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Abstract

Natural language spatial video grounding aims
to detect the relevant objects in video frames
with descriptive sentences as the query. In
spite of the great advances, most existing meth-
ods rely on dense video frame annotations,
which require a tremendous amount of hu-
man effort. To achieve effective grounding
under a limited annotation budget, we inves-
tigate one-shot video grounding, and learn to
ground natural language in all video frames
with solely one frame labeled, in an end-to-
end manner. One major challenge of end-to-
end one-shot video grounding is the existence
of videos frames that are either irrelevant to
the language query or the labeled frames. An-
other challenge relates to the limited super-
vision, which might result in ineffective rep-
resentation learning. To address these chal-
lenges, we designed an end-to-end model via
Information Tree for One-Shot video ground-
ing (IT-OS). Its key module, the information
tree, can eliminate the interference of irrele-
vant frames based on branch search and branch
cropping techniques. In addition, several self-
supervised tasks are proposed based on the in-
formation tree to improve the representation
learning under insufficient labeling. Experi-
ments on the benchmark dataset demonstrate
the effectiveness of our model.

1 Introduction

Natural language spatial video grounding is a vi-
tal task for video-text understanding (Luo and
Shakhnarovich, 2017; Zhou et al., 2019; Hu et al.,
2019; Zhang et al., 2020b; Li et al., 2021), which
aims to detect the objects described by the natural
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Caption A: A fox from the distance is coming close to another one on the ground.
Caption B: A is lying on the grass and watching another one coming close.

Figure 1: An example of spatially grounding natural
language in video frames.

language query from each video frame, as shown
in Figure 1. There is a substantial and rapidly-
growing research literature studying this problem
with dense annotations (Li et al., 2017; Yamaguchi
et al., 2017; Sadhu et al., 2020), where each frame
that contains objects relevant to the language query
will be manually labeled with bounding boxes. Ob-
viously, such annotations require tremendous hu-
man effort and can hardly be satisfied in real-world
scenarios. Recently, some works have investigated
weakly-supervised video grounding with solely the
video-text correspondence rather than object-text
annotations (Huang et al., 2018; Chen et al., 2019a;
Shi et al., 2019; Chen et al., 2019b; Zhou et al.,
2018). However, the performance is less satisfied
with such weak supervision. In practice, we are
more likely to have a limited annotation budget
rather than full annotation or no annotation. In
addition, as humans, after experiencing the lan-
guage query and one frame object paired together
for the first time, we have the ability to generalize
this finding and identify objects from more frames.
Towards this end, we investigate another practical
problem setting, i.e., one-shot spatial video ground-
ing, with solely one relevant frame in the video
labeled with bounding boxes per video.

Existing methods that are devised for supervised
video grounding are not directly applicable to this
novel setting. We summarize several critical chal-
lenges:

* On the one hand, most of them incorporate a
multi-stage training process, i.e., firstly training
a clip localization module, and training an object
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localization module in the second stage. How-
ever, in one-shot spatial video grounding, there
are no temporal annotations, which indicate the
start/end time of the relevant clip, to train the
clip localization module. Moreover, many of
them extract video features in a pre-processed
manner using feature extractor or object detec-
tor pretrained on large-scale datasets. However,
independent modeling limits the cooperation of
different modules, especially when the labels are
few. Therefore, it is in urgent need to derive
an end-to-end training framework for one-shot
spatial video grounding.

¢ On the other hand, there are video frames that are
either irrelevant to the natural language query or
the labeled frames. These irrelevant frames might
increase the computation complexity of end-to-
end training, and bring confounding between the
frame label and (irrelevant) visual features.

* Lastly, with fewer supervision signals, deep rep-
resentation learning might become error-prone
or easily under-fitting, especially for end-to-end
training.

