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Abstract
We study the problem of building text classi-
fiers with little or no training data, commonly
known as zero and few-shot text classification.
In recent years, an approach based on neu-
ral textual entailment models has been found
to give strong results on a diverse range of
tasks. In this work, we show that with proper
pre-training, Siamese Networks that embed
texts and labels offer a competitive alternative.
These models allow for a large reduction in in-
ference cost: constant in the number of labels
rather than linear. Furthermore, we introduce
label tuning, a simple and computationally effi-
cient approach that allows to adapt the models
in a few-shot setup by only changing the label
embeddings. While giving lower performance
than model fine-tuning, this approach has the
architectural advantage that a single encoder
can be shared by many different tasks.

1 Introduction

Few-shot learning is the problem of learning classi-
fiers with only a few training examples. Zero-shot
learning (Larochelle et al., 2008), also known as
dataless classification (Chang et al., 2008), is the
extreme case, in which no labeled data is used. For
text data, this is usually accomplished by represent-
ing the labels of the task in a textual form, which
can either be the name of the label or a concise
textual description.

In recent years, there has been a surge in zero-
shot and few-shot approaches to text classification.
One approach (Yin et al., 2019, 2020; Halder et al.,
2020; Wang et al., 2021) makes use of entailment
models. Textual entailment (Dagan et al., 2006),
also known as natural language inference (NLI)
(Bowman et al., 2015), is the problem of predicting
whether a textual premise implies a textual hypoth-
esis in a logical sense. For example, Emma loves
apples implies that Emma likes apples.

The entailment approach for text classification
sets the input text as the premise and the text repre-

senting the label as the hypothesis. A NLI model
is applied to each input pair and the entailment
probability is used to identify the best matching
label.

In this paper, we investigate an alternative based
on Siamese Networks (SN) (Bromley et al., 1993),
also known as dual encoders. These models embed
both input and label texts into a common vector
space. The similarity of the two items can then be
computed using a similarity function such as the
dot product. The advantage is that input and label
text are encoded independently, which means that
the label embeddings can be pre-computed. There-
fore, at inference time, only a single call to the
model per input is needed. In contrast, the models
typically applied in the entailment approach are
Cross Attention (CA) models which need to be ex-
ecuted for every combination of text and label. On
the other hand, they allow for interaction between
the tokens of label and input, so that in theory they
should be superior in classification accuracy. How-
ever, in this work we show that in practice, the
difference in quality is small.

Both CA and SNs also support the few-shot
learning setup by fine-tuning the models on a small
number of labeled examples. This is usually done
by updating all parameters of the model, which in
turn makes it impossible to share the models be-
tween different tasks. In this work, we show that
when using a SN, one can decide to only fine-tune
the label embeddings. We call this Label Tuning
(LT). With LT the encoder can be shared between
different tasks, which greatly eases the deployment
of this approach in a production setup. LT comes
with a certain drop in quality, but this drop can
be compensated by using a variant of knowledge
distillation (Hinton et al., 2014).

Our contributions are as follows: We perform
a large study on a diverse set of tasks showing
that CA models and SN yield similar performance
for both zero-shot and few-shot text classification.
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Figure 1: Overview of training and inference with Label Tuning (LT). At training time, input and label texts
(hypotheses) are processed by the encoder. LT then tunes the labels using a cross entropy (CE) loss. At inference
time, the input text is passed through the same encoder. The tuned label embeddings and a similarity function are
then used to score each label. The encoder remains unchanged and can be shared between multiple tasks.

In contrast to most prior work, we also show that
these results can also be achieved for languages
other than English. We compare the hypothesis
patterns commonly used in the literature and using
the plain label name (identity hypothesis) and find
that on average there is no significant difference in
performance. Finally, we present LT as an alterna-
tive to full fine-tuning that allows using the same
model for many tasks and thus greatly increases
the scalability of the method. We will release the
code1 and trained models used in our experiments.

2 Methodology

Figure 1 explains the overall system. We follow
Reimers and Gurevych (2019) and apply symmet-
ric Siamese Networks that embed both input texts
using a single encoder. The encoder consists of a
transformer (Vaswani et al., 2017) that produces
contextual token embeddings and a mean pooler
that combines the token embeddings into a single
text embedding. We use the dot product as the
similarity function. We experimented with cosine
similarity but did not find it to yield significantly
better results.

As discussed, we can directly apply this model to
zero-shot text classification by embedding the input
text and a textual representation of the label. For

1https://tinyurl.com/label-tuning

the label representation we experiment with a plain
verbalization of the label, or identity hypothesis,
as well as the hypotheses or prompts used in the
related work.

2.1 Fine-Tuning
In the case of few-shot learning, we need to adapt
the model based on a small set of examples. In
gradient-based few-shot learning we attempt to im-
prove the similarity scores for a small set of labeled
examples. Conceptually, we want to increase the
similarity between every text and its correct label
and decrease the similarity for every other label.
As the objective we use the so called batch softmax
(Henderson et al., 2017):

J = − 1

B

B∑
i=1

S(xi, yi)− log

B∑
j=1

eS(xi,yj)


Where B is the batch size and S(x, y) = f(x)·f(y)
the similarity between input x and label text y un-
der the current model f . All other elements of the
batch are used as in-batch negatives. To this end,
we construct the batches so that every batch con-
tains exactly one example of each label. Note that
this is similar to a typical softmax classification
objective. The only difference is that f(yi) is com-
puted during the forward pass and not as a simple
parameter look-up.
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2.2 Label Tuning
Regular fine-tuning has the drawback of requir-
ing to update the weights of the complete network.
This results in slow training and large memory re-
quirements for every new task, which in turn makes
it challenging to deploy new models at scale. As
an alternative, we introduce label tuning, which
does not change the weights of the encoder. The
main idea is to first pre-compute label embeddings
for each class and later tune them using a small set
of labeled examples. Formally, we have a training
set containing N pairs of an input text xi and its
reference label index zi. We pre-compute a matrix
of the embedded input texts and embedded labels,
X∈RN×d and Y ∈RK×d, respectively. d is the
embedding dimension and K the size of the label
set. We now define the score for every input and
label combination as S = X × Y T (S∈RN×K)
and tune it using cross entropy:

J ′ = − 1

N

N∑
i=1

Si,zi − log
K∑
j=1

eSi,j


To avoid overfitting, we add a regularizer that pe-
nalizes moving too far from the initial label em-
beddings Y0 as ‖Y0 − Y ‖F , where ‖.‖F is the
Frobenius norm.2 Additionally, we also imple-
ment a version of dropout by masking some of
the entries in the label embedding matrix at each
gradient step. To this end, we sample a random
vector ~r of dimension d whose components are 0
with probability dropout and 1 otherwise. We then
multiply this vector component-wise with each row
in the label embedding matrix Y . The dropout
rate and the strength of the regularizer are two
hyper-parameters of the method. The other hyper-
parameters are the learning rate for the stochastic
gradient descent as well as the number of steps.
Following Logan IV et al. (2021), we tune them
using 4-fold cross-validation on the few-shot train-
ing set. Note that the only information to be stored
for each tuned model are the d-dimensional label
embeddings.

