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Abstract
Residual networks are an Euler discretization
of solutions to Ordinary Differential Equa-
tions (ODE). This paper explores a deeper re-
lationship between Transformer and numeri-
cal ODE methods. We first show that a resid-
ual block of layers in Transformer can be de-
scribed as a higher-order solution to ODE.
Inspired by this, we design a new architec-
ture, ODE Transformer, which is analogous
to the Runge-Kutta method that is well moti-
vated in ODE. As a natural extension to Trans-
former, ODE Transformer is easy to imple-
ment and efficient to use. Experimental results
on the large-scale machine translation, abstrac-
tive summarization, and grammar error cor-
rection tasks demonstrate the high genericity
of ODE Transformer. It can gain large im-
provements in model performance over strong
baselines (e.g., 30.77 and 44.11 BLEU scores
on the WMT’14 English-German and English-
French benchmarks) at a slight cost in infer-
ence efficiency.

1 Introduction

Residual networks have been used with a great
success as a standard method of easing information
flow in multi-layer neural models (He et al., 2016;
Vaswani et al., 2017). Given an input yt, models of
this kind define the output of a layer t to be:

yt+1 = yt + F (yt, θt) (1)

where F (·, ·) is the function of the layer and θt is its
parameter. Interestingly, recent work in machine
learning (Weinan, 2017; Lu et al., 2018; Haber
et al., 2018; Chang et al., 2018; Ruthotto and Haber,
2019) points out that Eq. (1) is an Euler discretiza-
tion of the Ordinary Differential Equation (ODE),
like this:

dy(t)

dt
= F (y(t), θ(t)) (2)

∗Corresponding author.
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Figure 1: Models with different ODE blocks.

where y(t) and θ(t) are continuous with respect to
t. In this way, we can call Eq. (1) an ODE block.
This finding offers a new way of explaining resid-
ual networks in the view of numerical algorithms.
Then, one can think of a multi-layer network as
applying the Euler method (i.e., Eq. (1)) to solve
Eq. (2) subject to the initial conditions y(0) = y0

and θ(0) = θ0.
The solution of Eq. (2) has a sufficiently low

error bound (call it a stable solution) only if θ(t)
changes slow along t (Haber and Ruthotto, 2017;
Chen et al., 2018). But this assumption does not
always hold for state-of-the-art natural language
processing (NLP) systems, in which models are
non-linear and over-parameterized. For example,
language modeling and machine translation sys-
tems learn quite different parameters for different
layers, especially when the layers are close to the
model input (Vaswani et al., 2017; Dai et al., 2019).
Also, truncation errors are nonnegligible for the
Euler method because it is a first-order approxima-
tion to the true solution (He et al., 2019). These
problems make the situation worse, when more lay-
ers are stacked and errors are propagated through
the neural network. It might explain why recent
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Machine Translation (MT) systems cannot benefit
from extremely deep models (Wang et al., 2019;
Liu et al., 2020a; Wei et al., 2020; Li et al., 2020).

This paper continues the line of research on the
ODE-inspired method. The basic idea is to use
a high-order method for more accurate numerical
solutions to the ODE. This leads to a larger ODE
block that generates a sequence of intermediate ap-
proximations to the solution. We find that the larger
ODE block is sufficient to take the role of several
ODE blocks with first-order solutions. The benefit
is obvious: the use of fewer ODE blocks lowers
the risk of introducing errors in block switching,
and the high-order method reduces the approxima-
tion error in each ODE block. See Figure 1 for a
comparison of different models.

Our method is parameter-efficient because θ(t)
is re-used within the same ODE block. As another
“bonus", the model can be improved by learning
coefficients of different intermediate approxima-
tions in a block. We evaluate our method in strong
Transformer systems, covering both the wide (and
big) model and the deep model. For machine trans-
lation tasks, ODE Transformer achieves 30.77 and
44.11 BLEU scores on the WMT’14 En-De and
En-Fr test sets, setting a new state-of-the-art on the
WMT’14 En-Fr task. It also significantly outper-
forms baselines on abstractive summarization and
grammar error correction tasks.

2 Transformer and ODEs

We start with a description of Transformer, fol-
lowed by its relationship with ODEs. We choose
Transformer for our discussion and experiments
because it is one of the state-of-the-art models in
recent sentence generation tasks.

2.1 Transformer
Transformer is an example of the encoder-decoder
paradigm (Vaswani et al., 2017). The encoder is
a stack of identical layers. Each layer consists of
a self-attention block and a feedforward network
(FFN) block. Both of them equip with a residual
connection and a layer normalization unit. Note
that the term “block” is used in many different
ways. In this paper, the term refers to any neural
network that is enhanced by the residual connection
(occasionally call it a residual block). Following
the Pre-norm architecture (Wang et al., 2019), we
define a block as

yt+1 = yt +G(LN(yt), θt) (3)

where LN(·) is the layer normalization function,1

and G(·) is either the self-attention or feedforward
network. The decoder shares a similar architec-
ture, having an additional encoder-decoder atten-
tion block sandwiched between the self-attention
and FFN blocks.

2.2 Ordinary Differential Equations

An ordinary differential equation is an equation
involving a function y(t) of a variable t and its
derivatives. A simple form of ODE is an equation
that defines the first-order derivative of y(t), like

dy(t)

dt
= f(y(t), t) (4)

where f(y(t), t) defines a time-dependent vector
field if we know its value at all points of y and all
instants of time t. Eq. (4) covers a broad range
of problems, in that the change of a variable is de-
termined by its current value and a time variable t.
This formulation also works with Pre-norm Trans-
former blocks. For notational simplicity, we re-
define G(LN(yt), θt) as a new function F (yt, θt):

F (yt, θt) = G(LN(yt), θt)) (5)

We then relax yt and θt to continuous functions
y(t) and θ(t), and rewrite Eq. (3) to be:

y(t+ ∆t) = y(t) + ∆t · F (y(t), θ(t)) (6)

where ∆t is the change of t, and is general called
step size. Obviously, we have ∆t = 1 in Trans-
former. But we can adjust step size ∆t using a
limit, and have

lim
∆t→0

y(t+ ∆t)− y(t)

∆t
= F (y(t), θ(t)) (7)

Given the fact that lim∆t→0
y(t+∆t)−y(t)

∆t = dy(t)
dt ,

Eq. (7) is an instance of Eq. (4). The only differ-
ence lies in that we introduce θ(t) into the right-
hand side of Eq. (4). Then, we say that a Pre-norm
Transformer block describes an ODE. It has been
found that Eq. (3) shares the same form as the Eu-
ler method of solving the ODE described in Eq. (7)
(Haber and Ruthotto, 2017). This establishes a re-
lationship between Transformer and ODEs, in that,
given F (·, ·) and learned parameters {θt}, the for-
ward pass of a multi-block Transformer is a process
of running the Euler method for several steps.

