- Drop the parse package in favor of using protokit
- Ensure ExcludePatterns is still an option

Generated Release Note (Cov.: 2.7, Noise: 2.7):
- The entire ‘parser‘ package (in favor of [protokit])

Reference Release Note (Cov.: 4.0, Noise: 3.5):
- Dropped the ‘ExcludePatterns‘ package in favor of using
protokit for parsing

Table 6: Three release note examples generated by CAS-
Multi. We also show the commit messages and the ref-
erence release notes. Cov. and Noise show the human-
evaluated coverage and noise scores, respectively.

7.3 Error Analysis

We qualitatively analyzed the outputs of CAS-
Multi to identify the bottlenecks of the current ap-
proach. Table 6 shows several examples where the
outputs of CAS-Multi and the human references
are largely different. The input commit messages
are lengthy, so we only show the commit messages
related to each class in this table; the entire text is
shown in the Appendix.

First, we found that CAS-Multi tends to pro-
duce significantly shorter release notes than human
references. In the first two examples in Table 6,
CAS-Multi generates only a single sentence, while
the human references contain multiple sentences.
This is probably due to the fact that the release
note classes are significantly scarce in the training
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set, and the model is trained to be reluctant to gen-
erate release note text. Actually, the numbers of
release notes containing the Features and Improve-
ments classes in the training set are only 33.4%
and 14.0%, respectively. We used the upsampling
technique to reduce the class imbalance problem;
however, upsampling cannot inherently increase
the number of unique training examples. There-
fore, it is necessary to explore ways to augment the
training patterns inherently in the future.

Second, we found that release notes are often
difficult to precisely and accurately produce with-
out supplemental information outside the commit
messages. In the second example in Table 6, CAS-
Multi generates just “Fixed date time filter ranges,”
which is a simple paraphrase of the first commit
message. In contrast, the human reference enriches
the content by rephrasing it as “Not properly work-
ing Datetime filters Today, On, Between.” More-
over, the third commit message (“fix excel”) is
enriched as “Excel report: first column not for-
matted,” which is impossible to generate without
external information. In the last example in Table 6,
without background knowledge of the repository,
it is impossible to detect relationships between the
two commit messages and to combine them into a
single sentence.

8 Conclusion

In this paper, we presented a new large-scale
dataset for automatic generation of release notes.
The dataset comprised approximately 82k release
notes from over 7k repositories on GitHub. We
formulated a task to automatically generate release
notes by summarizing the commit messages, which
can be applied to all software development projects
that use English. We confirmed the validity of
the proposed classwise extractive-then-abstractive
summarization (CEAS) model and the classwise
abstractive summarization (CAS) model via experi-
ments to generate less noisy release notes at higher
coverage than the baselines. However, there are
still gaps in the coverage performance compared
to manually generated outputs; it is expected that
this could be improved by including additional in-
formation such as issues and pull requests with the
commit logs.
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Appendices

A Dataset Collection Details

Vocabularies for Detecting Label When we col-
lected the release notes, we divided them into four
labels: Features, Improvements, Bug Fixes, Depre-
cations, Removals, and Breaking Changes. Since
label names vary from a repository to repository,
e.g., a label Improvements has improved, improve-
ments, optimizations, etc., we set up candidates for
appropriate label names for each label in advance.
Table 7 shows the list of vocabularies for each label
used to identify the labels in the release notes.

Heuristic Rules for Extracting Commit Mes-
sages We listed the version tags (e.g., v3.7.1,
v2.6.0) of the release notes for extracting corre-
sponding commit messages. The heuristic match-
ing rules focus only on the numeric part of the
version tags (e.g., “371”, “260”) and compare the
number of digits and the size of the number. Let us
define “base” as the past tag and “head” as the fu-
ture tag. We do not include the tag pairs “base”
and “head” in our dataset if any of the follow-
ing three cases apply. (1) The number of digits
in “base” and “head” are different. (2) “base” is
greater than “head”. (3) One or more of the values
of each digit of “head” is greater than the value of
the corresponding digit of “base” + 1. For example,
given the version tags, v3.6.3.1→ v3.6.4→
v2.6.1→ v3.7.0→ v3.8.0, we can obtain
one version tag pair, v3.7.0 → v3.8.0. It is
because v3.6.3.1→ v3.6.4 is rejected with a
constraint of (1), v3.6.4→ v2.6.1 is rejected
with a constraint of (2), and v2.6.1→ v3.7.0
is rejected with a constraint of (3).
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Label Vocabularies
Features new, add, adds, feat, feats, added, adding, feature, addings, features, featured, addition,

additions, new stuff, additional, additionals, new feature, new features, additionally,
features added

Improvements improve, enhance, improved, improves, optimize, optimise, enhanced, optimizes,
optimized, improvement, enhancement, improvements, enhancements, optimisation,
optimization, optimisations, optimizations, other improvements, security improve-
ment, security improvements, performance improvement, implemented enhancement,
performance improvements, implemented enhancements