To address these challenges, we devise an end-
to-end model via the Information Tree for the One
Shot natural language spatial video grounding (IT-
0OS). Different from previous works, we design a
novel tree structure to shield off the one-shot learn-
ing from frames that are irrelevant to either the
language query or the labeled frame. We devise
several self-supervised tasks based on the tree struc-
ture to strengthen the representation learning under
limited supervision signals. Specifically, the cal-
culation processes of the key module, information
tree, contains four steps: (1) To construct the in-
formation tree, we view video frame features as
nodes, and then compress the adjacent nodes to
non-leaf nodes based on the visual similarity of
themselves and the semantic similarity with the
language query; (2) We search the information tree
and select branch paths that are consistently rele-
vant to the language query both in the abstractive
non-leaf node level and in the fine-grained leaf
node level; (3) We drop I) the leaf nodes that do
not belong the same semantic unit with the labeled
node; and II) the non-leaf nodes on the low rel-
evance branch paths. We also down-weight the
importance of the leaf nodes that belong to the
same semantic unit with the labeled node but are
on the low relevance paths; (4) Finally, we input

the extracted and weighted information to the trans-
former, and conduct training with the one-shot label
and self-supervised tasks, including masked feature
prediction and video-text matching. We note that
both the information tree and the transformer are
jointly trained in an end-to-end manner.

We conduct experiments on two benchmark
datasets, which demonstrate the effectiveness of
IT-OS over state-of-the-arts. Extensive analysis
including ablation studies and case studies jointly
demonstrate the merits of IT-OS on one-shot video
grounding. Our contributions can be summarized
as follows:

* To the best of our knowledge, we take the ini-
tiative to investigate one-shot natural language
spatial video grounding. We design an end-to-
end model named I'T-OS via information tree to
address the challenges brought by limited labels.

* By leveraging the language query, several novel
modules on the information tree, such as tree
construction, branch search, and branch crop-
ping, are proposed. Moreover, to strengthen
the deep representation learning under limited
supervision signals, we introduce several self-
supervised tasks based on the information tree.

* We experiment with our I'T-OS model on two
benchmark datasets. Comparisons with the state-
of-the-art and extensive model analysis jointly
demonstrate the effectiveness of IT-OS.

2 Related works

Natural Language Video Grounding. Among
numerous multimedia understanding applica-
tions (Zhang et al., 2020a,c, 2021d,c, 2020d; Kai
et al., 2021; Zhang et al., 2020e), natural language
video grounding has attracted the attention of more
and more researchers recently. There are mainly
three branches, temporal grounding[(Ross et al.,
2018; Lu et al., 2019; Zhang et al., 2019; Lin et al.,
2020a,b; Zhang et al., 2021a; Li et al., 2022; Gao
et al., 2021; Yang et al., 2021)], spatio-temporal
grounding[(Tang et al., 2021; Zhang et al., 2020f,g;
Su et al., 2021)], and spatial grounding. We focus
on the last one.

Deep neural network has convincingly demon-
strated high capability in many domains (Wu et al.,
2020, 2022; Guo et al., 2021; Li et al., 2020b,c,a),
especially for video related tasks (Miao et al., 2021;
Miao et al.; Xiao et al., 2020, 2021), like video
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grounding. For example,(Li et al., 2017) use the
neural network to detect language query related ob-
jects in the first frame and track the detected object
in the whole video. Compared to it, (Yamaguchi
etal., 2017) and (Vasudevan et al., 2018) go further.
They extract all the object proposals through the
pretrained detector, and choose the right proposal
described in the text.