1We drop the parameter of LN(·) for simplicity.
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3 The ODE Transformer

In numerical methods of ODEs, we want to en-
sure the precise solutions to the ODEs in a mini-
mum number of computation steps. But the Euler
method is not “precise” because it is a first-order
method, and naturally with local truncation errors.
The global error might be larger if we run it for
a number of times.2 This is obviously the case
for Transformer, especially when the multi-layer
neural network arises a higher risk of instability in
solving the ODEs (Haber and Ruthotto, 2017).

3.1 High-Order ODE Solvers
Here we use the Runge-Kutta methods for a higher
order solution to ODEs (Runge, 1895; Kutta, 1901;
Butcher, 1996; Ascher and Petzold, 1998). They
are a classic family of iterative methods with dif-
ferent orders of precision.3 More formally, the ex-
plicit Runge-Kutta methods of an n-step solution
is defined to be:

yt+1 = yt +
n∑
i=1

γiFi (8)

F1 = hf(yt, t) (9)

Fi = hf(yt +

i−1∑
j=1

βijFj , t+ αih) (10)

where h is the step size and could be simply 1 in
most cases. Fi is an intermediate approximation
to the solution at step t+ αih. α, β and γ are co-
efficients which can be determined by the Taylor
series of yt+1 (Butcher, 1963). Eq. (10) describes a
sequence of solution approximations {F1, ..., Fn}
over n steps {t + α1h, ..., t + αnh}. These ap-
proximations are then interpolated to form the final
solution, as in Eq. (8).

The Runge-Kutta methods are straightforwardly
applicable to the design of a Transformer block. All
we need is to replace the function f (see Eq. (10))
with the function F (see Eq. (5)). The advantage
is that the function F is re-used in a block. Also,
the model parameter θt can be shared within the
block.4 In this way, one can omit t + αih in Eq.

2The global error is what we would ordinarily call the error:
the difference between y(t) and the true solution. The local
error is the error introduced in a single step: the difference
between y(t) and the solution obtained by assuming that y(t−
1) is the true solution

3A p-order numerical method means that the global trun-
cation error is proportional to p power of the step size.

4Although we could distinguish the parameters at different
steps in a block, we found that it did not help and made the
model difficult to learn.

(10), and compute Fi by

Fi = F (yt +
i−1∑
j=1

βijFj , θt) (11)

This makes the system more parameter-efficient.
As would be shown in our experiments, the high-
order Runge-Kutta methods can learn strong NMT
systems with significantly smaller models.

The Runge-Kutta methods are general. For ex-
ample, the Euler method is a first-order instance
of them. For a second-order Runge-Kutta (RK2)
block, we have

yt+1 = yt +
1

2
(F1 + F2) (12)

F1 = F (yt, θt) (13)

F2 = F (yt + F1, θt) (14)

This is also known as the improved Euler method.
Likewise, we can define a fourth-order Runge-
Kutta (RK4) block to be:

yt+1 = yt +
1

6
(F1 + 2F2 + 2F3 + F4) (15)

F1 = F (yt, θt) (16)

F2 = F (yt +
1

2
F1, θt) (17)

F3 = F (yt +
1

2
F2, θt) (18)

F4 = F (yt + F3, θt) (19)

See Figure 2 for a comparison of different
Runge-Kutta blocks. It should be noted that the
method presented here can be interpreted from
the perspective of representation refinement (Greff
et al., 2017). It provides a way for a function to
update the function itself. For example, Universal
Transformer refines the representation of the input
sequence using the same function and the same pa-
rameters in a block-wise manner (Dehghani et al.,
2019). Here we show that inner block refinements
can be modeled with good theoretical support.

3.2 Coefficient Learning

In our preliminary experiments, the RK2 and RK4
methods yielded promising BLEU improvements
when the model was shallow. But it was found that
the improvements did not persist for deeper models.
To figure out why this happened, let us review the
Runge-Kutta methods from the angle of training.
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Figure 2: Architectures of ODE Transformer blocks.

Take the RK2 method as an example. We rewrite
Eq. (12) by substituting F1 and F2, as follow

yt+1 = yt +
1

2
F (yt, θt) +

1

2
F (yt + F (yt, θt), θt) (20)

Let E be the loss of training, L be the number
blocks of the model, and yL be the model output.
The gradient of E at yt is

∂E
∂yt

=
∂E
∂yL
· 1

2L−t
·
L−1∏
k=t

(1 + gk) (21)

where

gk =
(

1 +
∂F (yk, θk)

∂yk

)
·(

1 +
∂F (yk + F (yk, θk), θk)

∂yk + F (yk, θk)

)
(22)

Seen from Eq. (21), ∂E
∂yt

is proportional to the
factor 1

2L−t
. This leads to a higher risk of gradient

vanishing when L is larger.
The problem somehow attributes to the small

coefficients of Fi, that is, γ1 = γ2 = 1
2 . A natural

idea is to empirically set γi = 1 to eliminate the
product factor of less than 1 in gradient compu-
tation, although this is not theoretically grounded
in standard Runge-Kutta methods. We rewrite Eq.
(20) with the new coefficients, as follows

yt+1 = yt + F (yt, θt) +

F (yt + F (yt, θt), θt) (23)

Then, we have the gradient, like this

∂E
∂yt

=
∂E
∂yL
·
L−1∏
k=t

gk (24)

This model is easy to optimize because ∂E
∂yL

can be
passed to lower-level blocks with no scales. Note
that, the methods here are instances of parameter
sharing (Dehghani et al., 2019; Lan et al., 2020).
For example, in each ODE block, we use the same
function F with the same parameter θt for all in-
termediate steps. Setting γi = 1 is a further step
towards this because Fi is passed to the following
computations with the same scale. Here we call it
implicit parameter sharing.

