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Abstract

Meta-learning, or learning to learn, is a tech-
nique that can help to overcome resource
scarcity in cross-lingual NLP problems, by en-
abling fast adaptation to new tasks. We ap-
ply model-agnostic meta-learning (MAML) to
the task of cross-lingual dependency parsing.
We train our model on a diverse set of lan-
guages to learn a parameter initialization that
can adapt quickly to new languages. We find
that meta-learning with pre-training can signif-
icantly improve upon the performance of lan-
guage transfer and standard supervised learn-
ing baselines for a variety of unseen, typolog-
ically diverse, and low-resource languages, in
a few-shot learning setup.

1 Introduction

The field of natural language processing (NLP) has
seen substantial performance improvements due
to large-scale language model pre-training (Devlin
et al., 2019). Whilst providing an informed starting
point for subsequent task-specific fine-tuning, such
models still require large annotated training sets
for the task at hand (Yogatama et al., 2019). This
limits their applicability to a handful of languages
for which such resources are available and leads
to an imbalance in NLP technology’s quality and
availability across linguistic communities. Aiming
to address this problem, recent research has fo-
cused on the development of multilingual sentence
encoders, such as multilingual BERT (mBERT)
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020), trained on as many as 93 languages. Such
pre-trained multilingual encoders enable zero-shot
transfer of task-specific models across languages
(Wu and Dredze, 2019), offering a possible solu-
tion to resource scarcity. Zero-shot transfer, how-
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ever, is most successful among typologically sim-
ilar, high-resource languages, and less so for lan-
guages distant from the training languages and
in resource-lean scenarios (Lauscher et al., 2020).
This stresses the need to develop techniques for fast
cross-lingual model adaptation, that can transfer
knowledge across a wide range of typologically
diverse languages with limited supervision.

In this paper, we focus on the task of universal
dependency (UD) parsing and present a novel ap-
proach for effective and resource-lean cross-lingual
parser adaptation via meta-learning, requiring only
a small number of training examples per language
(which are easy to obtain even for low-resource
languages). Meta-learning is a learning paradigm
that leverages previous experience from a set of
tasks to solve a new task efficiently. As our goal
is fast cross-lingual model adaptation, we focus
on optimization-based meta-learning, where the
main objective is to find a set of initial parameters
from which rapid adaption to a variety of different
tasks becomes possible (Hospedales et al., 2020).
Optimization-based meta-learning has been suc-
cessfully applied to a variety of NLP tasks. Notable
examples include neural machine translation (Gu
et al., 2018), semantic parsing (Huang et al., 2018),
pre-training text representations (Lv et al., 2020),
word sense disambiguation (Holla et al., 2020) and
cross-lingual natural language inference and ques-
tion answering (Nooralahzadeh et al., 2020). To
the best of our knowledge, meta-learning has not
yet been explored in the context of dependency
parsing.

We take inspiration from recent research on uni-
versal dependency parsing (Tran and Bisazza, 2019;
Kondratyuk and Straka, 2019). We employ an ex-
isting UD parsing framework — UDify, a multi-
task learning model (Kondratyuk and Straka, 2019)
— and extend it to perform few-shot model adap-
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tation to previously unseen languages via meta-
learning. We pre-train the dependency parser on a
high-resource language prior to applying the model-
agnostic meta-learning (MAML) algorithm (Finn
et al., 2017) to a collection of few-shot tasks in a
diverse set of languages. We evaluate our model
on its ability to perform few-shot adaptation to un-
seen languages, from as few as 20 examples. Our
results demonstrate that our methods outperform
language transfer and multilingual joint learning
baselines, as well as existing (zero-shot) UD pars-
ing approaches, on a range of language families,
with the most notable improvements among the
low-resource languages. We also investigate the
role of a pre-training language as a starting point
for cross-lingual adaptation and the effect of typo-
logical properties on the learning process.

2 Related work

2.1 Meta-learning

In meta-learning, the datasets are separated into
episodes that correspond to training tasks. Each
episode contains a support and a query set, that
include samples for adaptation and evaluation, re-
spectively. Meta-learning serves as an umbrella
term for algorithms from three categories: Metric-
based methods classify new samples based on
their similarity to the support set (e.g. Snell et al.,
2017). Model-based methods explicitly store
meta-knowledge within their architectures – e.g.
through an external memory (Santoro et al., 2016).
Optimization-based methods, on which we focus,
estimate parameter initializations that can be fine-
tuned with a few steps of gradient descent (e.g. Finn
et al., 2017; Nichol and Schulman, 2018). Finn
et al. (2017) proposed MAML to learn parameter
initializations that generalize well to similar tasks.
During the meta-training phase, MAML iteratively
selects a batch of episodes, on which it fine-tunes
the original parameters given the support set in
an inner learning loop, and tests it on the query
set. The gradients of the query set with respect to
the original parameters are used to update those
in the outer learning loop, such that these weights
become a better parameter initialization over itera-
tions. Afterwards, during meta-testing, one selects
a support set for the test task, adapts the model
using that set and evaluates it on new samples from
the test task. MAML has provided performance
benefits for cross-lingual transfer for tasks such as
machine translation (Gu et al., 2018), named entity

recognition (Wu et al., 2020), hypernymy detection
(Yu et al., 2020) and mapping lemmas to inflected
forms (Kann et al., 2020). The closest approach to
ours is by Nooralahzadeh et al. (2020), who focus
on natural language inference and question answer-
ing. Their method, X-MAML, involves pre-training
a model on a high-resource language prior to ap-
plying MAML. This yielded performance benefits
over standard supervised learning for cross-lingual
transfer in a zero-shot and fine-tuning setup (albeit
using 2500 training samples to fine-tune on test lan-
guages). The performance gains were the largest
for languages sharing morphosyntactic features.
Besides the focus on dependency parsing, our ap-
proach can be distinguished from Nooralahzadeh
et al. (2020) in several ways. We focus on fast adap-
tation from a small number of examples (using only
20 to 80 sentences). Whilst they use one language
for meta-training, we use seven languages, with the
aim of explicitly learning to adapt to a variety of
languages.

2.2 Universal dependency parsing

The Universal Dependencies project is an ongoing
community effort to construct a cross-linguistically
consistent morphosyntactic annotation scheme
(Nivre et al., 2018). The project makes results
comparable across languages and eases the evalua-
tion of cross-lingual (structure) learning. The task
of dependency parsing involves predicting a depen-
dency tree for an input sentence, which is a directed
graph of binary, asymmetrical arcs between words.
These arcs are labeled and denote dependency re-
lation types, which hold between a head-word and
its dependent. A parser is tasked to assign rankings
to the space of all possible dependency graphs and
to select the optimal candidate.

Dependency parsing of under-resourced lan-
guages has since long been of substantial interest
in NLP. Well-performing UD parsers, such as the
winning model in the CoNLL 2018 Shared Task by
Che et al. (2018), do not necessarily perform well
on low-resource languages (Zeman et al., 2018).
Cross-lingual UD parsing is typically accomplished
by projecting annotations between languages with
parallel corpora (Agić et al., 2014), through model
transfer (e.g. Guo et al., 2015; Ammar et al., 2016;
Ahmad et al., 2019), through hybrid methods com-
bining annotation projections and model transfer
(Tiedemann et al., 2014), or by aligning word em-
beddings across languages (Schuster et al., 2019).
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State-of-the-art methods for cross-lingual depen-
dency parsing exploit pre-trained mBERT with
a dependency parsing classification layer that is
fine-tuned on treebanks of high-resource languages,
and transferred to new languages: Wu and Dredze
(2019) only fine-tune on English, whereas Tran
and Bisazza (2019) experiment with multiple sets
of fine-tuning languages. Including diverse lan-
guage families and scripts benefits transfer to low-
resource languages, in particular. UDify, the model
of Kondratyuk and Straka (2019), is jointly fine-
tuned on data from 75 languages, with a multi-task
learning objective that combines dependency pars-
ing with predicting part-of-speech tags, morpho-
logical features, and lemmas. Üstün et al. (2020),
instead, freeze the mBERT parameters and train
adapter modules that are interleaved with mBERT’s
layers, and take a language embedding as input.
This embedding is predicted from typological fea-
tures. Model performance strongly relies on the
availability of those features, since using proxy
embeddings from different languages strongly de-
grades low-resource languages’ performance.