2.3 Knowledge Distillation
As mentioned, label tuning produces less accurate
models than real fine-tuning. We find that this can
be compensated by a form of knowledge distilla-
tion (Hinton et al., 2014). We first train a normal

2https://en.wikipedia.org/wiki/Matrix_
norm#Frobenius_norm

fine-tuned model and use that to produce label dis-
tributions for a set of unlabeled examples. Later,
this silver set is used to train the new label embed-
dings for the untuned model. This increases the
training cost of the approach and adds an additional
requirement of unlabeled data but keeps the advan-
tages that at inference time we can share one model
across multiple tasks.

3 Related Work

Pre-trained Language Models (LMs) have been
proved to encode knowledge that, with task-
specific guidance, can solve natural language un-
derstanding tasks (Petroni et al., 2019). Leverag-
ing that, Le Scao and Rush (2021) quantified a
reduction in the need of labeled data of hundreds
of instances with respect to traditional fine-tuning
approaches (Devlin et al., 2019; Liu et al., 2019).
This has led to quality improvements in zero and
few-shot learning.

Semantic Similarity methods Gabrilovich and
Markovitch (2007) and Chang et al. (2008) use the
explicit meaning of the label names to compute
the similarity with the input text. Prototypical Net-
works (Snell et al., 2017) create class prototypes
by averaging embedded support examples and min-
imizing a distance metric to them for classification
of input examples. The class prototypes are similar
to our label embeddings but we initialize them from
the hypothesis and we only tune the embeddings
instead of the entire encoder. Recent advances in
pre-trained LMs and their application to semantic
textual similarity tasks, such as Sentence-BERT
(Reimers and Gurevych, 2019), have shown a new
opportunity to increase the quality of these methods
and set the stage for this work. Baldini Soares et al.
(2019) use Siamese Networks apply to a few-shot
relation extraction (RelEx) task. Their architec-
ture and similarity loss is similar to ours, but they
update all encoder parameters when performing
fine-tuning. Chu et al. (2021) employ a technique
called unsupervised label-refinement (LR). They
incorporated a modified k-means clustering algo-
rithm for refining the outputs of cross attention and
Siamese Networks. We incorporate LR into our
experiments and extend the analysis of their work.
We evaluate it against more extensive and diverse
benchmarks. In addition, we show that pre-training
few-shot learners on their proposed textual similar-
ity task NatCat underperforms pre-training on NLI
datsets.
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Prompt-based methods GPT-3 (Brown et al.,
2020), a 175 billion parameter LM, has been shown
to give good quality on few-shot learning tasks.
Pattern-Exploiting Training (PET) (Schick and
Schütze, 2021) is a more computational and mem-
ory efficient alternative. It is based on ensembles
of smaller masked language models (MLMs) and
was found to give few-shot results similar to GPT-3.
Logan IV et al. (2021) reduced the complexity of
finding optimal templates in PET by using null-
prompts and achieved competitive performance.
They incorporated BitFit (Ben-Zaken et al., 2021)
and thus reached comparable accuracy fine-tuning
only 0.1% of the parameters of the LMs. Ham-
bardzumyan et al. (2021) present a contemporary
approach with a similar idea to label tuning. As
in our work, they use label embeddings initialized
as the verbalization of the label names. These task-
specific embeddings, along with additional ones
that are inserted into the input sequence, are the
only learnable parameters during model training.
They optimize a cross entropy loss between the
label embeddings and the output head of a MLM.
The major difference is that they employ a prompt-
based approach while our method relies on embed-
ding models.

Entailment methods The entailment approach
(Yin et al., 2019; Halder et al., 2020) uses the label
description to reformulate text classification as tex-
tual entailment. The model predicts the entailment
probability of every label description . Wang et al.
(2021) report results outperforming LM-BFF (Gao
et al., 2021), an approach similar to PET.

True Few-Shot Learning Setting Perez et al.
(2021) argue that for true few-shot learning, one
should not tune parameters on large validation sets
or use parameters or prompts that might have been
tuned by others. We follow their recommendation
and rely on default parameters and some hyper-
parameters and prompts recommended by Wang
et al. (2021), which according to the authors, were
not tuned on the few-shot datasets. For label tuning,
we follow Logan IV et al. (2021) and tune parame-
ters with cross-validation on the few-shot training
set.

4 Experimental Setup

In this section we introduce the baselines and
datasets used throughout experiments.

4.1 Models

Random The theoretical performance of a ran-
dom model that uniformly samples labels from the
label set.

Word embeddings For the English experiments,
we use Word2Vec (Mikolov et al., 2013) embed-
dings3. For the multi-lingual experiments, we use
FastText (Grave et al., 2018). In all cases we prepro-
cess using the NLTK tokenizer (Bird et al., 2009)
and stop-words list and by filtering non-alphabetic
tokens. Sentence embeddings are computed by
averaging the token embeddings.

Char-SVM For the few-shot experiments we
implemented a Support Vector Machines (SVM)
(Hearst et al., 1998) based on character n-grams.
The model was implemented using the text vector-
izer of scikit-learn (Pedregosa et al., 2011) and uses
bigrams to fivegrams.

Cross Attention For our experiments we use pre-
trained models from HuggingFace (Wolf et al.,
2020). As the cross attention baseline, we trained
a version of MPNET (Song et al., 2020) on Multi-
Genre (MNLI, Williams et al. (2018)) and Stanford
NLI (SNLI, Bowman et al. (2015)) using the pa-
rameters and code of Nie et al. (2020). This model
has approx. 110M parameters. For the multilingual
experiments, we trained – the cross-lingual lan-
guage model – XLM roberta-base (Liu et al., 2019)
on SNLI, MNLI, adversarial NLI (ANLI, Nie et al.
(2020)) and cross-lingual NLI (XNLI, Conneau
et al. (2018)), using the same code and parameters
as above. The model has approx. 280M parame-
ters. We give more details on the NLI datasets in
Appendix G.