Bug Fixes bug, fix, bugs, fixed, fixes, patch, fixbug, bugfix, hotfix, modify, fixing, patches, bug
fix, bigfixes, bugfixes, hotfixes, modified, bugfixing, bug fixes, fixed bugs, bugs fixed,
bugs fixes, critical bug, resolved bugs, security fixes, bug fix release, major bug fixes,
fix several bugs, notable bug fixes, security bugfixes

Deprecations+ delete, remove, deleted, removed, removal, removes, removals, breaking, deletion,
deprecate, deprecated, deprecation, deprecations, compatibility, incompatibility,
breaking change, breaking changes, deprecation warning, deprecation warnings,
potentially breaking, removed deprecations, deprecations and removed, for future
compatibility, deprecations and removals, backward incompatible changes, back-
wards incompatible changes, breaking changes and deprecations, new deprecations

Table 7: List of vocabularies for each label used to identify the labels in the release notes.
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B CAS Preprocessing Details

Pseudo labels used for commit message classifi-
cation Psuedo labels are made up of Features, Im-
provements, Bug Fixes, Deprecations+, and Other.
Since type prefix names vary from a repository
to repository, e.g., a label Improvements has im-
prove, perf, optimize, etc., we set up candidates
for appropriate type prefix names for each label
in advance. Table 8 shows the list of type pre-
fixes for each label used to identify the pseudo
labels in the commit messages. We read the first
ten characters of each commit message, and if a
word in the type prefix dictionary existed, we as-
signed a corresponding pseudo label to it. The
total number of commit messages for the training
data assigned pseudo labels was about 460,000,
which was 42% of the total commit messages. The
numbers for each class of Features, Improvements,
Bug Fixes, Deprecations+, and Other are 129,580,
9,672, 146,233, 26,733, and 149,994.

Removal of class-identifiable words We remove
words that can be used as class-identifiable markers
from commit messages to train the classification
model. The common class-identifiable word is a
type name followed by a colon, like feat: and fix:.
We also consider parentheses, brackets, and asterisk
forms to the colon. Therefore, in the case of feat,
we regarded feat:, (feat), [feat], **feat** as type
prefixes and removed them from commit messages.
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Psuedo Label Type prefix
Features feat, add, new, feature
Improvements improve, perf, optimize
Bug Fixes fix, bug, bugfix
Deprecations+ breaking, deprecate, remove
Other chore, refactor, test, doc, build, style, ci, revert

Table 8: List of type prefixes for each label used to identify the pseudo labels in the commit messages.
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C Qualitative Results with Entire Text
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Input Commit Messages:
- Add deprecation comments to channels.*, groups.*, im.* Add deprecation comment for deprecated APIs in Slack.

We decided to announce to users in advance before removing these methods. See: https://api.slack.com/changelog/2020-01-
deprecating-antecedents-to-the-conversations-api

- add ommitempty json tag to text field
- remove empty field "text":"" from tests in chat_test.go, attachments_test.go
- Use custom ctx on SetUserCustomStatusContext
- add test for EscapeMessage funcs
- Merge pull request #833 from sryoya/add_test_for_escapte_message_func Add test for EscapeMessage function in

slack
- missing assertion in bot test
- Add configuration of golangci-lint We are planning to migrate from gometalinter to golangci-lint. Once we

complete the migration from Travis CI to GitHub Actions, we remove .gometalinter.json.
- Use GitHub Actions for Go 1.12+
- Fix existing linter issues
- reminders time field fix
- adding support for #845
- Add conversations.list to the slacktest server This commit adds the ‘conversations.list‘ endpoint to the testing server.

This endpoint returns JSON shaped the same as ‘channels.list‘, so I just reused that handler. I also found what appeared to be
a bug with error handling (a misnamed error) so I fixed that as well.

- Merge pull request #840 from slack-go/github-actions Use golangci-lint and GitHub Actions
- Fix unintended json marshalling error resolve: #851
- Merge pull request #815 from slack-go/deprecated-apis Add deprecation comments to channels.*, groups.*, im.*
- Remove conf for travis
- Merge pull request #855 from slack-go/remove-travis Remove configuration for Travis CI
- Merge pull request #830 from GLOFonseca/GLOFonseca-add-custom-ctx-SetUserCustomStatusContext Use

custom ctx on SetUserCustomStatusContext
- Merge pull request #842 from sryoya/missing_assertion_in_bot_test add missing result evaluation in bot test
- Merge pull request #853 from hobbeswalsh/add_conversations_list Add conversations.list to the slacktest server
- Merge pull request #846 from rk295/rk/845 adds support for listing files hidden by the free tier file limit
- Merge pull request #843 from KarolisKl/reminders_time_fix reminders time field fix
- Merge pull request #788 from prgres/attachment-text-field-json-tag#784 Resolve: Revert changes to json tags in

Attachment’s Text field
- Merge pull request #854 from slack-go/fix-851 Fix unintended json marshalling error

Glyph Release Note (Cov.: 3.2, Noise: 2.2):
- add test for EscapeMessage funcs
- missing assertion in bot test
- Merge pull request #842 from sryoya/missing_assertion_in_bot_test add missing result evaluation in bot test
- Merge pull request #853 from hobbeswalsh/add_conversations_list Add conversations.list to the slacktest server

Clutering Release Note (Cov.: 2.5, Noise: 2.7):
- missing assertion in bot test
- Add configuration of golangci-lint We are planning to migrate from gometalinter to golangci-lint. Once we

complete the migration from Travis CI to GitHub Actions, we remove .gometalinter.json.
- reminders time field fix
- adding support for #845
- Add conversations.list to the slacktest server This commit adds the ‘conversations.list‘ endpoint to the testing server.