3 Dataset

We use data from the Universal Dependencies v2.3
corpus (Nivre et al., 2018). We use treebanks from
26 languages that are selected for their typologi-
cal diversity. We adopt the categorization of high-
resource and low-resource languages from Tran
and Bisazza (2019) and employ their set of train-
ing and test languages for comparability. The set
covers languages from six language families (Indo-
European, Korean, Afro-Asiatic, Uralic, Dravidian,
Austro-Asiatic). Their training set (expMix) in-
cludes eight languages: English, Arabic, Czech,
Hindi, Italian, Korean, Norwegian, and Russian.
These languages fall into the language families of
Indo-European, Korean and Afro-Asiatic and have
diverse word orders (i.e. VSO, SVO and SOV).
Joint learning on data from this diverse set yielded
state-of-the-art zero-shot transfer performance on
low-resource languages in the experiments of Tran
and Bisazza (2019).

Per training language we use up to 20,000 exam-
ple trees, predicting dependency arc labels from
132 classes total. We select Bulgarian (Indo-
European) and Telugu (Dravidian) as validation
languages to improve generalization to multiple
language families. The 16 test languages cover
three new language families that were unseen dur-

ing training, i.e. Austro-Asiatic, Dravidian, and
Uralic. Furthermore, three of our test languages
(Buryat, Faroese, and Upper Sorbian) are not in-
cluded in the pre-training of mBERT. We refer the
reader to Appendix B for details about the treebank
sizes and language families.

4 Method

4.1 The UDify model

The UDify model concurrently predicts part-of-
speech tags, morphological features, lemmas and
dependency trees (Kondratyuk and Straka, 2019).
UDify exploits the pre-trained mBERT model (De-
vlin et al., 2019), that is a self-attention network
with 12 transformer encoder layers.

The model takes single sentences as input. Each
sentence is tokenized into subword units using
mBERT’s word piece tokenizer, after which con-
textual embedding lookup provides input for the
self-attention layers. A weighted sum of the out-
puts of all layers is computed (Equation 1) and fed
to a task-specific classifier.

etj = η
∑
i

Bij · softmax(γ)i (1)

Here, et denotes the contextual output embeddings
for task t. In our case, t indicates UD-parsing. In
contrast to the multi-task objective of the original
UDify model, our experiments only involve UD-
parsing. The term Bij represents the mBERT repre-
sentation for layer i = 1, ..., 12 at token position j.
The terms γ and η denote trainable scalars, where
the former applies to mBERT and the latter scales
the normalized averages. For words that were to-
kenized into multiple word pieces, only the first
word piece was fed to the UD-parsing classifier.

The UD-parsing classifier is a graph-based bi-
affine attention classifier (Dozat and Manning,
2017) that projects the embeddings etj through arc-
head and arc-dep feedforward layers. The resulting
outputs are combined using biaffine attention to
produce a probability distribution of arc heads for
each word. Finally, the dependency tree is decoded
using the Chu-Liu/Edmonds algorithm (Chu, 1965;
Edmonds, 1967). We refer the reader to the work
of Kondratyuk and Straka (2019) for further details
on the architecture and its training procedure.
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Figure 1: Visualization of MAML algorithm for three
meta-training languages. The green arrows represents
the meta-update from the outer learning loop. The red
dotted arrows represent the gradient computed on the
support set for each language in the inner learning loop.

4.2 Meta-learning procedure

We apply first-order1 MAML to the UDify model.
The model’s self-attention layers are initialized
with parameters from mBERT and the classifier’s
feedforward layers are randomly initialized. The
model is pre-trained on a high-resource language
using standard supervised learning and further
meta-trained on a set of seven languages with
MAML. It is then evaluated using meta-testing. We
refer to MAML with pre-training as simply MAML.
The meta-learning procedure is visualized in Fig-
ure 1 and can be described as follows:

Step 1 Pre-train on a high-resource language to
yield the initial parameters Θ.

Step 2 Meta-train on all other training languages.
For each language i, we partition the UD training
data into two disjoint sets, Dtrain

i and Dtest
i , and

perform the following inner loop:

1. Temporarily update the model parameters Θi

with stochastic gradient descent on support set
S, sampled from Dtrain

i , with learning rate α
for k gradient descent adaptation steps. When
using a single gradient step, the update be-
comes:

Φi ← Θ− α∇ΘL(Θi) (2)

2. Compute the losses of the model parameters
Φi using the query set Q, sampled from Dtest

i ,
denoted by Li(Φi).

1For more details on first-order versus second-order, see
Finn et al. (2017); Holla et al. (2020).

Step 3 Sum up the test losses and perform a meta-
update in the outer learning loop on the model with
parameters Θ using the learning rate β:

Θ← Θ− β
∑
i

∇ΘLi(Φi) (3)

In our experiments, the update is a first-order ap-
proximation, replacing∇ΘLi(Φi) by∇ΦiLi(Φi).

Step 4 After meta-training, we apply meta-
testing to unseen languages. For each language, we
sample a support set S from the UD training data.
We then fine-tune our model on S, and evaluate the
model on the entire test set. Thereby, meta-testing
mimics the adaptation from the inner loop. We
repeat this process multiple times to get a reliable
estimate of how well the model adapts to unseen
languages.

5 Experimental setup

We extend the existing UDify code2 to be used in
a meta-learning setup. All of our code is publicly
available.3

5.1 Training and evaluation

Pre-training In the main body of the paper, we
consider the pre-training languages English and
Hindi to measure the impact of pre-training prior
to cross-lingual adaptation, and to draw more gen-
eral conclusions about how well MAML generalizes
with typologically different pre-training languages.
English and Hindi differ in word order (SVO versus
SOV), and Hindi treebanks have a larger percent-
age of non-projective dependency trees (Mannem
et al., 2009), where dependency arcs are allowed to
cross one another. Non-projective trees are more
challenging to parse (Nivre, 2009). Pre-training on
Hindi allows us to test the effects of projectivity on
cross-lingual adaptation. To ensure that our find-
ings are not specific to the pre-training languages of
English and Hindi, Appendix D reproduces a sub-
set of experiments for the pre-training languages
Italian and Czech, reporting results for monolin-
gual baselines, a non-episodic baseline, and MAML.
Italian and Czech are high-resource languages as
well, but are from two different subfamilies of the
family of Indo-European languages and also differ
in their percentage of non-projective dependency
trees.

2github.com/Hyperparticle/udify
3github.com/annaproxy/udify-metalearning
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Meta-training We apply meta-training using
seven languages listed in Section 3, excluding the
pre-training language from meta-training. We train
for 500 episodes per language, using a cosine-based
learning rate scheduler with 10% warm-up. We use
the Adam optimizer (Kingma and Ba, 2015) in
the outer loop and SGD in the inner loop (Finn
et al., 2017). Support and query sets are of size
20. Due to the sequence labelling paradigm, the
number of shots per class varies per batch. When
|S| = 20, the average class will appear 16 times.
To select hyperparameters, we independently vary
the amount of updates k and the learning rates in
the inner loop and outer loop for mBERT and the
parser, while performing meta-validation with the
languages Bulgarian and Telugu. To meta-validate,
we follow the procedure described in Section 4.2
for both languages, mimicking the meta-testing
setup with a support set size of 20. The hyperpa-
rameters are estimated independently for Hindi and
English pre-training (see Appendix A).

Meta-testing At meta-testing time, we use SGD
with the same learning rates and the same k used
in the inner loop during meta-training. We vary the
support set size |S| ∈ {20, 40, 80}.

5.2 Baselines

We define several baselines, that are evaluated us-
ing meta-testing, i.e. by fine-tuning the models on
a support set of a test language prior to evaluation
on that language. This allows us to directly com-
pare their ability to adapt quickly to new languages
with that of the meta-learner.

Monolingual baselines (EN, HIN) These base-
lines measure the impact of meta-training on data
from seven additional languages. The model is ini-
tialized using mBERT and trained using data from
English (EN) or Hindi (HIN), without meta-training.

Multilingual non-episodic baseline (NE) In-
stead of episodic training, this baseline treats sup-
port and query sets as regular mini-batches and
updates the model parameters directly using a
joint learning objective, similar to Kondratyuk and
Straka (2019) and Tran and Bisazza (2019). The
model is pre-trained on English or Hindi and thus
indicates the advantages of MAML over standard
supervised learning. The training learning rate and
meta-testing learning rate are estimated separately,
since there is no inner loop update in this setup.