Siamese Network We also use models based on
MPNET for the experiments with the Siamese Net-
works. paraphrase-mpnet-base-v24 is a sentence
transformer model (Reimers and Gurevych, 2019)
trained on a variety of paraphrasing datasets as
well as SNLI and MNLI using a batch softmax
loss (Henderson et al., 2017). nli-mpnet-base-v25

is identical to the previous model but trained ex-
clusively on MNLI and SNLI and thus comparable
to the cross attention model. For the multilingual
experiments, we trained a model using the code

3https://code.google.com/archive/p/
word2vec

4https://tinyurl.com/pp-mpnet
5https://tinyurl.com/nli-mpnet
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name task lang. train test labels token length

GNAD (Block, 2019) topic de 9,245 1,028 9 279
AG News (Gulli, 2005) en 120,000 7,600 4 37
HeadQA (Vilares and Gómez-Rodrı́guez, 2019) es 4,023 2,742 6 15
Yahoo (Zhang et al., 2015) en 1,360,000 100,000 10 71

Amazon Reviews (Keung et al., 2020) reviews de, en, es 205,000 5,000 5 25-29
IMDB (Maas et al., 2011) en 25,000 25,000 2 173
Yelp full (Zhang et al., 2015) en 650,000 50,000 5 99
Yelp polarity (Zhang et al., 2015) en 560,000 38,000 2 97

SAB (Navas-Loro et al., 2017) sentiment es 3,979 459 3 13
SemEval (Nakov et al., 2016) en 9,834 20,632 3 20
sb10k (Cieliebak et al., 2017) de 8,955 994 3 11

Unified (Bostan and Klinger, 2018) emotions en 42,145 15,689 10 15
deISEAR (Troiano et al., 2019) de 643 340 7 9

COLA (Warstadt et al., 2019) acceptability en 8,551 1,043 2 7
SUBJ (Pang and Lee, 2004) subjectivity en 8,019 1,981 2 22
TREC (Li and Roth, 2002) entity type en 5,452 500 6 10

Table 1: Overview of the evaluated datasets. Token length is the median value.

of the sentence transformers with the same batch
softmax objective used for fine-tuning the few-shot
models and on the same data we used for training
the cross attention model.

Roberta-NatCat For comparison with the re-
lated work, we also trained a model based on
RoBERTa (Liu et al., 2019) and fine-tuned on the
NatCat dataset as discussed in Chu et al. (2021)
using the code6 and parameters of the authors.

4.2 Datasets

We use a number of English text classification
datasets used in the zero-shot and the few-shot lit-
erature (Yin et al., 2019; Gao et al., 2021; Wang
et al., 2021). In addition, we use several German
and Spanish datasets for the multilingual experi-
ments. Table 1 provides more details.

These datasets are of a number of common text
classification tasks such as topic classification, sen-
timent and emotion detection, and review rating.
However, we also included some less well-known
tasks such as acceptability, whether an English sen-
tence is deemed acceptable by a native speaker, and
subjectivity, whether a statement is subjective or
objective. As some datasets do not have a standard
split we split them randomly using a 9/1 ratio.

4.3 Hypotheses

We use the same hypotheses for the cross attention
model and for the Siamese network. For Yahoo
and Unified we use the hypotheses from Yin et al.

6https://github.com/ZeweiChu/ULR

(2019). For SUBJ, COLA, TREC, Yelp, AG News
and IMDB we use the same hypotheses as Wang
et al. (2021). For the remaining datasets we de-
signed our own hypotheses. These were written in
an attempt to mirror what has been done for other
datasets and they have not been tuned in any way.
Appendix B shows the patterns used. We also ex-
plored using an identity hypothesis, that is the raw
label names as the label representation and found
this to give similar results.

4.4 Fine-Tuning

Inspired by Wang et al. (2021), we investigate fine-
tuning the models with 8, 64 and 512 examples per
label. For fine-tuning the cross attention models we
follow the literature (Wang et al., 2021) and create
examples of every possible combination of input
text and label. The example corresponding to the
correct label is labeled as entailed while all other
examples are labeled as refuted. We then fine-tune
the model using stochastic gradient descent and a
cross-entropy loss. We use a learning rate of 1e-5,
a batch size of 8 and run the training for 10 epochs.
As discussed in the methodology Section 2.1, for
the Siamese Networks every batch contains exactly
one example of every label and therefore the batch
size equals the number of labels of the task. We
use a learning rate of 2e-5 and of 2e-4 for the Bit-
Fit experiments. Appendix D contains additional
information on the hyper-parameters used.

We use macro F1-score as the evaluation metric.
We run all experiments with 5 different training sets
and report the mean and standard deviation. For
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name n Yahoo AG News Unified COLA SUBJ TREC IMDB SemEval Yelp pol Yelp full Amazon Mean

random 0 10.0 25.0 10.0 50.0 50.0 16.7 50.0 33.3 50.0 20.0 20.0 30.5
W2V (IH) 0 44.80.2 59.10.5 10.10.3 46.91.7 37.10.7 17.61.4 71.00.3 46.80.3 65.90.2 14.80.1 17.80.4 39.30.7
RoBERTa-NatCat 0 50.00.2 49.80.6 7.90.3 35.51.5 44.30.9 18.61.1 45.60.3 36.60.3 49.80.2 11.10.1 11.20.4 32.80.7
RoBERTa-NatCat (IH) 0 37.30.2 62.60.5 15.20.3 42.31.4 40.41.0 22.21.2 39.90.2 30.90.3 47.70.2 17.50.1 17.50.5 33.90.7
mpnet (CA) 0 51.80.1 60.50.6 23.30.4 47.01.4 41.00.9 19.81.6 87.50.2 37.40.3 88.40.2 36.70.2 25.60.6 47.20.8
mpnet (CA-IH) 0 46.30.2 56.30.5 22.20.4 47.71.5 55.71.1 20.21.5 83.50.2 38.80.2 83.40.2 36.10.2 33.40.6 47.60.8
mpnet (SN) 0 53.90.1 62.50.5 21.60.3 46.01.5 42.00.8 31.51.4 73.80.2 46.70.3 78.60.2 26.10.2 40.60.6 47.60.7
mpnet (SN-IH) 0 51.40.1 64.20.6 21.20.3 46.01.6 54.01.0 32.11.7 69.60.3 41.50.3 83.60.2 34.30.2 37.40.7 48.70.8