Supervised training for the natural language
video object detection needs high labeling costs.
To reduce it, some researchers pay attention to
weakly-supervised learning fashion using multi-
ple instances learning(MIL) method (Huang et al.,
2018; Chen et al., 2019a; Shi et al., 2019; Chen
et al., 2019b; Zhou et al., 2018; Wang et al.,,
2021a)transfers contextualized knowledge in cross-
modal alignment to release the unstable training
problem in MIL. Based on contrastive learning
(Zhang et al., 2022), (Da et al., 2021) proposes an
AsyNCE loss to disentangle false-positive frames
in MIL, which allows for mitigating the uncertainty
of from negative instance-sentence pairs. Weakly
supervised false-positive identification based on
contrastive learning has witnessed success in some
other domains (Zhang et al., 2021b; Yao et al.,
2022)

One-shot Learning for Videos. One-shot learn-
ing has been applied in some other video tasks.
(Yang et al., 2018) proposes a meta-learning-based
approach to perform one-shot action localization
by capturing task-specific prior knowledge. (Wu
et al., 2018) investigates the one-shot video person
re-identification task by progressively improving
the discriminative capability of CNN via stepwise
learning. Different from these works, (Caelles et al.,
2017) and (Meinhardt and Leal-Taixé, 2020) define
the one-shot learning as only one frame being la-
beled per video. Specifically, (Caelles et al., 2017)
use a fully convolutional neural network architec-
ture to solve the one-shot video segmentation task.
(Meinhardt and Leal-Taixé, 2020) decouple the de-
tection task, and uses the modified Mask-RCNN
to predict local segmentation masks. Following
this setting, we investigate one-shot natural lan-
guage spatial video grounding, and devise a novel
information-tree based end-to-end framework for
the task.

3 Method
3.1 Model Overview

Problem Formulation. Given a video V' =
{U"}i:mm ;7 and a natural language query C, spa-
tial video grounding aims to localize the query-
described object from all the objects O =
{0;'. }j=1,2,...,s for each frame. I denotes the frame
number of the video, and the J is the object number
in the video. In one-shot spatial video grounding,
solely one frame v’ in video V is labeled with the
region boxes of the target objects O,

Pipeline of IT-OS. As shown in Figure 2, there
are mainly four steps involved in the end-to-end
modeling of IT-OS:

* Firstly, we extract the features from the input
video and the input caption. Specifically, for the
video, we use ResNet-101(He et al., 2016) as the
image encoder to extract the frame feature maps;
for the language query, we employ a language
model Roberta(Liu et al., 2019). Both the vision
encoder and the language encoder are jointly op-
timized with the whole network.

* Secondly, we build the information tree to get
the representation of the video. The information
tree is built upon the frame feature maps, which
are the leaf nodes. Leaf nodes will be further
merged based on the relevance between node-
node and node-query to have non-leaf and root
nodes. Nodes on unnecessary branches will be
deleted conditioned on the language query.

* Thirdly, we utilize the transformer encoder to
reason on the remaining nodes and language fea-
tures. Upon the transformer, we devise two self-
supervised tasks, i.e., masked feature modeling,
and video-text matching, which enhances the rep-
resentation learning under limited labels.

Prediction and Training. We follow the common
prediction and training protocol of visual transform-
ers used in other object detection models (Wang
et al., 2021b). We input the embedding parameters
FEg4. and the multi-model features Fj. generated
by the transformer encoder into the transformer
decoder D. Then, the decoder D outputs possible
prediction region features for each frame. For each
possible region, a possibility P and a bounding box
B are generated.

P7B:D<FdeaEde)7 (1)
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Figure 2: The overall schema of the proposed end-to-end one-shot video grounding via information tree (IT-OS),
which contains query-guided tree construction, query-based branch search & cropping, and a transformer encoder

enhanced by self-supervised tasks.

We choose the box B with the highest possibility
value P for each frame as the target box.

During the training process, we first calculate the
possible prediction regions. Then, we match the
possible regions with the target boxes, and choose
the best match for each frame. Finally, use the
match to train our IT-OS model.

3.2 Information Tree Module

In this section, we will elaborate the information
tree modules in detail. We will illustrate how to
construct the information tree, how to extract criti-
cal information from it and how to design the self-
supervised learning based on the tree. To ease the
illustration, we take the 6 frames as an example,
and show the process in Figure 2.