Another way of scaling Fi to further improve
ODE functions is to learn the coefficients automati-
cally on the training data. The simplest method is to
initialize γi = 1 and independently optimize each
scale. It helps the system learn the way of flowing
Fi in a block. Based on it, scaling Fi by a weighted
gate mechanism (Srivastava et al., 2015) empiri-
cally achieves the best performance (see Section
4). Take RK2-block as an instance, the concatena-
tion of F1 and F2 is transformed to a scalar (0, 1)
through a sigmoid gate, then the block output yt+1

is

yt+1 = yt + g · F1 + (1− g) · F2 (25)

g = sigmoid([F1, F2] ·W + b) (26)

where [, ] denotes the concatenation operation and
W, b are learnable parameters. We call it RK2-
block (learnable γi), and the architecture is shown
in Figure 2 (d). This kind of formulation offers a
more flexible way to decide which part contributes
more and is also easy to be optimized. Moreover,
we also summarize the comparison of various scal-
ing functions in Appendix C.
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Model Layers WMT En-De WMT En-Fr

#Param Steps BLEU SBLEU #Param Steps BLEU SBLEU

Transformer (Vaswani et al., 2017) 6-6 213M 100K 28.40 - 222M 300K 41.00 -
MacaronNet (Lu et al., 2019) 6-6 - - 30.20 - - - - -
Depth growing (Wu et al., 2019) 8-8 270M 800K 29.92 - - - 43.27 -
Transformer-DLCL (Wang et al., 2019) 30-6 137M 50K 29.30 28.6 - - - -
Multiscale Collaborative (Wei et al., 2020) 18-6 512M 300K 30.56 - - - - -
ADMIN (Liu et al., 2020a) 60-12 262M 250K 30.01 29.5 - 250K 43.80 41.8
SDT (Li et al., 2020) 48-6 192M 50K 30.21 29.0 198M 100K 43.28 41.5
BERT-fused model (Zhu et al., 2020) 6-6 - - 30.75 - - - 43.78 -

Base and Deep Models

Residual-block 6-6 61M 50K 27.89 26.8 69M 100K 41.05 39.1
RK2-block 6-6 61M 50K 28.67 27.5 69M 100K 42.08 40.1
RK2-block (learnable γi) 6-6 61M 50K 28.89 27.7 69M 100K 42.31 40.3
RK4-block 6-6 61M 50K 29.03 27.9 69M 100K 42.56 40.6
Residual-block 24-6 118M 50K 29.43 28.3 123M 100K 42.67 40.6
RK2-block 24-6 118M 50K 29.85 28.7 123M 100K 43.04 41.1
RK2-block (learnable γi) 24-6 118M 50K 30.29 29.2 123M 100K 43.48 41.5
RK4-block 24-6 118M 50K 29.80 28.8 123M 100K 43.28 41.3

Wide Models

Residual-block-Big 6-6 211M 100K 29.21 28.1 221M 100K 42.89 40.9
RK2-block 6-6 211M 100K 30.11 29.0 221M 100K 43.34 41.3
RK2-block (learnable γi) 6-6 211M 100K 30.53 29.4 221M 100K 43.59 41.6
RK4-block 6-6 211M 100K 30.39 29.3 221M 100K 43.55 41.6
Residual-block-Big 12-6 286M 100K 29.91 28.9 297M 100K 43.22 41.2
RK2-block 12-6 286M 100K 30.58 29.4 297M 100K 43.88 42.0
RK2-block (learnable γi) 12-6 286M 100K 30.77 29.6 297M 100K 44.11 42.2
RK4-block 12-6 286M 100K 30.55 29.4 297M 100K 43.81 41.9

Table 1: Comparison with the state-of-the-arts on the WMT En-De and WMT En-Fr tasks. We both report the
tokenized BLEU and SacreBLEU scores for comparison with previous work.

3.3 Efficiency Discussion

ODE Transformer is efficient to use. As we only
apply the ODE design schema to the encoder side,
it only brings minor impacts on the inference speed
due to the autoregressive decoding schema. An-
other concern here is memory consumption. ODE
Transformer consumes more memory than the base-
line in the same depth since we need to store the
intermediate approximations in the forward pass.
But the additional consumption is less than that of
the baseline who has the same computation cost,
which is acceptable for most scenarios. We give a
quantitative analysis in Section 5.

4 Experiments

We evaluated the ODE Transformer on three se-
quence generation tasks: machine translation, ab-
stractive summarization and grammar error correc-
tion. The datasets we used are elaborated in the
following section, and more details of experimental
setups could be found in Appendix A and B.

4.1 Datasets

Machine Translation We report results on three
WMT benchmarks. For the WMT’14 English-
German (En-De) task, the training data consisted
of approximately 4.5M tokenized sentence pairs,
as in (Vaswani et al., 2017). All sentences were
segmented into sequences of sub-word units (Sen-
nrich et al., 2016) with 32K merge operations using
a shared vocabulary. We selected newstest2013
as the validation data and newstest2014 as the
test data. For the WMT’14 English-French (En-
Fr) task, we used the dataset provided within
Fairseq, i.e., 36M training sentence pairs from
WMT’14. newstest2012+newstest2013 was the
validation data and newstest2014 was the test data.
For the WMT’16 English-Romanian (En-Ro) task,
we replicated the setup of (Mehta et al., 2020),
which used 600K/2K/2K sentence pairs for train-
ing, evaluation and inference, respectively.