MAML without pre-training We evaluate the ef-
fects of pre-training by running a MAML setup with-
out any pre-training. Instead, the pre-training lan-
guage is included during meta-training as one of
now eight languages. MAML without pre-training
is trained on 2000 episodes per language.

Meta-testing only The simplest baseline is a de-
coder randomly initialized on top of mBERT, with-
out pre-training and meta-training. Dependency
parsing is only introduced at meta-testing time.

5.3 Evaluation
Hyperparameter selection and evaluation is per-
formed using Labeled Attachment Score (LAS) as
computed by the CoNLL 2018 Shared Task evalua-
tion script.4 LAS evaluates the correctness of both
the dependency class and dependency head. We
use the standard splits of Universal Dependencies
for training and evaluation when available. Other-
wise, we remove the meta-testing support set from
the test set prior to evaluation. We train each model
with seven different seeds and compare MAML to a
monolingual baseline and NE using paired t-tests,
adjusting for multiple comparisons using Bonfer-
roni correction.

6 Results and analysis

MAML with English pre-training We report the
mean LAS for models pre-trained on English in
Table 1. We compare these results to related ap-
proaches that use mBERT and have multiple train-
ing languages. With support set size 20, MAML

already outperforms the zero-shot transfer setup of
Tran and Bisazza (2019) for all test languages, ex-
cept Persian and Urdu. MAML is competitive with
UDify (Kondratyuk and Straka, 2019) and UDapter
(Üstün et al., 2020) for low-resource languages, de-
spite the stark difference in the number of training
languages compared to UDify5 (75), and without
relying on fine-grained typological features of lan-
guages, as is the case for UDapter.

MAML consistently outperforms the EN and NE

baselines. Large improvements over the EN base-
line are seen on low-resource and non-Germanic
languages. The difference between MAML and
the baselines increases with |S|. The largest im-
provements over NE are on Tamil and Japanese,

4universaldependencies.org/conll18/evaluation.html
5UDify is trained on the low-resource languages, while we

only test on them. For a fair comparison, we only list UDify
results on languages with a small amount of sentences (<80)
in the training set, to mimic a few-shot generalisation setup.
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|S| = 20 |S| = 40 |S| = 80
Language T&B K&S Üst. EN NE MAML EN NE MAML EN NE MAML

Low-Resource Languages
Armenian 58.95 – – 49.8 63.34 63.84 50.59 63.54 64.30 51.99 63.79 64.78
Breton 52.62 39.84 58.5 60.34 61.44 64.18 61.32 61.67 65.12 62.76 62.20 66.14
Buryat† 23.11 26.28 28.9 23.66 25.56 25.77 23.82 25.67 26.38 24.17 25.88 27.33
Faroese† 61.98 59.26 69.2 68.50 67.83 68.95 69.56 68.12 69.88 70.59 68.62 71.12
Kazakh 44.56 63.66 60.7 47.25 55.02 55.07 47.80 55.08 55.46 49.08 55.23 56.15
U.Sorbian† 49.74 62.82 54.2 49.29 54.47 56.40 50.55 54.70 57.55 52.11 55.07 58.81
Mean 48.45 – – 49.81 54.61 55.70 50.61 54.80 56.45 51.78 55.13 57.38

High-Resource Languages
Finnish 62.29 – – 56.61 64.94 64.89 56.99 65.07 65.40 57.73 65.18 65.82
French 59.54 – – 65.21 66.55 66.85 65.33 66.59 66.97 65.63 66.65 67.25
German 70.93 – – 72.47 76.15 76.41 72.6 76.17 76.54 72.93 76.21 76.72
Hungar. 61.11 – – 56.50 62.93 62.71 56.23 63.09 62.81 56.73 63.21 62.52
Japanese 24.10 – – 18.87 36.49 39.06 20.05 37.15 42.17 22.80 38.40 46.81
Persian 56.92 – – 43.43 52.55 52.81 44.53 52.76 53.63 46.42 53.11 54.74
Swedish 78.70 – – 80.26 80.73 81.36 80.41 80.81 81.53 80.57 80.79 81.59
Tamil 32.78 – – 31.58 41.12 44.34 32.67 41.72 46.73 34.81 42.88 50.73
Urdu 63.06 – – 25.71 57.25 55.16 26.89 57.36 56.16 29.30 57.68 57.60
Vietnam. 29.71 – – 43.24 42.73 43.34 43.65 42.82 43.74 44.28 43.02 44.34
Mean 53.91 – – 49.39 58.14 58.69 49.93 58.35 59.57 51.12 58.71 60.81

Mean 51.88 – – 49.55 56.82 57.57 50.19 57.02 58.4 51.37 57.37 59.52

Table 1: Mean LAS aligned accuracy per support set size |S| for unseen test languages. Best results per category
are bolded. Significant results are underlined (p < 0.005). Previous work consists of Tran and Bisazza (2019),
UDify (Kondratyuk and Straka, 2019) and UDapter (Üstün et al., 2020). †: Languages were absent from mBERT.

|S| = 20 |S| = 80
Language MAML MAML- MAML MAML-

Low-Resource Languages
Armenian 63.84 59.70 64.78 60.03
Breton 64.18 59.33 66.14 60.84
Buryat† 25.77 26.02 27.33 27.05
Faroese† 68.95 65.30 71.12 66.79
Kazakh 55.07 53.92 56.15 54.99
U.Sorbian† 56.40 51.67 58.78 52.38
Mean 55.7 52.66 57.38 53.68

High-Resource Languages
Mean 58.69 57.04 60.81 58.25

Table 2: Mean LAS per unseen language, for MAML
without pre-training (denoted MAML-) versus MAML
(EN). †: Languages were absent from mBERT.

however NE outperforms MAML on Hungarian and
Urdu. MAML consistently outperforms NE on low-
resource languages, with an average 1.1% improve-
ment per low-resource language for |S| = 20, up
to a 2.2% average improvement for |S| = 80.

MAML with Hindi pre-training The results for
models pre-trained on Hindi can be seen in Table 3.
Although there are large differences between the
monolingual EN and HIN baselines, both MAML

(HIN) and NE (HIN) achieve, on average, similar
LAS scores to their English counterparts. MAML

still outperforms NE for the majority of languages:

the mean improvement on low-resource languages
is 0.8% per language for |S| = 20, which increases
to 1.6% per language for |S| = 80.

Other pre-training languages The full results
for the two other pre-training languages, Italian and
Czech, are listed in Appendix D. Here, too, MAML

outperforms its NE counterpart. The NE baseline is
stronger for more languages than in our main ex-
periments. For |S| = 20, the mean improvements
per unseen language are 0.91% and 0.47% when
pre-training on Italian and Czech, respectively. For
|S| = 80, the improvements are 2.18% and 1.75%.

MAML without (pre-)training We investigate
the effectiveness of pre-training by omitting the
pre-training phase. A comparison between MAML

and MAML without pre-training is shown in Ta-
ble 2. MAML without pre-training underperforms
for most languages and its performance does not in-
crease as much with a larger support set size. This
suggests that pre-training provides a better starting
point for meta-learning than plain mBERT.