3.2.1 Tree Construction

Given the frame features generated by the CNN,
we build the information tree by merging adjacent
frame features in the specified order. Specifically,
the frame features output by the image encoder are
the leaf nodes N = {n'}?M. A sliding window
of size 2 and step 2 is applied on these nodes and

nodes in the window are evaluated to be merged or
not.

We calculate the semantic relevance difference
between each node pair with the language query,
and get the visual relevance between the nodes
in each pair. For the visual relevance calculation,
we max-pool the feature maps of the ¢ node pair to
have the feature vector f2~! and f2*. And then, we
compute the cosine similarity 7/, between f2~!
and f2 to be the visual relevance. Next, we calcu-
late the semantic relevance r%_l and 72 between
the text feature f; and the nodes of ¢ node pair:

ri Tt = o((we = fr) * (wy + f27HT), (@)

rir=o((w* fi) * (wy * f27),  3)

where the w; and w,, are learnable parameters, and
o is the sigmoid activation function.

The semantic relevance difference di, between
the ith paired nodes is:

, i1l 2 .
=T Tl YR T, 4)

where the v is the hyperparameter.
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With the relevant difference value, we rank the
node pairs and pick out the top A\. The A is a hy-
perparameter, which can be set as a constant or a
percentage. We merge the node pairs:

nlew — Wing * (nQi—l + nQi) + bmga (5)

where the w;,,4 and by, are trainable. Finally, The
new node n*" replace the old nodes n?~! and
n?! in the queue. Repeat the process until there is
only one node in the queue. Saving all nodes in
the process and the composite relationship between
nodes generated in the merging process, we get the
information tree.

3.2.2 Branch Search

We use a branch to denote a subtree. To filter
critical local and global information, we perform
branch search and selection. We firstly select
branches that contain leaf nodes less than 9,4z
and more than 6. dmaz and d.,;, are hyperpa-
rameters. We calculate the semantic relevance of
branches’ root nodes and the language query based
on Equation 2.

Training. During training, we directly select the
branch that contains the labeled leaf node and the
root node with the highest semantic relevance. This
selection improves the training efficiency.

Inference. During inference, all frames should
be processed. We conduct an iterative search with
multiple search steps. For each step, we select the
branch with the highest semantic relevance and
remove the selected branch from the information
tree. After the search, we have multiple selected
branches and each branch will be forwarded to the
following processes.

3.2.3 Branch Cropping

Note that not all the non-leaf nodes in the selected
branches are closely related to the input caption.
We remove non-leaf nodes that are with semantic
relevance less than A, which is a hyperparameter.
Their descendant non-leaf nodes are also removed.
To reserve enough frame nodes for training, we do
not remove the descendant leaf nodes. Instead, we
down-weight them with A = 0.5. For other leaf
nodes, A = 1. The remaining leaf nodes and non-
leaf nodes represent the critical local information
and the global information, respectively. We multi-
ply the feature of node ¢ and the node’s semantic
relevance 7}, :

fo = [l x A (6)

where ff;new is the feature vector input into the
transformer. As such, Equation 6 considers both
local relevance ry, and global relevance A\ with the
language query.

3.2.4 Self-supervised Tasks

We leverage a transformer encoder for these ex-
tracted information and the language query. As
shown in the Figure 2, we design two self-
supervised tasks as: 1) predicting the masked text
features, and masked local/global video informa-
tion; 2) judging whether the text and the video
match. For the transformer, the input tokens Fj,
consist of the local information, the global infor-
mation and the text features, which are three types
of tokens. We further introduce 2-D position em-
bedding for video tokens and type embedding for
all tokens, which are added to the tokens’ features.

Then, the features Fj, are input into the trans-
former encoder E. After encoding, the fusion fea-
tures F,,; are output:

Fout:E(‘FZ ) W

We predict the original features for masked lan-
guage tokens and masked video tokens (leaf/non-
leaf nodes in the selected branch) using multilayer
perceptrons.