Abstractive Summarization We also tested the
models’ ability to process long sequences on the
CNN-DailyMail summarization task (Nallapati
et al., 2016; Hermann et al., 2015). The prepro-
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Model Params Epochs BLEU

Transformer in Mehta et al. (2020) 62M 170 34.30
DeLight (Mehta et al., 2020) 53M 170 34.70
Int Transformer†(Lin et al., 2020) - - 32.60
Transformer (Our impl.) 69M 20 33.49
RK2-block (learnable γi) 69M 20 34.94
RK2-block-Big (learnable γi) 226M 20 35.28

Table 2: Results on the WMT En-Ro task. † indicates
the related information is not reported.

cessed method was the same as in (Ott et al., 2019).
We used a shared BPE with 30K operations, result-
ing in a vocabulary of 32, 580 entries. The evalu-
ation metric was F1-Rouge (Lin, 2004) (Rouge-1,
Rouge-2 and Rouge-L).

Grammar Error Correction We used the fol-
lowing datasets as the training data, including Na-
tional University of Singapore Corpus of Learner
English (NUCLE) (Dahlmeier et al., 2013), Lang-8
Corpus of Learner English (Lang-8) (Tajiri et al.,
2012), FCE dataset (Yannakoudakis et al., 2011),
and Write & Improve + LOCNESS Corpus (Bryant
et al., 2019). We borrowed the setup from Chollam-
patt and Ng (2018) and used the provided prepro-
cessed script. The word-level dropout technique
was also applied to prevent the overfitting problem.

Language Modeling The truncation error anal-
ysis is conducted on the Penn Treebank (Mikolov
et al., 2011), which is a widely-used language
model dataset. It contains 88K, 3, 370 and 3, 761
sentences for training, validation and test. The vo-
cabulary size was 10K. We set the layer depth of
the language model to 1 or 2 to make a fair com-
parison. Assume the layer depth is 1, then the
loss between the block output and the ground-truth
could be regarded as the truncation error. It allevi-
ates the influence of the error accumulation across
different layers.

4.2 Experimental Results

Results of En-De and En-Fr Table 1 compares
ODE Transformer with several state-of-the-art sys-
tems. Both RK2-block and RK4-block outper-
form the baselines by a large margin with different
model capacities. For example, RK2-block obtains
a +1.00 BLEU improvement with the base configu-
ration when the depth is 6. RK4-block yields a gain
of 0.17 BLEU points on top of RK2-block. This
observation empirically validates the conjecture
that high-order ODE functions are more efficient.

Model Params BLEU

Transformer (Vaswani et al., 2017) 62M 27.30
Evolved Transformer (So et al., 2019) 46M 27.70
Lite Transformer† (Wu et al., 2020) - 26.50
DeLight (Mehta et al., 2020) 37M 27.60
RK2-block (learnable γi, H=256, L=28) 37M 28.24
RK2-block (learnable γi, H=256, L=18) 29M 27.84

Table 3: The comparison of model efficiency on the
WMT En-De task.

When we switch to deep models, our method is
more parameter efficient. E.g., RK2-block is com-
parable with a strong 48-layer system (Li et al.,
2020) with half of the encoder depth. Similarly,
wide models can also benefit from the enlarging
layer depth (Wei et al., 2020; Li et al., 2020). RK2-
block achieves BLEU scores of 30.77 and 44.11
on the En-De and the En-Fr tasks, significantly sur-
passing the standard Big model by 1.32 and 0.70
BLEU points. This sets a new state-of-the-art on
these tasks with fewer parameters.

Results of En-Ro Table 2 exhibits model param-
eters, total training steps and BLEU scores of sev-
eral strong systems on the En-Ro task. Again, ODE
Transformer outperforms these baselines. As stated
in (Mehta et al., 2020), they trained the model up
to 170 epochs and obtained a BLEU score of 34.70
through the DeLight model. However, the obser-
vation here is quite different. The validation PPL
begins to increase after 20 epochs. Thus, our base-
line is slightly inferior to theirs, but matches the
result reported in Lin et al. (2020). ODE blocks
achieve even better performance with DeLight
within much less training cost. For a bigger model
(line 6), it obtains a BLEU score of 35.28.

Parameter Efficiency Table 3 summaries the re-
sults of several efficient Transformer variants, in-
cluding Lite Transformer (Wu et al., 2020), De-
Light (Mehta et al., 2020) and a light version of
the Evolved Transformer (So et al., 2019). As ex-
pected, ODE Transformer is promising for smaller
models. It is comparable in BLEU with DeLight
but having 9M fewer parameters. Under the same
model capacity, it outperforms DeLight by 0.64
BLEU points. It may offer a new choice for deploy-
ing NMT systems on edge devices.

Results of Summarization and Correction We
also evaluated the ODE Transformer on another
two sequence generation tasks. Table 4 shows that
both RK2-block and RK4-block outperform the

8340



Model Summarization Correction

RG-1 RG-2 RG-L Prec. Recall F0.5

Liu et al. (2020b) 41.00 18.30 37.90 66.80 35.00 56.60
Residual-block 40.47 17.73 37.29 67.97 32.17 55.61
RK2-block 41.58 18.57 38.41 68.21 35.30 57.49
RK4-block 41.83 18.84 38.68 66.20 38.13 57.71

Table 4: Results of ODE Transformer on the summa-
rization and correction tasks.

baselines by a margin. Similarly, RK4-block is
superior to RK2-block when the model is shallow.
More results and case studies could be found in
Appendix C.

5 Analysis

Here we investigate some interesting issues. For
simplicity, we call RK2-block with coefficients ini-
tialized by 1 as RK2-block-v1, and learnable coef-
ficients (Eq. (25) ) as RK2-block-v2.