This endpoint returns JSON shaped the same as ‘channels.list‘, so I just reused that handler. I also found what appeared to be
a bug with error handling (a misnamed error) so I fixed that as well.
CEAS Release Note:

empty
CAS-Multi Release Note (Cov.: 3.0, Noise: 3.0):

- Add deprecation comments to channels.*, groups.*, im.*
Reference Release Note (Cov.: 4.5, Noise: 3.5):

- Add test for EscapeMessage function in slack
- add missing result evaluation in bot test
- Add conversations.list to the slacktest server
- adds support for listing files hidden the free tier file limit

Table 9: A release note example generated by three models in Improvements label. We also show the input commit
messages and the reference release notes. Cov. and Noise show the human-evaluated coverage and noise scores,
respectively.
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Input Commit Messages:
- fix date time filter ranges
- calendar dashlet view link
- panel tpl fix
- calendar dashlet month title
- installer: added possibility to load values from existing data/config.php
- installer: load values from existing data/config.php
- Changed news URL
- lang portal permission fix
- Fixed undefined Log class
- Merge branch ’hotfix/4.8.2’ of ssh://172.20.0.1/var/git/espo/backend into hotfix/4.8.2
- bottom loaded with middle
- version
- fix lang
- fix lang
- fix empty varchar and text
- layout noLabel param
- fix recotd stop listen window
- fix formula parser
- fix excel
- cleanup attachment improvements
- remove attachment if file/image changed
- fix typo
- email inline attachment cleanable
- it_IT lang fixes
- fix application set

Glyph and Clustering Release Note (Cov.: 3.0, Noise: 2.5):
- fix date time filter ranges
- fix lang
- fix empty varchar and text
- fix recotd stop listen window
- fix formula parser
- fix excel
- fix typo
- fix application set

CEAS:
- Calendar dashlet next/previous buttons and some css fixes.
- Fixed a bug where the date and time filter were not being applied properly.

CAS-Multi Release Note (Cov.: 2.5, Noise: 5.0):
- fix date time filter ranges

Reference Release Note (Cov.: 3.2, Noise: 2.7):
- Excel export: first column not formatted.
- Formula parser issue with comma inside string.
- Not properly working Datetime filters Today, On, Between.

Table 10: A release note example generated by three models in Bug Fixes label. We also show the input commit
messages and the reference release notes. Cov. and Noise show the human-evaluated coverage and noise scores,
respectively.
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Input Commit Messages:
- Add support for -help, -h, and -version flags
- Add more details to help text
- Merge pull request #321 from pseudomuto/add_help_and_version Add support for -help, -h, and -version flags
- nobr: preserve blank lines
- Merge pull request #323 from meteor/glasser/blank-lines nobr: preserve blank lines
- Remove some unused code
- Support exclude file patterns
- Update docs and tests
- fix wrong command example md is not build-in format. markdown is correct
- Add IgnoreMe proto and update make examples/docker_test. - Use file.GetName() instead of string deref
- Merge pull request #326 from notbdu/master Support file exclude patterns
- Merge pull request #328 from suusan2go/patch-1 fix wrong command example
- Be a little clearer about invocation [ci skip]
- dep init, retool, protoc 3.5.1, and go 1.10
- Update CHANGELOG with unreleased things
- Wrong version for compare [ci skip]
- Merge pull request #344 from pseudomuto/migrate_t_dep_and_retool Upgrade a few tools
- Use protokit Plugin interface for the generator
- Drop the parse package in favor of using protokit
- Ensure ExcludePatterns is still an option
- Add -Iprotos to entrypoint to keep file names the same
- Merge pull request #347 from pseudomuto/use_protokit_for_parsing Use protokit for parsing
- Simplify fixtures
- Use Make for generating resources
- Clean up the Makefile a bit
- Move a few things and add some badges
- Merge pull request #348 from pseudomuto/cleanup_dev_test_things Clean up dev test things
- Move resources app into resources
- Update go get package [ci skip]
- Update CHANGELOG.md [ci skip]
- Bump version to 1.1.0
- Bump version to 1.1.0

Clustering Release Note (Cov.: 1.5, Noise: 3.0):
- Remove some unused code

CEAS:
- Removed some unused code.

CAS-Multi Release Note (Cov.: 2.7, Noise: 2.7):
- The entire ‘parser‘ package (in favor of [protokit])

Reference Release Note (Cov.: 4.0, Noise: 3.5):
- Dropped the ‘ExcludePatterns‘ package in favor of using protokit for parsing

Table 11: A release note example generated by two models in Deprecations+ label. We also show the input commit
messages and the reference release notes. Cov. and Noise show the human-evaluated coverage and noise scores,
respectively.
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