Char-SVM 8 29.31.6 54.32.5 12.21.1 45.61.8 64.93.9 39.53.9 57.13.5 33.61.1 56.75.4 29.21.8 30.01.6 41.12.9
mpnet (CA) 8 58.32.8 80.62.9 23.61.1 50.42.1 75.25.0 66.46.0 88.40.9 59.51.3 90.31.9 50.92.1 47.71.3 62.82.9
mpnet (CA-IH) 8 59.22.6 83.11.7 23.02.2 48.42.2 74.65.3 68.77.7 87.20.8 58.21.0 88.93.8 49.32.4 47.31.7 62.53.5
mpnet (SN) 8 62.00.4 84.21.5 24.81.3 49.61.8 79.65.4 62.86.4 76.41.6 58.72.4 84.81.8 44.72.0 46.91.7 61.33.0
mpnet (SN-IH) 8 61.00.9 84.41.2 24.61.1 46.32.7 80.55.0 58.52.4 76.11.9 57.03.2 86.20.4 43.51.8 46.01.8 60.42.4

Char-SVM 64 49.00.5 76.60.6 17.30.4 48.51.6 79.61.2 60.42.2 70.91.5 39.00.8 77.32.5 41.80.4 43.50.8 54.91.3
mpnet (CA) 64 66.50.9 87.90.9 28.11.3 54.20.8 91.61.4 87.01.9 90.71.0 62.02.4 93.50.4 57.00.4 54.11.5 70.21.3
mpnet (CA-IH) 64 65.80.4 87.41.0 26.40.6 51.32.2 92.50.5 85.02.1 89.30.5 62.61.5 92.70.4 56.10.6 54.11.3 69.41.2
mpnet (SN) 64 66.60.4 87.71.0 29.30.3 56.61.8 92.01.0 87.71.9 79.71.4 61.91.2 88.70.4 50.80.9 54.11.4 68.61.2
mpnet (SN-IH) 64 66.50.4 87.31.2 29.30.5 46.511.0 92.70.3 87.53.1 79.71.6 61.51.7 88.10.2 50.70.8 54.01.7 67.63.6

Char-SVM 512 59.60.2 85.80.3 23.00.4 51.21.1 87.00.6 87.50.7 82.80.5 46.00.5 87.10.2 49.30.3 50.40.4 64.50.5
mpnet (CA) 512 67.10.7 90.20.4 32.41.2 68.52.0 94.61.1 95.20.6 92.50.2 63.61.2 95.20.3 60.80.4 60.10.5 74.60.9
mpnet (CA-IH) 512 67.70.2 90.40.3 32.80.6 68.01.6 94.90.6 94.41.5 90.11.1 63.71.4 94.60.2 59.50.7 59.70.9 74.20.9
mpnet (SN) 512 68.90.2 90.30.3 33.20.3 74.30.9 96.10.3 95.30.6 84.00.3 64.60.7 90.00.3 55.30.3 60.40.5 73.90.5
mpnet (SN-IH) 512 68.90.2 90.20.2 33.50.5 62.819.6 95.90.4 95.00.6 83.70.3 64.10.8 90.10.2 55.10.3 60.30.6 72.75.9

Table 2: English results for models based on MPNET and trained on SNLI and MNLI, comparing Siamese archi-
tecture (SN) and cross attention (CA) and also models with a identity hypothesis (IH). Results are grouped by the
number of training examples (n). Underlined results are significant. Bold font indicates maxima.

the zero-shot experiments, we estimate the standard
deviation using bootstrapping (Koehn, 2004). In all
cases, we use Welch’s t-test7 with a p-value of 0.05
to establish significance (following Logan IV et al.
(2021)). For the experiments with label refinement
(Chu et al., 2021) and distillation, we use up to
10,000 unlabeled examples from the training set.

5 Results

Here we present the results of our experiments. The
two main questions we want to answer are whether
Siamese Networks (SN) give comparable results as
Cross Attention models (CA) and how well Label
Tuning (LT) compares to regular fine-tuning.

5.1 Siamese Network and Cross Attention

Table 2 shows results comparing SN with CA and
various baselines. As discussed above, SN and CA
models are based on the MPNET architecture and
trained on SNLI and MNLI.

For the zero-shot setup (n=0) we see that all
models out-perform the random baseline on aver-
age. The word embedding baselines and RoBERTa-
NatCat perform significantly worse than random
on several of the datasets. In contrast the SN and
CA models only perform worse than random on
COLA. The SN outperforms the CA on average,

7https://en.wikipedia.org/wiki/Welch%
27s_t-test

but the results for the individual datasets are mixed.
The SN is significantly better for 4, significantly
worse for 4 and on par for the remaining 3 datasets.
Regarding the use of a hypothesis pattern from the
literature or just an identity hypothesis (IH), we
find that, while there are significant differences on
individual datasets, the IH setup shows higher but
still comparable (within 1 point) average perfor-
mance.

For the few-shots setup (n={8, 64, 512}), we
find that all models out-perform a Char-SVM
trained with the same number of instances by a
large margin. Comparing SN and CA, we see that
CA outperforms the SN on average but with a dif-
ference with-in the confidence interval. For n=8
and n=64, CA significantly outperforms SN on 3
datasets and performs comparably on the remaining
8. For n=512, we see an even more mixed picture.
CA is on par with SN on 6 datasets, outperforms it
on 3 and is out-performed on 2. We can conclude
that for the English datasets, SN is more accurate
for zero-shot while CA is more accurate for few-
shot. The average difference is small in both setups
and we do not see a significant difference for most
datasets.