Quantization of the Truncation Error In fact,
we cannot obtain the “true” solution of each block
output in NMT, because we mainly experimented
on the encoder side. Instead, we tested our system
on the language modeling task, where the perplex-
ity between the single-layer model output and the
ground truth could be regarded as the truncation
error with no error propagations. Table 5 shows the
perplexities on the Penn Treebank dataset (Mikolov
et al., 2011). All ODE Transformer variants reduce
the errors significantly. RK4-order achieves the
lowest PPL on both settings. In addition, RK2-
block can even obtain a lower PPL than a 2-layer
residual-block. The observation here again verifies
larger ODE blocks behave superior to the standard
residual block.

Inference Speed and Memory Consumption
Table 6 shows the comparison of inference speed
and memory consumption discussed in Section
3.3. Experimental results demonstrate the proposed
ODE design schema results in acceptable inference
speeds. And it is also memory-friendly through the
memory comparison between the baseline and the
RK variants in both base and big configurations.

BLEU against Encoder Depth Figure 3 (left)
depicts BLEU scores of several ODE Transformer
variants and the baseline under different encoder
depths. All ODE Transformer variants are signif-
icantly superior to the baseline when depth ≤ 24.
RK2-block-v2 almost achieves the best perfor-

Model 1-Layer 2-Layer

Residual-Block 142.33 136.07
RK2-block 131.80 123.12
RK2-block (γi = 1) 132.67 123.90
RK2-block (learnable γi) 128.48 121.02
RK4-block 126.89 119.46

Table 5: Comparison of PPL on systems with different
ODE blocks.

Model Depth Inference Memory

Base Big Base Big

Residual-Block 6 147.1 98.7 7.2 13.2
Residual-Block 12 141.3 94.5 10.9 18.7
Residual-Block 24 122.0 87.3 14.1 23.5
RK2-Block 6 141.6 93.9 8.5 15.1
RK4-Block 6 124.8 87.1 9.7 18.2

Table 6: Comparison of inference speed (sentences/s)
and memory consumption (G).

mance over all depths, especially when the model
becomes deeper. Interestingly, Figure 3 confirms
again that ODE Transformer is parameter efficient,
e.g., a 6-layer RK2-block is comparable with the
18-layer baseline system. Another finding here is
RK4-block performs well on shallow models, but
it is inferior to RK2-block when the depth is go-
ing deep. This is because original coefficients may
cause the optimization problem in the backward
propagation in deep models (see Section 3.2). Also,
Figure 3 (right) plots BLEU as a function of the
model size when the hidden size is 256. The RK2
method significantly surpasses the baseline using
much fewer parameters.

Ablation Study on Different F (·, ·) As stated in
Section 3, the F (·, ·) function can either be SAN,
FFN or both of them (SAN+FFN). As shown in
Figure 4, high-order ODE works better with FFN
than SAN. An explanation might be that the FFN
component has more parameters than the SAN com-
ponent.5 The model that treats FFN and SAN as a
single ODE block behaves the best.

Training and Validation Perplexity Figure 5
plots the training and validation PPL curves of RK
blocks and the baseline enhanced by RPR (Shaw
et al., 2018). RK2-block obtains lower training and
validation PPLs in both configurations (base and
wide models).

5There are 2 · dmodel · 4dmodel parameters in FFN and
dmodel · 3dmodel + dmodel · dmodel in SAN.
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Figure 3: The comparison of BLEU against different
encoder depth and the number of model parameters.
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Figure 4: BLEU scores [%] of several F (·, ·) on the
WMT En-De task.

Visualization of the Gradient Norm We also
collect the gradient information of several well-
trained systems during training. Figure 6 plots the
gradient norm of RK2-block-v2, RK4-block and
the standard residual-block (baseline). As we can
see that Pre-Norm residual block is able to make
the training stable (Wang et al., 2019). Both RK2-
block-v2 and RK4-block provide richer signals due
to the implicit parameter sharing among interme-
diate approximations. The two learning curves
appear to be nearly the same, which is consistent
with the results in Table 1.

Comparison of Different ODE Design Schemas
Then, we take a comprehensive analysis of sev-
eral ODE design schemas. As stated in Lu et al.
(2018)’s work, several models in computer vision,
such as LeapfrogNet (He et al., 2019), PolyNet
(Zhang et al., 2017) and MultistepNet (Lu et al.,
2018), can also be interpreted from the ODE per-
spective. The related ODE functions are summa-
rized in Table 7. We re-implemented these methods
using the same codebase for fair comparisons. We
conducted experiments following the base configu-
ration on the En-De task.

At the time t, Multistep Euler methods require
previous states, e.g. yt−1, to generate the cur-
rent approximation, instead of iterative refinements
based on the current-time state. So these meth-
ods are heavier than ODE Transformer. Note that
DLCL (Wang et al., 2019) can also be regarded as a
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Figure 5: The comparison of training and validation
PPL on base and wide models.
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Figure 6: Visualization of the gradient norm of ODE
Transformers compared with the baseline.

multistep Euler method, which is more competitive
in deep Transformer. But there is just a modest
improvement upon the shallow baseline. Theoreti-
cally, the Backward Euler method is slightly better
than the Forward Euler method in numerical analy-
sis, but the improvement is marginal. Note that our
ODE Transformer achieves consistent BLEU im-
provements over the aforementioned methods. The
reason is that such iterative refinements provide
more efficient and effective parameter learning.