When meta-testing only – i.e. omitting both pre-
training and meta-training – the fine-tuned model
reaches a mean LAS of 6.9% over all test languages
for |S| = 20, increasing to 15% for |S| = 80,
indicating that meta-testing alone is not sufficient
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|S| = 20 |S| = 40 |S| = 80
Language HIN NE MAML HIN NE MAML HIN NE MAML

Low-Resource Languages
Armenian 48.41 63.30 63.76 48.87 63.41 64.17 49.70 63.59 64.76
Breton 34.06 62.09 61.56 36.09 62.40 62.47 38.95 63.05 63.75
Buryat† 24.24 25.05 26.27 24.71 25.18 26.79 25.54 25.40 27.37
Faroese† 50.72 65.31 66.82 52.30 65.57 67.31 54.64 66.17 68.25
Kazakh 49.80 53.77 54.23 49.90 53.94 54.45 50.49 54.08 55.00
U.Sorbian† 36.22 53.36 54.97 37.08 53.58 55.64 38.22 53.94 56.56
Mean 40.57 53.81 54.60 41.49 54.01 55.14 42.92 54.37 55.95

High-Resource Languages
Finnish 50.49 64.05 64.64 50.93 64.20 65.05 51.79 64.40 65.61
French 31.16 64.44 65.73 31.59 64.44 65.68 33.39 64.42 65.69
German 44.83 74.40 75.15 45.46 74.41 75.23 46.65 74.46 75.31
Hungarian 46.72 60.98 62.51 46.97 61.33 62.89 47.91 61.68 62.91
Japanese 40.25 39.97 41.96 43.03 40.56 43.61 46.87 41.58 45.90
Persian 28.60 53.73 53.63 29.51 53.85 54.00 31.11 54.06 54.53
Swedish 46.96 79.24 79.89 47.73 79.32 80.14 49.15 79.31 80.21
Tamil 46.51 39.44 39.57 47.35 39.84 40.84 48.55 40.73 42.81
Urdu 67.72 50.64 49.16 67.96 50.93 50.16 68.17 51.50 51.57
Vietnamese 26.96 42.13 42.12 27.92 42.23 42.37 29.61 42.46 42.87
Mean 43.02 56.9 57.44 43.85 57.11 58.0 45.32 57.46 58.74

Mean 42.1 55.74 56.37 42.96 55.95 56.92 44.42 56.3 57.69

Table 3: Mean LAS aligned accuracy per unseen language, for models pre-trained on Hindi. Best results per
category are listed in bold, significant results are underlined (p < 0.005). †: Languages were absent from mBERT.

to learn the task.6

Further Analysis Performance increases over
the monolingual baselines vary strongly per lan-
guage – e.g. consider the difference between
Japanese and French in Table 1. The performance
increase is largest for languages that differ from the
pre-training language with respect to their syntactic
properties. We conduct two types of analysis, based
on typological features and projectivity, to quan-
tify this effect and correlate these properties to the
performance increase over monolingual baselines.7

Firstly, we use 103 binary syntactic features from
URIEL (Littell et al., 2017) to compute the syn-
tactic cosine similarities (denoted σ) between lan-
guages. With this metric, a language such as Ital-
ian is syntactically closer to English (σ = 0.86)
than Urdu (σ = 0.62), even though they are both
Indo-European. For each unseen language, we col-
lect the cosine similarities to each (pre-)training
language. Then, we collect the difference in perfor-
mance between the monolingual baselines and the
NE or MAML setups for |S| = 20. For each train-
ing language, we compute the correlations between
performance increases for the test languages and
their similarity to this training language, visualised

6Full results can be found in Appendix C.
7No clear correlation was found by Tran and Bisazza

(2019). By using increase in performance and not “plain"
performance, we may see a stronger effect.

in Figure 2. When pre-training on Hindi, there
is a significant positive correlation with syntactic
similarity to English and related languages. When
pre-training on English, a positive correlation is
seen with similarity to Hindi and Korean. Positive
correlations imply that on unseen languages, im-
provement increases when similarity to the training
language increases. Negative correlations mean
there is less improvement when similarity to the
training languages increases, suggesting that those
languages do not contribute as much to adapta-
tion. On average, the selection of meta-training
languages contributes significantly to the increase
in performance for the Hindi pre-training models.
This effect is stronger for MAML (HIN) (p = 0.006)
than NE (HIN) (p = 0.026), which may indicate
that the meta-training procedure is better at incorpo-
rating knowledge from those unrelated languages.

Secondly, we analyze which syntactic features
impact performance most. We correlate individ-
ual URIEL features with MAML’s performance in-
creases over monolingual baselines (see Figure 3).
Features related to word order and negation show
a significant correlation. Considering the presence
of these features in both pre-training languages of
MAML, a pattern emerges: when a feature is absent
in the pre-training language, there is a positive cor-
relation with increase in performance. Similarly,
when a feature is present in the pre-training lan-
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NE (EN)
NE (HIN)

MAML (EN)
MAML (HIN)

Arabic

Czech

Italian

Norwegian

Russian

Hindi

Korean

English

Mean

La
ng

ua
ge

 fo
r s

im
ila

rit
y

-0.31 0.62* -0.23 0.66*

-0.26 0.54* -0.19 0.62*

-0.5* 0.71* -0.41 0.77*

-0.54* 0.63* -0.48 0.69*

-0.48 0.6* -0.42 0.67*

0.61* -0.58* 0.59* -0.53*

0.67* -0.81* 0.63* -0.75*

-0.6* 0.73* -0.55* 0.78*

-0.36 0.55* -0.29 0.66*

1.0 0.5 0.0 0.5 1.0

Figure 2: Spearman’s ρ between the performance in-
crease over the monolingual baseline and the cosine
similarity to the syntax of training languages (y-axis)
for models using pre-training (x-axis). (*: p < 0.05)

guage, there is a negative correlation, and thus a
smaller increase in performance after meta-training.
This indicates that MAML is successfully adapting
to these specific features during meta-training.

We analyzed MAML’s performance improve-
ments over NE on each of the 132 dependency re-
lations, and found that they are consistent across
relations. 8 Lastly, we detect non-projective de-
pendency trees in all datasets. The Hindi treebank
used has 14% of non-projective trees, whereas En-
glish only has 5%.9 We correlate the increase in
performance with the percentage of non-projective
trees in a language’s treebank. The correlation is
significant for NE (EN) (ρ = 0.46, p = 0.01) and
MAML (EN) (ρ = 0.42, p = 0.03). Figure 4 visu-
alizes the correlation for MAML (EN). We do not
find significant correlations for models pre-trained
on Hindi. This suggests that a model trained on a
mostly projective language can benefit more from
further training on non-projective languages than
the other way around. The same trend is observed
when comparing models pre-trained on Italian and
Czech, that also differ in the percentage of non-
projective trees (Appendix D).

7 Discussion

Our experiments confirm that meta-learning, specif-
ically MAML, is able to adapt to unseen languages
on the task of cross-lingual dependency parsing

8The same holds for the 37 coarse-grained UD relations.
9Full results can be found in Appendix B.

MAML (EN)MAML (HIN)

SVO ( )
Adposition before noun ( )

Possessor after noun ( )
Negative word after verb ( )

Negative word before object ( )
Prosubject word ( )

VOX ( )
Oblique after verb ( )

SOV ( )
Adposition after noun ( )

Object headmark ( )
Any redup. ( )

Comitative vs instrumental mark ( )
Prosubject affix ( )

OXV ( )
Oblique before verb ( )

Fe
at

ur
e 

in
 U

RI
EL

-0.56* 0.67*
-0.51* 0.81*
-0.65* 0.81*
-0.6* 0.75*
-0.7* 0.67*
-0.61* 0.26
-0.48 0.8*
-0.48 0.8*
0.64* -0.51*
0.65* -0.81*
0.57* -0.16
0.48 -0.7*
0.45 -0.86*
0.61* -0.26
0.63* -0.72*
0.48 -0.8*

Figure 3: Spearman’s ρ between the performance in-
crease over monolingual baselines and URIEL features
(y-axis), for MAML (x-axis). We indicate features
present in English (‡) and in Hindi (�). (*: p < 0.05)
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Figure 4: Spearman’s ρ between the % of non-
projective dependency trees and MAML’s improvement
over the English baseline (ρ = 0.42, p = 0.03).

more effectively than a non-episodic model. The
difference between both methods is most apparent
for languages that differ strongly from those in the
training set (e.g. Japanese in Table 1) where effec-
tive few-shot adaptation is crucial. This shows that
MAML is successful at learning to learn from a few
examples, and can efficiently incorporate new infor-
mation. Furthermore, we see a clear increase in per-
formance for MAML when increasing the test sup-
port set size, while NE only slightly improves. This
suggests that MAML may be a promising method
for cross-lingual adaptation more generally, also
outside of the few-shot learning scenario.

Our ablation experiments on pre-training show
that it is beneficial for MAML to start from a strong
set of parameters, pre-trained on a high resource
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language. Thereby, the pre-training is not depen-
dent on a specific language. MAML performs well
with a variety of pre-training languages, although
improvements for unseen languages vary. When
a model is pre-trained on English, there is a large
positive correlation for improvements in languages
that are syntactically dissimilar to English, such
as Japanese and Tamil. During meta-training, dis-
similar training languages such as Hindi most con-
tribute to the model’s ability to generalize. Syn-
tactic features, especially those related to word
order, which have already been learned during pre-
training, require less adaptation. The same is true,
vice versa, for Hindi pre-training.