Table 3 shows the multi-lingual experiments.
The RoBERTa XLM models were pre-trained on
data from more than 100 languages and fine-tuned
on an NLI data of 15 languages. The cross-lingual
data and the fact that there is only 7500 examples
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language German English Spanish
name n GNAD Amazon deISEAR sb10k Amazon SemEval Unified Amazon HeadQA SAB s Mean

random 0 11.1 20.0 14.3 33.3 20.0 33.3 10.0 20.0 16.7 33.3 21.2
FastText 0 17.31.0 15.40.5 22.22.1 31.51.5 18.60.5 43.80.4 11.80.3 19.70.5 45.00.9 35.02.2 26.01.2
xlm-roberta (CA) 0 28.51.3 24.40.6 21.11.8 34.11.4 23.80.5 33.10.2 16.50.3 24.10.5 36.70.9 29.52.2 27.21.2
xlm-roberta (CA-IH) 0 29.41.3 26.10.6 18.31.5 31.80.9 29.20.6 34.60.2 15.70.4 25.00.5 37.80.9 24.31.5 27.21.0
xlm-roberta (SN) 0 41.51.2 31.10.7 22.11.9 38.41.2 37.00.6 43.10.3 15.30.3 28.00.6 35.40.9 32.02.3 32.41.2
xlm-roberta (SN-IH) 0 38.91.2 29.50.5 23.02.4 35.71.4 31.00.6 38.70.3 13.70.2 32.90.6 38.80.8 35.62.3 31.81.3

Char-SVM 8 56.12.8 30.52.2 29.41.6 45.42.5 30.01.6 33.61.1 12.21.1 30.81.2 36.32.6 50.65.3 35.52.5
xlm-roberta (CA) 8 61.62.4 43.31.3 39.55.1 53.62.2 41.22.2 55.03.4 18.31.4 41.11.3 49.52.7 53.93.5 45.72.8
xlm-roberta (CA-IH) 8 60.22.3 43.91.2 36.41.8 56.51.5 43.52.0 55.82.9 18.82.2 42.71.7 47.62.6 56.53.2 46.22.2
xlm-roberta (SN) 8 62.80.6 40.00.9 35.23.0 52.60.6 43.60.6 55.62.3 18.50.9 40.82.8 50.31.2 54.63.6 45.42.0
xlm-roberta (SN-IH) 8 59.21.5 41.51.3 33.82.4 53.41.3 43.20.9 51.83.6 17.20.8 41.41.4 50.21.2 52.64.5 44.42.2

Char-SVM 64 77.30.8 41.40.8 48.12.9 51.50.7 43.50.8 39.00.8 17.30.4 40.41.0 52.30.8 54.70.9 46.61.2
xlm-roberta (CA) 64 78.41.1 51.01.6 56.81.6 65.60.8 51.21.5 61.91.1 24.31.7 49.50.7 55.00.7 61.42.0 55.51.3
xlm-roberta (CA-IH) 64 78.31.4 50.81.5 57.22.0 64.31.4 51.31.3 61.60.5 24.61.0 48.41.6 56.01.6 60.72.4 55.31.6
xlm-roberta (SN) 64 77.40.6 49.60.8 59.31.1 58.82.3 49.71.6 58.32.1 23.60.7 47.30.4 56.00.8 61.82.7 54.21.5
xlm-roberta (SN-IH) 64 77.00.9 49.80.9 56.80.6 60.31.3 49.81.4 57.51.8 22.80.8 46.80.3 56.31.1 59.52.7 53.61.3

Char-SVM 512 85.00.3 48.20.5 48.12.9 59.00.4 50.40.4 46.00.5 23.00.4 46.40.9 64.70.4 63.81.3 53.51.1
xlm-roberta (CA) 512 84.70.7 56.30.3 56.51.9 68.51.6 58.60.8 62.70.6 29.20.7 53.00.4 65.91.0 67.90.6 60.31.0
xlm-roberta (CA-IH) 512 85.81.3 56.80.7 56.31.8 67.91.4 58.50.5 62.51.3 28.91.0 52.31.4 65.90.5 68.91.2 60.41.2
xlm-roberta (SN) 512 85.00.6 55.70.4 59.51.8 67.90.5 58.60.4 62.30.8 29.50.4 52.50.8 66.90.1 65.61.1 60.30.8
xlm-roberta (SN-IH) 512 84.90.5 56.10.5 57.60.9 67.81.5 58.30.2 61.30.9 29.10.6 52.40.6 66.80.9 68.31.2 60.30.9

Table 3: Multi-lingual results for models based on roberta-xlm for cross attention (CA) and Siamese networks
(SN). n denotes the number of training examples. Underlined results are significant. Bold font indicates maxima.

for the languages other than English, explains why
quality is lower than for the English-only experi-
ments. For the zero-shot scenario, all models out-
perform the random baseline on average, but with
a smaller margin than for the English-only mod-
els. The FastText baseline performs comparable to
CA on average (26.0 vs 27.2), while SN is ahead
by a large margin (27.2 vs 32.4). The differences
between models with hypotheses and identity hy-
pothesis (IH) are smaller than for the English ex-
periments.

Looking at the few-shot scenarios, we see that
both models out-perform the Char-SVM by a large
margin. In general, the results are closer than for
the English experiments, as well as in the number
of datasets with significant differences (only 2-4 of
datasets). Similarly to English, we can conclude
that at multilingual level, SN is more accurate in
the zero-shot scenario whereas CA performs better
in the few-shot one. However, for few-shot we see
only small average differences (less than 1 point
except for n=64).

5.2 Label Tuning

Table 4 shows a comparison of different fine-tuning
approaches on the English datasets. Appendix H
contains the multi-lingual results and gives a sim-
ilar picture. We first compare Label Refinement
(LR) as discussed in Chu et al. (2021) (see Sec-
tion 3). Recall that this approach makes use of
unlabeled data. We find that in the zero-shot sce-

nario LR gives an average improvement of more
than 2 points and significantly out-performing the
baseline (mpnet) for 7 of the 11 datasets. When
combining LR with labeled data as discussed in
Chu et al. (2021) we find this to only give modest
improvements over the zero-shot model (e.g., 54.0
(zero-shot) vs 55.8 (n=8)). Note that we apply
LR to the untuned model, while Chu et al. (2021)
proposed to apply it to a tuned model. However,
we find that to only give small improvements over
an already tuned model (mpnet (FT) vs. mpnet
(FT+LR)). Also, in this work we are interested in
approaches that do not change the initial model
so that it can be shared between tasks to improve
scalability. Label Tuning (LT) improves results as
n grows and out-performs LR and the Char-SVM
baseline from Table 2.

Comparing regular Fine-Tuning (FT) and BitFit,
we find them to perform quite similarly both on
average and on individual datasets, with only few
exceptions, such as the performance difference on
TREC for the n=8 setup. In comparison with FT
and BitFit, LT is significantly out-performed on
most datasets. The average difference in perfor-
mance is around 5 points, which is comparable to
using 8 times less training data.