6 Related Work

Deep Transformer models Recently, deep
Transformer has witnessed tremendous success
in machine translation, especially on WMT news
tasks (Li et al., 2019; Zhang et al., 2020; Zhou et al.,
2021; Tran et al., 2021). A straightforward way is
to shorten the path from upper-level layers to lower-
level layers thus to alleviate the gradient vanishing
or exploding problems (Bapna et al., 2018; Wang
et al., 2019; Wu et al., 2019; Wei et al., 2020). For
deeper models, the training cost is nonnegligible.
To speed up the training, an alternative way is to
train a shallow model first and progressively in-
crease the model depth (Li et al., 2020; Dong et al.,
2020). Apart from the model architecture improve-
ments, another way of easing the optimization is
to utilize carefully designed parameter initializa-
tion strategies (Zhang et al., 2019; Xu et al., 2020;
Huang et al., 2020; Liu et al., 2020a). With the
model capacity going larger, one can use Layer-
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Model Information Flow Related ODEs BLEU

Leapfrog (He et al., 2019) yt+1 = yt−1 + 2F (yt, θt) Multistep Euler 28.07
Multistep (Lu et al., 2018) yt+1 = kn · yt + (1− kn) · yt−1 + F (yt, θt) Multistep Euler 28.17
DLCL (Wang et al., 2019) yt+1 = y0 +

∑t
l=0WlF (yl, θl) Multistep Euler 27.78

PolyNet (Zhang et al., 2017) yt+1 = yt + F (yt, θt) + F (F (yt, θt), θt) Backward Euler 28.15
RK2-block yt+1 = yt +

1
2
F (yt, θt) +

1
2
F (yt + F (yt, θt), θt) Improved Euler 28.67

RK2-block (γi = 1) yt+1 = yt + F (yt, θt) + F (yt + F (yt, θt), θt) RK 2nd-order 28.77
RK2-block (learnable γi) yt+1 = yt + γ1 · F (yt, θt) + γ2 · F (yt + F (yt, θt), θt) RK 2nd-order 28.86
RK4-block yt+1 = yt +

1
6
F1 +

2
6
F2 +

2
6
F3 +

1
6
F4 RK 4th-order 29.03

Table 7: Comparison of several ODE-inspired design schemas on the En-De task. We re-implement and apply
these methods into Transformer. Note that yn denotes the model input of layer n. Due to the limited space, we use
Fi to denote the intermediate representation, where i ∈ [1, 4].

Drop (Fan et al., 2020) or Skipping Sublayers (Li
et al., 2021) to prevent deep models from the over-
fitting problem. Note that ODE Transformer is
orthogonal to the aforementioned methods, and we
will test it on these methods in future work.

Ordinary Differential Equations The relation-
ship between ResNet and ODEs was first proposed
by Weinan (2017). This shows a brand-new per-
spective on the design of effective deep architec-
tures. Moreover, the success of Neural ODENet
(Chen et al., 2018) has attracted researchers. Some
insightful architectures (Zhang et al., 2017; Lars-
son et al., 2017; Lu et al., 2018; He et al., 2019; Zhu
and Fu, 2018; Lu et al., 2019; Sander et al., 2021)
can also be interpreted from the ODE perspective.
But, in NLP, it is still rare to see studies on design-
ing models from the ODE perspective. Zhang et al.
(2021) proposed continuous self-attention models
using the same merit with neural ODE. Perhaps
the most relevant work with us is an (2021)’s work.
They redesigned the Transformer architecture from
a multi-particle dynamic system view in terms of
efficiency. Unlike them, we show that the stacked
first-order ODE blocks may cause error accumu-
lation, thus hindering the model performance. We
address this issue by introducing high-order blocks,
and demonstrate significant performance improve-
ments on three sequence generation tasks, which
is complementary to Baier-Reinio and De Sterck
(2020)’s work.

7 Conclusions

This paper explores the relationship between Trans-
former and ODEs. We propose ODE Transformer
to help the model benefit from high-order ODE
solutions. Experimental results on the three repre-
sentative sentence generations tasks (i.e., machine

translation, abstractive summarization, and gram-
matical error correction) show the effectiveness
and efficiency of ODE Transformer. It achieves
30.77 and 44.11 BLEU scores on the WMT’14
En-De and En-Fr benchmarks, setting a new state-
of-the-art result on the En-Fr. Note that our
code is publicly available at https://github.

com/libeineu/ODE-Transformer.
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A Experimental Setups

Table 8 summarizes the details of our datasets. We
both present the sentences and tokens of each task.
For the En-De and En-Fr tasks, the datasets used
in this work could be found in Fairseq.6 For
the En-Ro task, we used the preprocessed dataset
provided by DeLight.7 Note that we only shared
the target embedding and the softmax embedding
instead of a shared vocabulary between the source
side and the target side. The CNN/DailyMail
dataset consists of CNN stories8 and Daily emails.9

For the grammar error correction task (GEC), we
conducted experiments on the CONLL dataset.10

B Training and Evaluation

Training As suggested in Li et al. (2020)’s work,
we adopted relative positional representation (RPR)
(Shaw et al., 2018) for stronger baselines. Dense
connections among layers (Wang et al., 2019) are
also applied for stable learning since the model
is optimized with FP16 training. All experiments
were trained on 8 GPUs with 4, 096 tokens on each
GPU. For the En-De and the En-Fr tasks, we em-
ployed the gradient accumulation strategy with a
step of 2 and 8, respectively. We used the Adam op-
timizer (Kingma and Ba, 2015) whose hyperparam-
eters were set to (0.9, 0.997). The hyperparameters
including the learning rate, the warmup step and
the total training steps of three tasks could be found
in Table 8. Note that we trained Base/Deep and Big
models for 50K and 100K steps on the En-De task.
We regarded merging SAN and FFN as the default
ODE block. In addition, main results were the av-
erage of three times running with different random

6https://github.com/pytorch/fairseq/
tree/master/examples/scaling_nmt

7https://github.com/sacmehta/delight/
blob/master/readme_files/nmt/wmt16_en2ro.
md

8https://drive.google.com/uc?export=
download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ

9https://drive.google.com/uc?export=
download&id=0BwmD_VLjROrfM1BxdkxVaTY2bWs

10https://www.cl.cam.ac.uk/research/nl/
bea2019st

8347

https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://doi.org/10.18653/v1/D19-1083
https://doi.org/10.18653/v1/D19-1083
https://ojs.aaai.org/index.php/AAAI/article/view/17692
https://ojs.aaai.org/index.php/AAAI/article/view/17692
https://doi.org/10.1109/CVPR.2017.415
https://doi.org/10.1109/CVPR.2017.415
https://aclanthology.org/2020.wmt-1.37
https://aclanthology.org/2020.wmt-1.37
https://aclanthology.org/2021.wmt-1.26
https://aclanthology.org/2021.wmt-1.26
https://openreview.net/forum?id=Hyl7ygStwB
https://openreview.net/forum?id=Hyl7ygStwB
http://arxiv.org/abs/1802.08831
http://arxiv.org/abs/1802.08831
https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
https://github.com/sacmehta/delight/blob/master/readme_files/nmt/wmt16_en2ro.md
https://github.com/sacmehta/delight/blob/master/readme_files/nmt/wmt16_en2ro.md
https://github.com/sacmehta/delight/blob/master/readme_files/nmt/wmt16_en2ro.md
https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ
https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ
https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfM1BxdkxVaTY2bWs
https://drive.google.com/uc?export=download&id=0BwmD_VLjROrfM1BxdkxVaTY2bWs
https://www.cl.cam.ac.uk/research/nl/bea2019st
https://www.cl.cam.ac.uk/research/nl/bea2019st


Dataset Vocab Dataset Training Inference

Train Dev Test Lr Warmup Batch Steps WD Beam LP

WMT’14 En-De 34040 4.5M 3000 3003 0.002 16000 80K 50K × 4 0.6
WMT’14 En-Fr 44424 35.7M 26822 3003 0.002 16000 320K 100K × 4 0.6
WMT’16 En-Ro 34976 602K 1999 1999 0.002 8000 80K 17K × 5 1.3
CNN/DailyMail 32584 287K 13368 11490 0.002 8000 160K 50K × 4 2.0
CONLL 33136 827K 5448 1312 0.0015 4000 160K 15K X 6 0.6

Table 8: Statistics of the datasets and hyperparameters for three sequence generation tasks. For the dataset, we
both report the vocabulary size, sentence numbers of training, validation and test sets. For the training, Lr denotes
the peaking learning rate and Warmup denotes the warmup step of the Adam optimizer. WD denotes whether we
applied word dropout. For the inference, Beam and LP denote the beam size and length penalty, respectively.

seeds, and we averaged the last 5/10 checkpoints
for fair comparisons with previous work. The detail
of Base/Deep/Wide configurations is as follows:

• Base/Deep Model. The hidden size of self-
attention was 512, and the dimension of the
inner-layer in FFN was 2, 048. We used 8
heads for attention. For training, we set all
dropout to 0.1 as default, including residual
dropout, attention dropout, ReLU dropout. La-
bel smoothing εls = 0.1 was applied to en-
hance the generation ability of the model. For
deep models, we only enlarged the encoder
depth considering the inference speed.

• Wide (or Big) Model. We used the same archi-
tecture as Transformer-Base but with a larger
hidden layer size 1, 024, more attention heads
(16), and a larger feed forward inner-layer
(4, 096 dimensions). The residual dropout
was set to 0.3 for the En-De task and 0.1 for
the En-Fr task.

For the language modeling task, the hidden
size was 512, and the filter size of the FFN was
2, 048. We set all the dropout rates as 0.1, including
the residual dropout, attention dropout and ReLU
dropout. Each model was trained up to 20 epochs,
and most models achieved the lowest PPL on the
validation set when the epoch is 10. Then the vali-
dation PPL began to increase, though the training
PPL is still declining. The warmup step was 2, 000
and the batch size was 4, 096. The max learning
rate was set to 0.0007.

Evaluation For machine translation, we mea-
sured performance in terms of BLEU. Both tok-
enized BLEU and SacreBLEU11 scores were re-

11BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.2.12

ported on the En-De and En-Fr tasks. Also, we
reported tokenized BLEU scores on the En-Ro
task. In addition, we measured Rouge-1, Rouge-2,
Rouge-L for CNN/DailyMail and precision, recall,
F0.5 for CONLL. The beam size and length penalty
of each task are summarized in Table 8.

C Additional Results and Analyses

Comparison on the CNN/DailyMail Dataset
We summarize the previous results on the
CNN/DailyMail dataset (See Table 9). The perfor-
mance was evaluated by ROUGE-1, ROUGE-2 and
ROUGE-L, respectively. Intuitively, high-order
ODE functions can significantly improve on top of
the Euler method as well as several strong existing
models.12 Again, RK4-block beats the baseline
and RK2-block by up to 1.36 and 0.25 scores in
terms of ROUGE-1, respectively.

Comparison of Various Scaling Methods We
have emphasized the importance of automatic co-
efficient learning in Section 3.2. The forward
pass of RK2-block can be described as yt+1 =
yt + γ1 · F1 + γ2 · F2, where γ1 and γ2 are coeffi-
cients which can be numerical suggested or learn-
able. Here we exhibit the comparison of various
scaling methods on the WMT’14 En-De dataset,
and the results are listed in Table 10. We can see
that RK2-block (learnable γi) equips with a sin-
gle sigmoid gate (line 5 in Table 10) yields best
results on both shallow and deep configurations.
The observation here reveals that appropriate scal-
ing functions can further improve the RK2-block.
Tanh activation even brings negative impacts on the
performance, especially when the model is deep. A
possible explanation is that Tanh produces a larger

12We only compared models without using pre-training.
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Model ROUGE-1 ROUGE-2 ROUGE-L

LEAD3 40.24 17.70 36.45
NEUSUM (Zhou et al., 2018) 41.59 19.01 37.98
PGNet (See et al., 2017) 39.53 17.28 36.38
Soft Fusion (Liu et al., 2020b) 41.00 18.30 37.90
Bottom-Up Summarization (Gehrmann et al., 2018) 41.22 18.68 38.34

Residual-block 40.47 17.73 37.29
RK2-block 41.58 18.57 38.41
RK4-block 41.83 18.84 38.68

Table 9: ROUGE scores of various models on the CNN/DailyMail dataset.