This effect is also observed, though only in
one direction, when correlating performance in-
crease with non-projectivity. It is beneficial to
meta-train on a set of languages that vary in pro-
jectivity after pre-training on one which is mostly
projective. However, not all variance is explained
by the difference in typological features. The
fact that MAML outperforms MAML without pre-
training suggests that pre-training also contributes
language-agnostic syntactic features, which is in-
deed the overall goal of multi-lingual UD models.

8 Conclusion

In this paper, we present a meta-learning approach
for the task of cross-lingual dependency parsing.
Our experiments show that meta-learning can im-
prove few-shot universal dependency parsing per-
formance on unseen, unrelated test languages, in-
cluding low-resource languages and those not cov-
ered by mBERT. In addition, we see that it is ben-
eficial to pre-train before meta-training, as in the
X-MAML approach (Nooralahzadeh et al., 2020). In
particular, the pre-training language can affect how
much adaptation is necessary on languages that are
typologically different from it. Therefore, an impor-
tant direction for future research is to investigate a
wider range of pre-training/meta-training language
combinations, based on specific hypotheses about
language relationships and relevant syntactic fea-
tures. Task performance may be further improved
by including a larger set of syntax-related tasks,
such as POS-tagging, to sample from during meta-
training (Kondratyuk and Straka, 2019).
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A Training details and hyperparameters

Parameter Value

Dependency tag dimension 256
Dependency arc dimension 768

Dropout 0.5
BERT Dropout 0.2

Mask probability 0.2
Layer dropout 0.1

Table 4: Hyperparameters for the UDify model archi-
tecture.

All models use the same architecture: an
overview of all model parameters can be seen in
Table 4. The model contains 196M parameters, of
which 178M are mBERT.

At pre-training time, we use the default parame-
ters of UDify (Kondratyuk and Straka, 2019). We
pre-train for 60 epochs. The Adam optimizer is
used with a 1e-3 learning rate for the decoder and a
5e-5 learning rate for BERT layers. Weight decay
of 0.01 is applied. We employ a gradual unfreezing
scheme, freezing the BERT layer weights for the
first epoch.

At meta-training time, we vary the learning rates
as shown in Table 5. We also vary the amount of
updates k at training/testing time: k ∈ {8, 20}. We
applied weight decay at meta-training time in initial
experiments, but this yielded no improvements. No
gradual unfreezing is applied at meta-training time.
We use Adam for the outer loop updates and SGD
for the inner loop updates and at testing time. We
sample 500 episodes per language, using query and
support set size of 20. The best hyperparameters
are chosen with respect to their final performance
on the meta-validation set consisting of Bulgarian
and Telugu. We run two seeds for hyperparameter
selection, and seven seeds for all the final mod-
els. Labeled Attachment Score (LAS) is used for
hyperparameter selection and final evaluation.

We train all models on an NVIDIA TITAN RTX.
Pre-training takes around 3 hours, meta-training
takes around 1 hour for 100 episodes per language
when the amount of updates k is set to 20. For
MAML, this amounts to approximately 5 hours,
and for the ablated MAML-, it amounts to ap-
proximately 20 hours, which can be seen as an-
other benefit of pre-training. Finally, training in a
non-episodic fashion (NE) also takes up less time,
namely 2 to 3 hours.

All final learning rates can be seen in Table 6.
For all models except the random decoder baseline,

k = 20 was selected. The best random decoder
used k = 80 after a separate hyperparameter search
of high learning rates and ks (compensating for the
lack of prior DP training).

LR mBERT Decoder

Inner/Test α {1e-4, 5e-5, 1e-5} {1e-3, 5e-4, 1e-4,
5e-5}

Outer β {5e-5, 1e-5, 7e-6} {1e-3, 7e-4, 5e-4,
1e-4, 5e-5}

Table 5: Learning rates independently varied for MAML
and NE. For the ablated MAML-, only underlined learn-
ing rates were tried due to the long training times.

Inner/Test LR Outer LR
Decoder BERT Decoder BERT

Meta-test only 5e-3 1e-3 n/a n/a
EN/HIN 1e-4 1e-4 n/a n/a
NE (en/hin) 5e-4 1e-5 1e-4 7e-6
MAML (en) 1e-3 1e-4 5e-4 1e-5
MAML (hin) 5e-4 5e-5 5e-4 5e-5
MAML- 1e-3 1e-5 5e-4 1e-5

Table 6: Final hyperparameters, as selected by few-
shot performance on the validation set. Inner loop/Test
learning rates are used with SGD, outer loop LRs are
used with the Adam optimizer.

B Information about datasets used

All information about the datasets used can be
found in Table 7, along with corresponding statis-
tics about non-projective trees. The cosine syntac-
tical similarities are visualized in Figure 5.

C Full results

We show the full results for each model in Table 8,
Table 9 and Table 10.
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Language Family Subcategory UD Dataset Train Val. Test Non-proj. %

Low-Resource Test Languages
Armenian IE Armenian ArmTDP 560 0 470 10.2
Breton IE Celtic KEB 0 0 888 2.7
Buryat Mongolic Mongolic BDT 19 0 908 15.6
Faroese IE Germanic OFT 0 0 1208 2.7
Kazakh Turkic Northwestern KTB 31 0 1047 12.1
Upper Sorbian IE Slavic UFAL 23 0 623 11.3

High-Resource Test Languages
Finnish Uralic Finnic TDT 12217 1364 1555 6.3
French IE Romance Spoken 1153 907 726 5.5
German IE Germanic GSD 13814 799 977 9.2
Hungarian Uralic Ugric Szeged 910 441 449 27.1
Japanese Japanese Japanese GSD 7133 511 551 2.6
Persian IE Iranian Seraji 4798 599 600 6.7
Swedish IE Germanic PUD 0 0 1000 3.8
Tamil Dravidian Southern TTB 400 80 120 2.8
Urdu IE Indic UDTB 4043 552 535 22.6
Vietnamese Austro-As. Viet-Muong VTB 1400 800 800 2.9

Validation Languages
Bulgarian IE Slavic BTB 8907 1115 1116 3.1
Telugu Dravidian South Central MTG 1051 131 146 0.2

Train Languages
Arabic Afro-As. Semitic PADT 6075 909 680 9.2
Czech IE Slavic PDT 68495 9270 10148 11.9
English IE Germanic EWT 12543 2002 2077 4.8
Hindi IE Indic HDTB 13304 1659 1684 13.6
Italian IE Romance ISDT 13121 564 482 2.1
Korean Korean Korean Kaist 23010 2066 2287 21.7
Norwegian IE Germanic Nynorsk 14174 1890 1511 8.2
Russian IE Slavic SynTagRus 48814 6584 6491 8.0

Table 7: All datasets used during testing (first 16 rows) training and evaluation (final 10 rows), along with the
amount of sentences in the dataset and the percentage of non-projective trees throughout that dataset.