Using the knowledge distillation approach dis-
cussed before (LT-DIST), we find that for 8 and 64
examples, most of the difference in performance
can be recovered while still keeping the high scal-
ability. For n=8, we only find a significant differ-
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name n Yahoo AG News Unified COLA SUBJ TREC IMDB SemEval Yelp pol Yelp full Amazon Mean

mpnet 0 55.00.2 65.60.4 20.50.3 47.61.4 62.80.9 43.02.1 79.50.2 48.90.3 79.90.2 32.10.2 37.00.7 52.00.9
mpnet (LR) 0 59.10.2 73.80.5 20.90.3 47.71.5 68.70.8 48.22.2 80.00.2 46.30.3 80.50.2 28.60.2 39.80.6 54.00.9

mpnet (BitFit) 8 62.60.7 80.11.5 27.01.2 49.00.9 79.63.0 57.92.0 83.90.9 54.62.8 90.31.9 50.11.4 46.11.2 61.91.7
mpnet (FT) 8 63.50.8 83.31.9 27.00.8 49.70.9 83.14.8 70.87.1 82.62.3 54.83.3 90.61.1 50.51.6 46.81.6 63.93.0
mpnet (FT+LR) 8 63.91.0 83.61.8 26.30.8 49.11.1 84.53.4 68.97.3 83.62.5 56.91.5 90.51.2 51.11.2 46.71.9 64.12.8
mpnet (LR) 8 59.70.3 76.00.6 22.40.4 47.80.5 71.31.4 48.42.7 80.40.3 50.92.0 81.71.5 33.63.8 41.21.5 55.81.7
mpnet (LT) 8 59.40.9 78.70.9 23.20.4 48.71.4 81.93.4 52.54.4 77.70.5 45.22.0 85.12.2 41.51.1 41.92.9 57.82.2
mpnet (LT-DIST) 8 62.90.7 83.01.9 26.60.9 47.73.0 84.63.4 67.86.4 83.70.6 54.92.2 89.91.4 49.21.0 45.62.1 63.32.7

mpnet (BitFit) 64 67.60.6 86.90.9 30.30.9 51.30.9 93.70.9 82.12.9 85.71.0 60.81.4 92.10.5 54.90.7 51.81.2 68.81.3
mpnet (FT) 64 67.30.5 87.31.2 29.50.4 55.41.2 93.80.5 88.52.6 86.11.2 61.43.0 91.80.3 54.50.4 53.61.6 69.91.5
mpnet (FT+LR) 64 67.50.4 87.60.8 29.40.3 55.50.9 93.70.5 86.53.4 86.20.4 60.42.1 91.40.6 54.60.8 54.11.6 69.71.4
mpnet (LR) 64 59.90.1 76.60.3 22.70.2 47.80.5 71.60.5 51.11.0 80.40.1 52.00.7 82.10.7 29.81.3 42.00.5 56.00.7
mpnet (LT) 64 64.80.3 85.00.6 27.10.6 49.31.2 89.90.5 70.82.8 81.21.0 54.52.7 89.00.6 50.00.7 49.11.6 64.61.4
mpnet (LT-DIST) 64 67.00.5 86.90.9 28.80.4 52.21.2 92.50.2 86.51.1 84.60.3 60.22.3 91.20.3 53.70.7 52.71.2 68.71.0

mpnet (BitFit) 512 70.40.2 90.30.2 32.90.2 72.91.3 96.30.2 92.20.6 88.20.2 64.40.8 93.30.2 58.50.2 60.70.3 74.50.5
mpnet (FT) 512 69.30.2 90.70.3 33.00.4 74.51.2 96.00.2 95.41.3 87.70.4 64.10.8 93.20.3 58.50.2 60.80.7 74.80.7
mpnet (FT+LR) 512 69.50.2 90.80.3 32.60.5 74.20.9 96.30.3 95.00.9 88.00.6 63.30.7 93.30.2 58.40.2 61.30.3 74.80.5
mpnet (LR) 512 60.10.1 76.70.2 22.60.1 47.80.3 72.00.2 51.40.3 80.30.0 52.60.2 81.50.2 29.70.3 42.70.2 56.10.2
mpnet (LT) 512 68.00.2 88.00.3 29.10.4 55.21.1 92.60.5 86.20.2 84.30.3 59.80.7 91.00.2 53.70.3 54.90.5 69.30.5
mpnet (LT-DIST) 512 68.70.2 88.90.2 30.80.3 58.61.1 93.70.2 89.40.5 85.50.2 61.30.5 91.70.1 55.80.2 57.00.6 71.00.5

Table 4: English results for Siamese models based on MPNET and trained on NLI and paraphrasing datasets.
Comparing fine-tuning (FT), label tuning (LT), label tuning with distillation (LT-DIST), and label refinement (LR).
Results are grouped by the number of training examples (n). Underlined results are significant. Bold font indicates
maxima.

name 2-3 4-6 10

W2V 192.90 195.82 208.40
mpnet-base (CA) 5.12 2.22 1.15
mpnet-base (SN) 26.08 18.30 18.85

Table 5: Processing speed in thousand tokens/second.
We show the results grouped by the size of the label set.
Calculated on the English test sets.

length 1-22 22-44 44-86 86-160 > 160

SN 39.8 44.6 42.5 34.5 36.4
CA 36.7 41.8 44.0 35.2 40.3

Table 6: Average macro F1 score for sets of different
token length measured across all test sets for n=0.

ence to mpnet (FT) for Yelp full. Recall that the
distillation is performed on up to 10,000 unlabeled
examples from the training set.

6 Analysis

We analyze the performance of the Cross Attention
(CA) and Siamese Network-based (SN) models.
Unless otherwise noted, the analysis was run over
all datasets and languages. Table 5, gives a com-
parison of the processing speed of different models.
Details on the hardware used is given in Appendix
F. As expected, the performance of the cross at-
tention model halves when the label size doubles.
The performance of the Siamese network is inde-

task emotions reviews sentiment
negation no yes no yes no yes

SN 23.0 14.3 49.0 44.4 37.3 45.1
CA 22.4 16.8 48.2 47.0 32.2 37.4

Table 7: Average macro F1 score for sets with and with-
out a negation marker present. Measured across all test
sets for n=0.

pendent of the number of labels. This shows that
Siamese Networks have a huge advantage at infer-
ence time – especially for tasks with many labels.