Aizn = MLPt(f;ut)’ fzjn = MLP’U( gut)’ (®)
where the M L P, and M L P, are the multilayer per-
ceptrons for text and video features, respectively.
We view masked token modeling as feature regres-
sion and adopt L2 distance as the loss function.
In addition, there will be a mismatched language
query at the rate of 50%. We propose to predict
whether the video and language are matched, i.e.,
whether the video contains the event described by
the language query, based on the output represen-
tation of token [CLS]. When the video and the
language are not matched, we will not train the
model with the one-shot label.

4 Experiments
4.1 Experimental Setup

Datasets We consider two video grounding bench-
marks for evaluation: (1) VidSTG (Zhang et al.,
2020g) is a large-scale benchmark dataset for
video grounding, which is constructed based on
VidOR (Shang et al., 2019) dataset. VidSTG con-
tains 10,000 videos and 99,943 sentences with
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Method Declarative Sentence Grounding Interrogative Sentence Grounding
0.4 0.5 0.6 Avg 0.4 0.5 0.6 Avg
GroundeR 24.56 18.22 13.73 18.85 25.28 18.87 14.39 19.52
STPR 25.68 20.07 14.64 19.89 27.09 21.04 16.00 21.38
STGRN 27.57 2091 16.25 21.50 28.51 21.89 17.20 22.47
VOGnet 32.08 24.38 19.91 25.75 33.08 25.54 20.85 26.72
OMRN 34.43 27.57 21.91 27.96 35.69 28.74 23.03 29.14
VOGnet* 36.42 29.37 21.95 29.25 36.98 28.35 22.57 29.30
OMRN* 39.54 30.02 22.34 30.64 38.89 30.53 24.10 31.17
IT-0S 46.75 35.81 23.23 35.26 46.16 34.55 25.19 35.30

Table 1: Compared with baselines on VidSTVG. It is worth noting that all methods are trained using the one-shot
learning. The * represents the baselines use the MDETR as the object detector backbone, which is the same as the

IT-OS.

Method 0.4 0.5 0.6 Avg
GroundeR | 32.09 27.80 24.25 28.05
STPR 3340 28.92 2537 29.23
STGRN 3545 3041 2631 30.72
VOGnet 38.81 32.65 2687 3278
OMRN 40.11 3451 2836 3435
VOGnet* | 41.23 3582 2948 35.51
OMRN* 45.52 37.69 3041 37.87
IT-0S 51.87 4291 33.58 42.79

Table 2: Compared with baselines on VID-sentence.
All methods are trained using one-shot learning. The
represents the MDETR is applied to these baselines as
the object detector backbone.

55, 135 interrogative sentences and 44, 808 declar-
ative sentences. These sentences describe 79
types of objects appearing in the videos. We
follow the official dataset split of (Zhang et al.,
2020g). (2) VID-sentence (Chen et al., 2019b) is
another widely used video grounding benchmark
constructed based on the VID (Russakovsky et al.,
2015) dataset. There are 30 categories and 7,654
video clips in this dataset. We report the results
of all methods on the validation set for the VID-
sentence dataset. We obtain similar observations
and conclusions on the test set.

Implementation Detail For video preprocessing,
we random resize the frames, and set the max size
is 640 % 640. The other data augmentation methods,
such as random horizontal flip and random size
cropping are used at the same time. During train-
ing, the learning rate is by default 0.00005, and
decays by a factor of 10 for every 35 epochs. The
batch size is 1 and the maximum training epoch
is 100. We implement IT-OS in Pytorch and train

it on a Linux server. For model hyperparameters,
we set A = 60%, and A = 0.7. Most of the nat-
ural language spatial video grounding models use
the pretrained detection model as the backbone.
Thus, like them, we choose the official pretrained
MDETR (Kamath et al., 2021) as the parameter
basis for target detection of our IT-OS.