Language M.T. only EN HIN NE (EN) NE (HIN) MAML MAML (HIN) MAML-

Unseen Languages
Armenian 4.97±0.007 49.8±0.005 48.41±0.002 63.34±0.002 63.3±0.005 63.84±0.002 63.76±0.003 59.7±0.004
Breton 10.77±0.019 60.34±0.003 34.06±0.005 61.44±0.005 62.09±0.004 64.18±0.003 61.56±0.002 59.33±0.005
Buryat 9.63±0.018 23.66±0.002 24.24±0.002 25.56±0.003 25.05±0.003 25.77±0.002 26.27±0.002 26.02±0.004
Faroese 13.86±0.024 68.5±0.004 50.72±0.004 67.83±0.006 65.31±0.006 68.95±0.003 66.82±0.002 65.3±0.005
Kazakh 13.97±0.012 47.25±0.004 49.8±0.002 55.02±0.002 53.77±0.003 55.07±0.002 54.23±0.003 53.92±0.005
U.Sorbian 3.44±0.005 49.29±0.004 36.22±0.003 54.47±0.003 53.36±0.003 56.4±0.004 54.97±0.005 51.67±0.004
Finnish 6.95±0.014 56.61±0.002 50.49±0.003 64.94±0.003 64.05±0.004 64.89±0.003 64.64±0.002 61.97±0.005
French 6.81±0.011 65.21±0.001 31.16±0.003 66.55±0.001 64.44±0.002 66.85±0.001 65.73±0.001 63.42±0.003
German 7.52±0.012 72.47±0.001 44.83±0.004 76.15±0.002 74.4±0.002 76.41±0.002 75.15±0.001 74.38±0.003
Hungarian 5.58±0.004 56.5±0.003 46.72±0.004 62.93±0.003 60.98±0.002 62.71±0.003 62.51±0.004 58.47±0.002
Japanese 4.02±0.008 18.87±0.002 40.25±0.005 36.49±0.008 39.97±0.003 39.06±0.003 41.96±0.005 39.72±0.007
Persian 1.91±0.004 43.42±0.005 28.66±0.004 52.62±0.006 53.78±0.004 52.82±0.005 53.59±0.003 50.31±0.004
Swedish 5.15±0.008 80.26±0.001 46.96±0.004 80.73±0.001 79.24±0.002 81.36±0.001 79.89±0.001 77.57±0.002
Tamil 5.18±0.013 31.58±0.005 46.51±0.003 41.12±0.009 39.44±0.006 44.34±0.005 39.57±0.008 46.55±0.01
Urdu 2.86±0.01 25.71±0.004 67.72±0.001 57.25±0.004 50.64±0.004 55.16±0.004 49.16±0.002 55.4±0.003
Vietnamese 7.14±0.008 43.24±0.002 26.96±0.002 42.73±0.001 42.13±0.002 43.34±0.001 42.12±0.001 42.62±0.003

Validation & Training Languages
Bulgarian 8.65±0.01 71.19±0.002 46.76±0.003 78.42±0.003 77.62±0.001 78.64±0.002 78.4±0.001 75.3±0.003
Telugu 42.36±0.078 64.39±0.018 66.78±0.014 68.5±0.006 64.8±0.008 69.91±0.01 65.8±0.008 67.58±0.008
Arabic 3.25±0.007 38.53±0.006 20.74±0.004 71.51±0.002 69.76±0.002 68.86±0.002 73.09±0.002 66.4±0.002
Czech 6.37±0.006 67.3±0.002 43.24±0.002 83.15±0.001 81.65±0.001 82.0±0.001 83.21±0.001 80.06±0.001
English 8.43±0.008 89.29±0.001 44.48±0.003 82.15±0.004 79.48±0.001 83.74±0.001 81.89±0.001 78.04±0.001
Hindi 3.38±0.007 35.42±0.002 90.99±0.0 76.56±0.002 74.03±0.004 74.15±0.003 71.33±0.003 74.48±0.004
Italian 7.15±0.008 82.5±0.001 36.86±0.006 87.34±0.002 85.28±0.001 86.5±0.001 87.18±0.002 83.09±0.002
Korean 7.82±0.011 36.44±0.004 40.3±0.002 66.35±0.003 68.04±0.003 63.93±0.003 74.08±0.001 63.62±0.005
Norwegian 5.68±0.013 74.7±0.001 43.7±0.003 80.09±0.001 77.65±0.001 78.67±0.001 81.33±0.002 75.61±0.001
Russian 6.76±0.013 68.94±0.003 47.29±0.005 80.96±0.001 79.41±0.001 79.93±0.001 81.68±0.001 76.48±0.002

Table 8: Full meta-testing results for all models and baselines, including validation and training languages, for
|S| = 20. The meta-testing only baseline is denoted as “M.T. only".
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Arabic Czech English Hindi Italian Korean Norwegian Russian Mean
Train language

Arabic
Armenian

Breton
Bulgarian

Buryat
Czech

English
Faroese
Finnish
French

German
Hindi

Hungarian
Italian

Japanese
Kazakh
Korean

Norwegian
Persian
Russian
Swedish

Tamil
Telugu

UpperSorbian
Urdu

Vietnamese
Mean

La
ng

ua
ge

1 0.65 0.64 0.66 0.76 0.43 0.69 0.74 0.7
0.67 0.76 0.63 0.69 0.68 0.66 0.7 0.71 0.69
0.82 0.71 0.75 0.6 0.86 0.42 0.75 0.75 0.71
0.69 0.84 0.86 0.69 0.9 0.56 0.85 0.9 0.79
0.47 0.63 0.46 0.67 0.47 0.82 0.55 0.61 0.58
0.65 1 0.74 0.65 0.79 0.53 0.82 0.82 0.75
0.64 0.74 1 0.62 0.86 0.55 0.91 0.81 0.77
0.66 0.84 0.88 0.63 0.82 0.57 0.95 0.85 0.78
0.68 0.75 0.71 0.73 0.76 0.62 0.78 0.84 0.73
0.72 0.72 0.81 0.65 0.83 0.47 0.81 0.81 0.73
0.64 0.79 0.9 0.67 0.82 0.61 0.92 0.82 0.77
0.66 0.65 0.62 1 0.64 0.75 0.67 0.7 0.71
0.64 0.65 0.69 0.71 0.72 0.7 0.72 0.72 0.69
0.76 0.79 0.86 0.64 1 0.51 0.82 0.83 0.78
0.38 0.54 0.5 0.63 0.43 0.84 0.53 0.52 0.55
0.58 0.59 0.45 0.73 0.48 0.67 0.48 0.54 0.56
0.43 0.53 0.55 0.75 0.51 1 0.61 0.62 0.63
0.69 0.82 0.91 0.67 0.82 0.61 1 0.88 0.8
0.63 0.72 0.52 0.62 0.66 0.48 0.55 0.64 0.6
0.74 0.82 0.81 0.7 0.83 0.62 0.88 1 0.8
0.66 0.78 0.93 0.63 0.85 0.57 0.97 0.85 0.78
0.5 0.66 0.51 0.77 0.49 0.71 0.57 0.56 0.6
0.5 0.67 0.52 0.78 0.5 0.75 0.55 0.57 0.6
0.74 0.9 0.81 0.75 0.85 0.59 0.88 0.9 0.8
0.64 0.62 0.62 0.95 0.67 0.7 0.62 0.67 0.69
0.55 0.43 0.66 0.43 0.64 0.41 0.58 0.62 0.54
0.64 0.72 0.71 0.69 0.72 0.62 0.74 0.74 0.7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Syntactical cosine similarities from each training language to all other languages, calculated using
URIEL’s 103 binary syntactic features (Littell et al., 2017). Average cosine similarities are shown in the rightmost
column and the bottom row. For instance, Japanese and Kazakh have a relatively low average cosine similarity to
the training languages.
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Language M.T. only EN HIN NE (EN) NE (HIN) MAML MAML (HIN) MAML-

Unseen Languages
Armenian 5.82±0.007 50.59±0.005 48.87±0.002 63.54±0.002 63.41±0.004 64.3±0.002 64.17±0.003 59.85±0.004
Breton 14.52±0.02 61.32±0.004 36.09±0.005 61.67±0.005 62.4±0.005 65.12±0.003 62.47±0.004 59.96±0.004
Buryat 13.36±0.017 23.82±0.002 24.71±0.003 25.67±0.003 25.18±0.003 26.38±0.003 26.79±0.003 26.49±0.004
Faroese 20.4±0.019 69.56±0.004 52.3±0.005 68.12±0.006 65.57±0.006 69.88±0.004 67.31±0.003 65.95±0.004
Kazakh 17.11±0.014 47.8±0.004 49.9±0.003 55.08±0.002 53.94±0.003 55.46±0.003 54.45±0.004 54.29±0.005
U.Sorbian 4.49±0.008 50.55±0.005 37.08±0.003 54.7±0.004 53.58±0.003 57.55±0.004 55.64±0.005 52.09±0.005
Finnish 9.42±0.011 56.99±0.003 50.93±0.003 65.07±0.003 64.2±0.004 65.4±0.003 65.05±0.003 62.26±0.004
French 8.41±0.019 65.33±0.002 31.59±0.005 66.59±0.001 64.44±0.002 66.97±0.001 65.68±0.002 63.78±0.003
German 10.4±0.016 72.6±0.001 45.46±0.004 76.17±0.002 74.41±0.002 76.54±0.002 75.23±0.002 74.53±0.003
Hungarian 6.8±0.007 56.23±0.003 46.97±0.004 63.09±0.003 61.33±0.002 62.81±0.002 62.89±0.003 58.09±0.003
Japanese 5.85±0.014 20.05±0.003 43.03±0.006 37.15±0.008 40.56±0.002 42.17±0.004 43.61±0.004 41.51±0.006
Persian 3.32±0.01 44.54±0.004 29.55±0.004 52.72±0.006 53.85±0.004 53.65±0.005 54.02±0.003 50.83±0.005
Swedish 8.27±0.008 80.41±0.001 47.73±0.003 80.81±0.001 79.32±0.002 81.53±0.001 80.14±0.002 77.94±0.002
Tamil 9.37±0.018 32.67±0.004 47.35±0.004 41.72±0.009 39.84±0.004 46.73±0.005 40.84±0.006 48.54±0.008
Urdu 5.88±0.01 26.89±0.005 67.96±0.002 57.36±0.004 50.93±0.004 56.16±0.004 50.16±0.004 55.84±0.003
Vietnamese 9.65±0.014 43.65±0.002 27.92±0.002 42.82±0.002 42.23±0.003 43.74±0.001 42.37±0.001 43.23±0.004