Table 6 shows the average F1 scores for different
token lengths. To this end the data was grouped in
bins of roughly equal size. SN has an advantage
for shorter sequences (≤ 44 tokens), while CA
performs better for longer texts (> 160 tokens).

Table 7 shows an analysis based on whether the
text does or does not contain negation markers. We
used an in-house list of 23 phrases for German and
Spanish and 126 for English. For emotion detec-
tion and review tasks, both models perform better
on the subset without negations. However, while
SN outperforms CA on the data without negations,
CA performs better on the data with negations. The
same trend does not hold for the sentiment datasets.
These are based on Twitter and thus contain shorter
and simpler sentences. For the sentiment datasets
based on Twitter we also found that both models
struggle to predict the neutral class. CA classifies
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almost everything neutral tweet as positive or neg-
ative. SN predicts the neutral class regularly but
still with a relative high error rate. Appendix E con-
tains further analysis showing that label set size,
language and task do not have a visible effect on
the difference in accuracy of the two models.

7 Conclusion

We have shown that Cross Attention (CA) and
Siamese Networks (SN) for zero-shot and few-shot
text classification give comparable results across a
diverse set of tasks and multiple languages. The in-
ference cost of SNs is low as label embeddings can
be pre-computed and, in contrast to CA, does not
scale with the number of labels. We also showed
that tuning only these label embeddings (Label
Tuning (LT)) is an interesting alternative to regular
Fine-Tuning (FT). LT gets close to FT performance
when combined with knowledge distillation and
when the number of training samples is low, i.e.,
for realistic few-shot learning. This is relevant for
production scenarios, as it allows to share the same
model among tasks. However, it will require 60
times more memory to add a new task: For a 418
MB mpnet-base model, BitFit affects 470 kB of
the parameters. LT applied to a task with 10 labels
and using a embedding dimension of 768 requires
7.5 kB. The main disadvantage of BitFit, however,
is that the weight sharing it requires is much harder
to implement, especially in highly optimized envi-
ronments such as NVIDIA Triton. Therefore we
think that LT is an interesting alternative for fast
and scalable few-shot learning.
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Säckinger, and Roopak Shah. 1993. Signature ver-
ification using a ”siamese” time delay neural net-
work. In Proceedings of the 6th International Con-
ference on Neural Information Processing Systems,
NIPS’93, page 737–744, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,

8540

https://developer.nvidia.com/nvidia-triton-inference-server
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279
https://doi.org/10.18653/v1/P19-1279
https://tblock.github.io/10kGNAD/
https://tblock.github.io/10kGNAD/
http://aclweb.org/anthology/C18-1179
http://aclweb.org/anthology/C18-1179
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075


Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Ming-Wei Chang, Lev-Arie Ratinov, D. Roth, and
Vivek Srikumar. 2008. Importance of semantic rep-
resentation: Dataless classification. In AAAI.

Zewei Chu, Karl Stratos, and Kevin Gimpel. 2021.
Unsupervised label refinement improves dataless
text classification. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4165–4178, Online. Association for Computa-
tional Linguistics.

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A Twitter corpus and bench-
mark resources for German sentiment analysis. In
Proceedings of the Fifth International Workshop
on Natural Language Processing for Social Media,
pages 45–51, Valencia, Spain. Association for Com-
putational Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Crowdflower. 2016. The emotion in text, published by
crowdflower.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine Learning Challenges. Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication, and Recognising Tectual Entailment, pages
177–190, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of
the 20th International Joint Conference on Artifical
Intelligence, IJCAI’07, page 1606–1611, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Diman Ghazi, Diana Inkpen, and Stan Szpakowicz.
2015. Detecting emotion stimuli in emotion-bearing
sentences. In CICLing (2), pages 152–165.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Antonio Gulli. 2005. AG’s corpus of news articles.
http://groups.di.unipi.it/˜gulli/
AG_corpus_of_news_articles.html.
Accessed: 2021-07-08.

Kishaloy Halder, Alan Akbik, Josip Krapac, and
Roland Vollgraf. 2020. Task-aware representation
of sentences for generic text classification. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 3202–3213,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversar-
ial ReProgramming. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4921–4933, Online. Associa-
tion for Computational Linguistics.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John
Platt, and Bernhard Scholkopf. 1998. Support vec-
tor machines. IEEE Intelligent Systems and their ap-
plications, 13(4):18–28.

Matthew L. Henderson, Rami Al-Rfou, Brian Strope,
Yun-Hsuan Sung, László Lukács, Ruiqi Guo, San-
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A Unified Emotions

Unified Emotions is a meta-dataset comprised of
the following datasets: DailyDialog (Li et al.,
2017), CrowdFlower (Crowdflower, 2016), TEC
(Mohammad, 2012), Tales (Alm et al., 2005; Alm
and Sproat, 2005; Alm, 2008), ISEAR (Scherer and
Wallbott, 1994), Emoint (Mohammad et al., 2017),
ElectoralTweets (Mohammad et al., 2015), Ground-
edEmotions (Liu et al., 2007) and EmotionCause
(Ghazi et al., 2015).

B Hypotheses

Table 9 lists all the hypothesis patterns used in our
experiments.

C Paraphrase datasets

paraphrase-mpnet-base-v2 has been
trained on these datasets: SNLI, MNLI, sentence-
compression, SimpleWiki, altlex, msmarco-
triplets, quora duplicates, coco captions, ya-
hoo answers title question, S2ORC citation pairs,
stackexchange duplicate questions and wiki-
atomic-edits. Details on these dataset are provided
here.

D Hyperparameters

For the label tuning experiments we used the fol-
lowing hyper-parameters:

• learning rate ∈ {0.01, 0.1}
• number of epochs ∈ {1000, 2000}
• regularizer coefficient ∈ {0.01, 0.1}
• dropout rate ∈ {0.01, 0.1}

E Additional Analysis

The following table shows the F1-score breakdown
by hypothesis length. One could think that the CA
model performs better for longer hypothesis but
this cannot be observed. Potentially because all
hypotheses are relatively short.

name 3-5 5-7 >7

SN 42.2 32.9 30.3
CA 41.4 30.1 25.2

Table 10: Average macro F1 score by length of the ref-
erence hypothesis, averaged over all test sets for n=0.

For completeness, we also add similar break-
downs by task type, label set size, and language.