Evaluation Metrics We follow the evaluation pro-
tocol of (Chen et al., 2019b). Specifically, we
compute the Intersection over Union (IoU) met-
ric for the predicted spatial bounding box and the
ground-truth per frame. The prediction for a video
is considered as "accurate" if the average IoU of all
frames exceeds a threshold «. The « is set to 0.4,
0.5, and 0.6 during testing.

Baselines Since existing video grounding methods
are not directly applicable to the one-shot setting,
we extend several state-of-the-arts as the baselines.
Specifically, to have a comprehensive compari-
son, we consider 1)fully supervised models, includ-
ing VOGnet (Sadhu et al., 2020), OMRN (Zhang
et al., 2020f) and STGRN (Zhang et al., 2020g);
and 2) other widely known methods, including
video person grounding STPR (Yamaguchi et al.,
2017), and visual grounding method, GroundeR
(Rohrbach et al., 2016).

4.2 Performance Comparison

The experimental results for one-shot video ground-
ing on VidSTVG and VID-sentence datasets are
shown in Table 1 and 2, respectively. According to
the results, we have the following observations:

* Not surprisingly, although extended to the video
grounding setting, baselines that belong to other
domains, including video person grounding
STPR and visual grounding GroundeR, achieve

8712



inferior results on video grounding benchmarks.
They lack domain-specific knowledge and might
fail to effectively model the spatial-temporal re-
lationships of videos and language queries.

 IT-OS consistently achieves the best performance
on two benchmarks and multiple experimental
settings with a large margin improvement. Re-
markably, I'T-OS boosts the performance (Avg)
of the previous state-of-the-art OMRN from
nearly 28.0/29.1/34.4 to 35.3/35.3/42.8 on
VidSTVG and VID-sentence, respectively. It
demonstrates the superiority of IT-OS on one-
shot video grounding.

* The baselines are implemented with the back-
bones used in their original papers, which
are different from ours. To further disentan-
gle the sources of performance improvement,
we re-implement the best-performing baselines
(VOGnet*, and OMRN?*) with the same ob-
ject detection backbone, MDETR, as IT-OS. Al-
though there is performance improvement with
the new backbone, the best-performing baseline
OMRN*, still underperforms I'T-OS by over 4
points for the average accuracy on all datasets.
It further reveals the effectiveness of our novel
model designs eliminating interference with dif-
ferent pre-training parameters. We attribute the
improvement to the end-to-end modeling, where
different modules can simultaneously benefit
from each other. In addition, the proposed infor-
mation tree alleviates the negative effects of irrel-
evant frames, and effectively models the interac-
tions between the video global/local information
and the language query. Several self-supervised
learning tasks based on the information tree en-
hance the representation learning under limited
one-shot labels.

4.3 Comparison with Fully Supervised
Methods

We are interested in 1) how different baselines per-
form under fully supervised settings; 2) how one-
shot IT-OS perform compared to these baselines.
Towards this end, we train multiple baselines and
IT-OS with all labels on the VID-sentence dataset.
The experiment results are shown in Table 3. From
the table, we have the following findings:

* Remarkably, the performance gap between one-
shot IT-OS and the fully supervised OMRN is

Method 0.4 0.5 0.6 Avg
GroundeR | 42.72 33,77 27.05 34.51
STPR 4795 36.19 3041 38.18
STGRN 49.25 44.03 34.89 42.72
VOGnet 53.17 43.47 3377 4347
OMRN 5522 46.64 37.50 4645
IT-OS (OS) | 51.87 4291 33.58 42.79
Table 3:  Compared with the baselines on VID-

sentence. The baselines are trained using fully super-
vised learning. The OS represents the IT-OS trained
under the one-shot settings.

less than 4%. Such a minor gap demonstrates
the effectiveness of IT-OS on learning with lim-
ited annotations. This is significant and practical
merit since we are more likely to have a limited
annotation budget in real-world applications.

* Surprisingly, one-shot IT-OS can still outper-
form some weak baselines such as GroundeR
and STPR. These results reveal the necessity of
end-to-end modeling for video grounding.