Validation & Training Languages
Bulgarian 10.87±0.021 71.21±0.002 47.29±0.004 78.42±0.003 77.62±0.001 78.65±0.002 78.39±0.001 75.44±0.003
Telugu 49.11±0.068 66.64±0.014 67.7±0.013 68.69±0.006 64.75±0.01 70.75±0.012 66.1±0.009 67.97±0.007
Arabic 4.83±0.006 41.6±0.012 22.65±0.005 71.53±0.002 69.78±0.002 68.95±0.002 73.01±0.003 66.47±0.002
Czech 7.95±0.008 67.74±0.003 43.92±0.002 83.15±0.001 81.64±0.001 82.03±0.001 83.19±0.001 80.12±0.001
English 11.01±0.012 89.3±0.001 45.32±0.004 82.21±0.004 79.49±0.001 83.96±0.002 82.05±0.002 78.07±0.001
Hindi 7.64±0.017 36.64±0.002 90.99±0.0 76.58±0.002 74.24±0.004 74.28±0.002 72.16±0.004 74.5±0.004
Italian 9.3±0.014 82.68±0.001 38.61±0.007 87.35±0.002 85.28±0.001 86.51±0.001 87.37±0.003 83.11±0.002
Korean 10.26±0.014 36.77±0.004 40.74±0.003 66.4±0.003 68.07±0.003 64.23±0.003 74.01±0.002 63.91±0.004
Norwegian 9.24±0.015 74.7±0.002 44.1±0.006 80.06±0.002 77.53±0.004 78.69±0.001 81.2±0.004 75.64±0.001
Russian 9.09±0.012 69.3±0.003 48.03±0.005 80.98±0.001 79.43±0.001 80.0±0.001 81.66±0.001 76.57±0.002

Table 9: Full meta-testing results for all models and baselines, including validation and training languages, for
|S| = 40. The meta-testing only baseline is denoted as “M.T. only".

Language M.T. only EN HIN NE (EN) NE (HIN) MAML MAML (HIN) MAML-

Unseen Languages
Armenian 8.19±0.006 51.99±0.005 49.7±0.002 63.79±0.002 63.59±0.004 64.78±0.003 64.76±0.003 60.03±0.003
Breton 22.54±0.018 62.76±0.004 38.95±0.004 62.2±0.006 63.05±0.004 66.14±0.003 63.75±0.004 60.84±0.004
Buryat 16.87±0.007 24.17±0.003 25.54±0.003 25.88±0.003 25.4±0.003 27.33±0.003 27.37±0.004 27.05±0.004
Faroese 27.76±0.019 70.59±0.004 54.64±0.005 68.62±0.006 66.17±0.005 71.12±0.004 68.25±0.003 66.79±0.004
Kazakh 21.89±0.009 49.08±0.004 50.49±0.003 55.23±0.003 54.08±0.003 56.15±0.003 55.0±0.004 54.99±0.005
U.Sorbian 7.49±0.01 52.11±0.005 38.22±0.004 55.08±0.004 53.94±0.004 58.78±0.005 56.56±0.006 52.38±0.005
Finnish 11.91±0.012 57.73±0.004 51.79±0.002 65.18±0.003 64.4±0.004 65.82±0.005 65.61±0.004 62.47±0.004
French 12.42±0.026 65.63±0.002 33.39±0.006 66.65±0.001 64.42±0.002 67.25±0.002 65.69±0.003 64.15±0.003
German 16.57±0.017 72.93±0.002 46.65±0.003 76.21±0.002 74.46±0.002 76.72±0.002 75.31±0.002 74.72±0.003
Hungarian 13.0±0.013 56.73±0.003 47.91±0.003 63.21±0.003 61.68±0.002 62.52±0.002 62.91±0.002 57.48±0.004
Japanese 14.38±0.015 22.8±0.004 46.87±0.004 38.4±0.007 41.58±0.003 46.81±0.003 45.9±0.004 43.87±0.005
Persian 6.16±0.019 46.4±0.006 31.11±0.01 53.08±0.006 54.01±0.004 54.73±0.006 54.54±0.005 51.07±0.004
Swedish 12.99±0.011 80.57±0.001 49.15±0.002 80.79±0.002 79.31±0.002 81.59±0.001 80.21±0.002 78.1±0.002
Tamil 18.46±0.011 34.81±0.007 48.55±0.002 42.88±0.008 40.73±0.004 50.68±0.003 42.81±0.006 50.54±0.008
Urdu 13.06±0.01 29.3±0.004 68.17±0.004 57.63±0.004 51.5±0.004 57.6±0.004 51.57±0.004 56.28±0.004
Vietnamese 15.36±0.015 44.28±0.002 29.61±0.002 42.99±0.002 42.46±0.003 44.33±0.002 42.88±0.002 43.78±0.004

Validation & Training Languages
Bulgarian 16.26±0.025 71.42±0.003 48.07±0.006 78.43±0.003 77.67±0.002 78.67±0.003 78.45±0.002 75.68±0.003
Telugu 54.48±0.016 69.08±0.011 68.79±0.01 68.97±0.006 65.05±0.009 71.52±0.012 66.86±0.008 68.41±0.008
Arabic 9.87±0.015 46.24±0.015 25.5±0.006 71.54±0.002 69.79±0.002 69.07±0.002 73.04±0.002 66.51±0.002
Czech 10.74±0.012 68.4±0.003 45.28±0.002 83.16±0.001 81.65±0.001 82.04±0.001 83.2±0.001 80.15±0.001
English 16.86±0.016 89.3±0.001 46.87±0.002 82.32±0.003 79.51±0.001 84.28±0.002 82.08±0.002 78.07±0.002
Hindi 16.7±0.018 39.25±0.003 90.96±0.0 76.61±0.002 74.65±0.004 74.46±0.003 73.3±0.003 74.63±0.004
Italian 16.86±0.027 82.96±0.001 41.8±0.009 87.35±0.002 85.29±0.001 86.57±0.002 87.39±0.003 83.17±0.002
Korean 15.16±0.017 37.77±0.005 41.53±0.003 66.46±0.003 68.16±0.003 64.36±0.004 74.05±0.002 64.21±0.005
Norwegian 13.08±0.012 74.93±0.002 45.3±0.004 80.08±0.002 77.56±0.004 78.76±0.001 81.22±0.004 75.69±0.001
Russian 13.37±0.012 69.79±0.003 49.02±0.004 81.01±0.001 79.45±0.001 80.04±0.001 81.67±0.001 76.56±0.002

Table 10: Full meta-testing results for all models and baselines, including validation and training languages, for
|S| = 80. The meta-testing only baseline is denoted as “M.T. only".
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D Results for Italian/Czech pre-training

We repeat the setup that is discussed in the main pa-
per on another pair of pre-training languages: Ital-
ian and Czech. These two languages are, as are En-
glish and Hindi, Indo-European, but vary in amount
of non-projective sentences within their UD tree-
banks: 2.1% sentences are non-projective for the
Italian UD dataset used, and 11.9% for the Czech
dataset (see also Table 7). This allows us to further
corroborate our findings on non-projectivity.