None of them indicate an effect on the difference
between SN and CA model performance.

name 2-3 4-6 >6

SN 51.1 36.7 34.7
CA 52.1 32.0 31.2

Table 11: Average macro F1 score by label set size,
averaged over all test sets for n=0.

name emotions other reviews sentiment topic

SN 21.8 40.4 46.4 39.0 48.3
CA 22.2 34.7 47.8 33.7 44.4

Table 12: Average macro F1 score by task, averaged
over all test sets for n=0.

name de en es

SN 33.3 47.7 31.8
CA 27.0 46.8 30.1

Table 13: Average macro F1 score by language, aver-
aged over all test sets for n=0.

F Computing Requirements

All experiments were run on a system with an AMD
Ryzen Threadripper 1950X CPU and a Nvidia
GeForce GTX 1080 Ti GPU. Most of the comput-
ing time was spent training the NLI models used
in our experiments. Training the CA models took
approx. 20h while training the SN models took
approx. 10h.

G NLI Training sets

name examples

SNLI (Bowman et al., 2015) 569,033
MNLI (Williams et al., 2018) 412,349
ANLI (Nie et al., 2020) 169,246
XNLI (Conneau et al., 2018) 112,500

Table 14: Sizes of NLI traininig sets. SNLI, MNLI and
ANLI are English only. XNLI contains 15 languages
with 7,500 examples per language.

H Multilingual Label Tuning Results

Table 8 multilingual results for label tuninig and
fine-tuning.
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language German English Spanish
name n GNAD Amazon deISEAR sb10k Amazon SemEval Unified Amazon HeadQA SAB s Mean

random 0 11.1 20.0 14.3 33.3 20.0 33.3 10.0 20.0 16.7 33.3 21.2
FastText 0 17.31.0 15.40.5 22.22.1 31.51.5 18.60.5 43.80.4 11.80.3 19.70.5 45.00.9 35.02.2 26.01.2
xlm-roberta 0 37.81.1 28.40.7 43.12.7 46.61.3 35.40.7 50.50.4 21.30.3 32.80.6 50.60.9 31.62.0 37.81.3

Char-SVM 8 56.12.8 30.52.2 29.41.6 45.42.5 30.01.6 33.61.1 12.21.1 30.81.2 36.32.6 50.65.3 35.52.5
xlm-roberta (FT) 8 66.33.7 45.10.9 56.62.1 55.92.6 45.21.2 55.73.8 25.40.7 42.51.1 55.02.3 58.15.2 50.62.8
xlm-roberta (LT) 8 64.61.2 42.11.5 50.62.4 50.21.8 41.72.0 46.52.7 23.00.4 40.41.3 53.72.9 52.24.8 46.52.4
xlm-roberta (LT-DIST) 8 67.03.2 44.30.8 53.23.0 55.82.0 45.41.6 53.13.3 25.30.6 41.71.4 54.62.3 59.44.2 50.02.5

Char-SVM 64 77.30.8 41.40.8 48.12.9 51.50.7 43.50.8 39.00.8 17.30.4 40.41.0 52.30.8 54.70.9 46.61.2
xlm-roberta (FT) 64 79.70.7 51.51.0 67.70.9 63.00.9 53.11.9 61.01.6 28.10.2 49.40.3 60.51.0 64.91.8 57.91.2
xlm-roberta (LT) 64 76.90.6 48.40.6 62.60.9 59.10.6 49.11.6 54.21.9 26.90.7 48.70.4 59.30.8 61.83.1 54.71.4
xlm-roberta (LT-DIST) 64 78.90.5 50.01.1 64.70.3 62.50.9 51.71.3 59.51.0 27.60.4 48.90.7 59.30.9 65.41.8 56.91.0

Char-SVM 512 85.00.3 48.20.5 48.12.9 59.00.4 50.40.4 46.00.5 23.00.4 46.40.9 64.70.4 63.81.3 53.51.1
xlm-roberta (FT) 512 85.40.6 57.20.7 67.81.2 68.60.9 58.80.4 64.70.7 32.10.3 53.30.6 68.80.5 69.70.5 62.60.7
xlm-roberta (LT) 512 80.80.6 52.50.7 62.60.8 63.30.9 54.30.3 60.60.7 28.90.4 51.40.4 62.90.3 66.80.4 58.40.6
xlm-roberta (LT-DIST) 512 80.70.4 54.10.3 64.60.2 66.01.3 55.60.3 62.91.0 30.50.4 52.40.2 63.10.4 68.70.6 59.90.6

Table 8: Multi-lingual results for Siamese models based on paraphrase-multilingual-mpnet-base-v2, comparing
fine-tuning (FT), label tuning (LT) and label tuning with distillation (LT-DIST). Results are grouped by the number
of training examples (n). Underlined results are significant. Bold font indicates maxima.

dataset type lang. pattern

Unified Emotions en This person feels {anger, disgust, feat, guilt, joy, love, sadness,
shame, surprise}.
This person doesn’t feel any particular emotion.

deISEAR de Diese Person empfindet {Schuld, Wut, Ekel, Angst, Freude,
Scham, Traurigkeit}.

AG News Topic en It is {business, science, sports, world} news.
GNAD de Das ist ein Artikel aus der Rubrik {Web, Panorama, International,

Wirtschaft, Sport, Inland, Etat, Wissenschaft, Kultur}.
HeadQA es Está relacionado con la {medicina, enfermerı́a, quı́mica, biologı́a,

psicologı́a, farmacologı́a}.

Yahoo en It is related with {business & finance,computers & internet, educa-
tion & reference, entertainment & music, family & relationships,
health, politics & government, science & mathematics, society &
culture, sports}.

Amazon Review en This product is {terrible, bad, okay, good, excellent}.
de Dieses Produkt ist {furchtbar, schlecht, ok, gut, exzellent}.
es Este producto es {terrible, mal, regular, bien, excelente}.

IMDB, Yelp (2) en It was {terrible, great}.
Yelp (5) It was {terrible, bad, okay, good, great}.

SemEval Sentiment en This person expresses a {negative, neutral, positive} feeling.
sb10k de Diese Person drückt ein {negativ, neutral, positiv}es Gefühl aus.
SAB es Esta persona expresa un sentimiento {negativo, neutro, positivo}.

COLA Acceptability en It is {correct, incorrect}.
SUBJ Subjectivity en It is {objective, subjective}.
TREC Question Type en It is {expression, description, entity, human, location, number}.

Table 9: Hypotheses patterns used.
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