4.4 Ablation Study

We are interested in how different building blocks
contribute to the effectiveness of IT-OS. To this end,
we surgically remove several components from
IT-OS and construct different architectures. The
investigated components include information tree
(I'tree), the branch cropping (I'¢rop), and the self-
supervised training (I's; 7). It is worth noting that
the other components cannot be deleted indepen-
dently except the branch cropping. Thus, we don’t
conduct an ablation study for them. Results on
VidSTG and VID-sentence datasets are shown in
Table 4 and Table 5, respectively. There are several
observations:

* Overall, removing any component incurs a perfor-
mance drop, demonstrating the necessity and ef-
fectiveness of the information tree, branch search
& cropping, and self-supervised training.

 Stacking multiple components outperform the
architecture with a single component. This result
reveals that the proposed components can benefit
from each other in end-to-end training and jointly
boost one-shot video grounding.

4.5 Case Study

We conduct a case study to visually reveal the abil-
ity of the IT-OS in detail. Specifically, we random
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Declarative Sentence Grounding Interrogative Sentence Grounding

Loety  Tiree  Terop 0.4 0.5 0.6 Avg 0.4 0.5 0.6 Avg
39.00 30,52 17.61  29.05 | 38.78 2875 19.67 29.07

v 40.52 3232  18.83 30.56 | 40.82 3144 20.66 30.97
v 4234 3265 2035 31.78 | 4226 32.02 21.89 32.06

v v 44.16 3338 21.11  32.89 | 4455 3378 23.19 33.84
v v 4477  34.62 2293 3411 | 4430 3323 2417 33.90
v v v 46.75 3581 2323 3526 | 46.16 3455 2519 35.30

Table 4: Ablation study on VidSTG dataset.

Lsetf Tiree Terop| 04 05 0.6 Avg
44.40 35.07 27.24 35.57
v 46.64 36.38 28.54 37.19

v 4795 38.99 29.85 38.93
v v 49.44 40.30 31.16 40.30
v v’ 150.19 40.49 32.46 41.04
v v v’ |51.87 42.91 33.58 42.79

Table 5: Ablation study on VID-sentence dataset.

sample 3 videos from the datasets, and sample 6
frames from each video to visualize.

We compare our IT-OS model with the base-
line method, OMRN, and the fundamental ablation
model of the IT-OS, which is removed from the
self-supervised module and the information tree.
As shown in Figure 3, we have the following key
findings: (1) The IT-OS detects the more accu-
rate one from all objects of the video than the best
performing previous method. It demonstrates the
better representation extraction and analysis capa-
bilities of our model. (2) Even if the target object
is selected correctly, the IT-OS localizes a more
precise spatial area compared with the previous
two stages method. The results reflect the end-
to-end model, IT-OS, has more accurate domain
knowledge through training the whole model on
the target dataset. (3) After adding the informa-
tion tree and the self-supervised module, the IT-OS
outputs more precise bounding boxes. It reveals
that combining the two modules introduce stronger
supervision signals for model training so that the
model has stronger detection ability.

5 Conclusion

In this paper, we introduce the one-shot learning
into the natural language spatial video grounding
task to reduce the labeling cost. To achieve the
goal, the main point is to make full use of only
one frame label for each video. The invalid frames

An adult is in front of the white toy

GT %ﬂ¥§ =

Figure 3: Examples of the detection result visualization.
The IT-OS(Base) represents the IT-OS model without
the self supervised module and the informaiton tree.
The GT represents the target labels.

unrelated to the input text and target objects bring
confounding to the one-shot training process. We
design an end-to-end model (IT-OS) via the infor-
mation tree to avoid it. Specifically, the information
tree module merges frames with similar semantics
into one node. Then, by searching the tree and
cropping the invalid nodes, we can get the com-
plete and valid semantic unit of the video. Finally,
two self-supervised tasks are used to make up the
insufficient supervision.
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