We randomly take 13 thousand sentences from
the Czech training set to match the size of the other
three pre-training sets used and verify that the per-
centage of non-projective sentences is of the same
magnitude on this new training set. We run a sep-
arate, smaller hyperparameter search for these ex-
periments. All hyperparameters for the monolin-
gual (CZ, IT), non-episodic (NE), and meta-learning
(MAML) models are selected using meta-validation.
These hyperparameters can be seen in Table 11.

Inner/Test LR Outer LR
Decoder BERT Decoder BERT

IT/CZ 1e-4 1e-4 n/a n/a
NE (it/cz) 5e-4 1e-4 1e-4 7e-6
MAML (it/cz) 1e-3 5e-4 5e-4 1e-5

Table 11: Final hyperparameters in the Italian/Czech
setup, as selected by few-shot performance on the meta-
validation set. Inner loop/Test learning rates are used
with SGD, outer loop LRs are used with the Adam op-
timizer.

D.1 Performance
The full results can be seen in Table 12 and Ta-
ble 13. The results are similar to those in Table 1
for both the low-resource and the high-resource
category. MAML slightly outperforms the corre-
sponding non-episodic baseline NE, especially on
unrelated languages from Italian and Czech, such
as Japanese.

D.2 Projectivity
For MAML with Italian pre-training, Spearman’s
ρ = 0.43 (p = 0.028). For MAML with Czech
pre-training, the effect is not significant ρ = 0.3
(p = 0.1349).

These correlations were, as in the original exper-
iments, calculated using the training language set
as well as the testing language set. Excluding train-
ing languages in this calculation, the correlation is
weaker for Italian pre-training ρ = 0.39, p = 0.048

and non-existent for Czech pre-training (ρ = 0.03).
This again suggests that a model trained on a mostly
projective language can benefit more from fur-
ther training on non-projective languages than vice
versa.
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|S| = 20 |S| = 40 |S| = 80
Language IT NE MAML IT NE MAML IT NE MAML

Low-Resource Languages
Armenian 53.06 64.61 63.7 53.47 64.97 64.28 54.51 65.42 64.84
Breton 57.75 61.36 64.13 59.27 62.75 65.95 61.95 64.63 67.48
Buryat 23.81 26.7 27.43 24.46 27.27 29.27 25.08 28.22 30.86
Faroese 65.26 69.2 69.39 66.67 69.85 70.94 68.22 70.64 72.36
Kazakh 45.69 55.44 55.35 46.36 56.08 56.6 47.71 57.01 58.49
U.Sorbian 50.61 55.46 56.79 51.97 56.35 59.2 53.25 57.79 62.3
Mean 49.36 55.46 56.13 50.37 56.21 57.71 51.79 57.28 59.39

High-Resource Unseen Languages
Finnish 58.98 66.77 66.44 59.31 67.26 67.09 59.81 67.57 67.44
French 64.12 66.65 65.99 64.97 66.69 66.26 65.87 66.63 67.17
German 74.3 75.69 76.18 74.29 75.83 76.55 74.34 76.03 76.9
Hungarian 58.21 62.97 62.87 58.22 63.43 61.94 58.54 63.45 60.34
Japanese 15.2 40.7 46.71 16.35 44.07 54.38 18.53 48.88 60.49
Persian 46.37 53.67 54.81 47.0 54.35 55.96 48.25 55.49 57.93
Swedish 75.98 80.85 80.56 76.22 80.98 80.95 76.31 81.09 81.29
Tamil 28.86 44.84 48.1 30.88 47.47 53.43 34.91 50.58 56.39
Urdu 19.81 57.05 57.21 20.6 57.92 59.03 22.29 58.95 60.69
Vietnamese 42.7 42.96 43.94 42.95 43.48 44.99 43.64 44.31 46.59
Mean 48.45 59.21 60.28 49.08 60.15 62.06 50.25 61.3 63.52

Mean 48.79 57.82 58.73 49.56 58.67 60.43 50.83 59.79 61.97

Validation & Training Languages
Bulgarian 76.26 78.49 78.04 76.32 78.53 78.36 76.48 78.59 78.7
Telugu 62.07 69.0 71.46 64.09 69.51 71.37 65.8 70.74 73.27
Arabic 45.03 71.88 69.68 48.73 71.97 69.94 53.5 72.01 70.19
Czech 71.82 81.14 80.97 71.93 81.15 81.03 72.28 81.2 81.12
English 72.04 81.36 81.26 72.37 81.36 81.32 72.88 81.39 81.28
Hindi 29.36 75.98 74.24 30.45 76.06 74.63 32.49 76.16 75.04
Italian 93.32 90.61 91.38 93.32 90.7 91.55 93.32 90.8 91.75
Korean 32.45 64.79 63.62 32.86 65.1 64.1 34.1 65.3 64.37
Norwegian 74.53 79.28 78.35 74.67 79.33 78.61 74.91 79.47 78.79
Russian 71.78 80.9 80.06 72.05 80.96 80.24 72.41 81.01 80.32

Table 12: Results for Italian pre-training. Mean LAS aligned accuracy per support set size |S| for all languages.
Best results per category are bolded. Significant results are underlined (p < 0.005).
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|S| = 20 |S| = 40 |S| = 80
Language CZ NE MAML CZ NE MAML CZ NE MAML

Low-Resource Languages
Armenian 55.98 65.01 64.12 56.75 65.26 64.91 58.04 65.71 65.66
Breton 52.42 62.44 64.48 55.09 63.61 65.49 58.23 64.7 67.02
Buryat 23.15 27.54 27.78 23.71 27.81 29.44 24.42 28.86 31.04
Faroese 59.19 67.65 68.24 60.38 68.89 70.33 61.65 69.97 71.73
Kazakh 44.61 55.7 54.58 45.46 55.84 55.49 46.87 56.77 57.24
U.Sorbian 56.79 57.0 58.18 57.94 57.92 60.46 59.53 59.12 63.68
Mean 48.69 55.89 56.23 49.89 56.56 57.69 51.46 57.52 59.39

High-Resource Unseen Languages
Finnish 56.11 66.15 65.89 56.46 66.73 66.57 56.95 66.84 67.0
French 54.69 65.67 64.5 55.66 65.26 64.63 57.63 65.37 65.17
German 65.38 75.3 75.71 66.05 75.48 75.97 67.56 75.69 76.42
Hungarian 52.11 62.62 61.11 52.61 62.76 60.99 54.74 63.13 60.3
Japanese 12.66 40.96 45.06 13.84 43.81 51.61 16.69 48.47 57.6
Persian 50.77 54.23 55.06 51.01 55.14 56.24 51.72 56.06 58.29
Swedish 67.61 81.04 79.95 67.88 81.61 80.4 68.55 81.45 80.89
Tamil 34.53 46.46 49.42 36.54 46.94 54.03 39.08 52.15 56.61
Urdu 22.26 57.54 57.55 22.98 58.91 59.5 24.44 59.28 60.98
Vietnamese 39.52 43.14 44.35 40.03 43.72 45.0 40.85 44.34 46.24
Mean 45.56 59.31 59.86 46.31 60.04 61.49 47.82 61.28 62.95

Mean 46.74 58.03 58.5 47.65 58.73 60.07 49.18 59.87 61.62

Validation & Training Languages
Bulgarian 76.86 77.92 77.32 76.85 77.95 77.57 76.84 78.06 78.0
Telugu 61.63 68.21 68.55 63.28 68.88 69.97 65.36 69.45 71.89
Arabic 57.77 72.3 69.78 58.15 72.55 70.17 58.7 72.31 70.38
Czech 90.15 85.51 85.95 90.15 86.34 86.29 90.15 85.72 86.65
English 58.9 80.26 79.75 60.07 80.37 79.89 62.18 80.4 79.97
Hindi 30.97 76.08 74.09 31.9 76.21 74.36 33.83 76.37 74.79
Italian 69.39 85.74 85.01 70.79 85.66 85.06 73.52 85.72 85.18
Korean 32.47 65.4 63.7 32.89 66.29 64.31 33.93 66.15 64.63
Norwegian 62.08 79.47 77.48 62.58 79.63 77.73 63.49 79.57 77.89
Russian 76.77 81.65 80.34 76.84 82.17 80.51 76.95 81.72 80.6

Table 13: Results for Czech pre-training. Mean LAS aligned accuracy per support set size |S| for all languages.
Best results per category are bolded. Significant results are underlined (p < 0.005).
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