Model γ1 γ2 6-layer 24-layer

weight sharing 1 1 28.51 29.60
RK2-block 1/2 1/2 28.67 29.85
RK2-block (γi = 1) 1 1 28.77 30.01
RK2-block (learnable γi = 1) scalar scalar 28.80 30.13
RK2-block (learnable γi) sigmoid sigmoid 28.74 30.06
RK2-block (learnable γi) sigmoid (1 - sigmoid) 28.86 30.29
RK2-block (learnable γi) tanh tanh 28.45 29.47

Table 10: Comparison of various scaling functions on the WMT14’ En-De dataset.

range ([−1, 1]) which is more difficult to optimize
than the sigmoid function.

Case Study on the GEC Task Table 11 sum-
marizes several cases from the GEC task. Here,
we make a comparison between the baseline and
the RK4-block due to its superiority on the GEC
task. We can clearly see that the proposed RK4-
block delivers more accurate corrections compared
with the baseline when handling subject-verb agree-
ment (Case2), collocation (Case1, Case3), spelling
(Case4) and other issues. More specifically, Figure
7 illustrates the statistics of different error types
annotated by ERRANT (Bryant et al., 2017), a
grammatical ERRor ANnotation Toolkit designed
to automatically annotate parallel error correction
data. For more details please refer to Bryant et al.
(2017)’s work. With the help of ERRANT, we
can carry out a detailed error type analysis. As
shown in Figure 7, RK4-block corrects the input
in a more similar way with the reference, though
there is still a large gap between them. Limited by
the model ability, the baseline sometimes even can-
not generate the right corrections, e.g. R:PUNCT
and M:OTHER cases.

D Comparison with Related Work

As we aforementioned, the ODE design schema
somehow shares a similar merit with the weight
sharing, especially when the coefficients are set to
1. This is because we reuse the same function F
to compute the intermediate approximation at each
timestep, and it is also an effective way to apply
the higher-order ODE into the Transformer archi-
tecture. Compared with weight sharing (line 1 in
Table 10), ODE Transformer variants can deliver
better performance within the same computation
cost, demonstrating the effectiveness of ODE de-
sign schema.

Next, we make a detailed comparison between
the proposed ODE Transformer and previous stud-
ies (Baier-Reinio and De Sterck, 2020; Zhu and
Fu, 2018; Zhang et al., 2021) to avoid the potential
misunderstandings.

Compared with RKNet RKNet (Zhu and Fu,
2018) is mainly designed to improve the ResNet
using implicit Runge-Kutta methods for vision
tasks. There are some differences between ours
and RKNet. (i) We mainly conduct experiments
on sequence generation tasks, e.g. machine trans-
lation, abstract summarization, and grammar error
correction tasks. They focused on the image clas-
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Case1

Source What ’s more , various of cultures can be shown to us through social medias .
Reference What ’s more , various cultures can be shown to us through social media .

Baseline What ’s more , various cultures can be shown to us through social medias .
RK4 What ’s more , various cultures can be shown to us through social media .

Case2

Source Social media sites such as Facebook has allow us to share our pictures or even chat online with
our parents while we are overseas .

Reference Social media sites such as Facebook have allowed us to share our pictures or even chat online
with our parents while we are overseas .

Baseline Social media sites such as Facebook allow us to share our pictures or even chat online with our
parents while we are overseas .

RK4 Social media sites such as Facebook have allowed us to share our pictures or even chat online
with our parents while we are overseas .

Case3

Source On one side , it is obvioualy that many advantages have been brought to our lives .
Reference On the one hand , it is obvious that many advantages have been brought to our lives .

Baseline On one hand , it is obvious that many advantages have been brought to our lives .
RK4 On the one hand , it is obvious that many advantages have been brought to our lives .

Case4

Source Other than that , I believe that the stong bond we have with our family is the biggest pillar of
support to the carrier .

Reference Other than that , I believe that the strong bond we have with our family is the biggest pillar of
support to the carrier .

Baseline Other than that , I believe that the stong bond we have with our family is the biggest pillar of
support to the carrier .

RK4 Other than that , I believe that the strong bond we have with our family is the biggest pillar of
support to the carrier .

Table 11: Several examples from the GEC task. Here, source and reference denote the model input and the
correction result, respectively. Green words are good corrections, while Red words are bad corrections.
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sification task. (ii) Except for the integration of
ODE into the Transformer design schema, we also
make an analysis on how to choose appropriate co-
efficients of intermediate approximations. And we
bridge the relationship between the ODE design
schema with the explicit weight sharing. (iii) We
also offer an automatic coefficient learning method
for RK2-block which delivers the best performance
in different configurations.

Compared with N-ODE As we discussed in the
related work, our work is complementary to Baier-
Reinio and De Sterck (2020)’s work. We empiri-
cally demonstrate the effectiveness of integrating
ODE design schema into Transformer on several se-
quence generation tasks. This work may shed light
on the design of effective Transformer architec-
tures from the numerical perspective and provides
stronger baselines to the literature.

Compared with CSAODE The differences be-
tween these two works are summarized below: (i)
As we emphasized above, the benchmarks we ex-
perimented on are quite different. They mainly
validated the proposed CSAODE on text classifi-
cation and QA tasks. (ii) The proposed CSAODE
(Zhang et al., 2021) is an extension of neural ODE
(cheng et al., 2018), where the motivation is quite
different. They aim to effectively calculate the con-
tiguous states of hidden features only via one-layer
parameters and proposed a self-attention solver to
fix the issue. While our motivation is to employ
higher-order ODE solutions to reduce the trunca-
tion errors produced by each layer. On the other
hand, CSAODE is still a single-layer model, and
ours is a multi-layer sequence-to-sequence model.
We also show the comparison of different compo-
nents based on higher-order ODE solutions (See
Figure 4). (iii) The single-layer model is not strong
enough to solve complicated tasks, e.g. machine
translation. However, when stacking several lay-
ers, we need to re-consider the error accumulation
among layers, that each layer is an individual ODE
solver. How to mitigate the error accumulation is
the main goal in this work, which is not discussed
in their work.

E Derivations of the Equation

Let E be the loss of training, L be the number
blocks of the model, and yL be the model output.
Here, we define

zk = yk + F (yk, θk) (27)

Then the information flow of the RK2 method
can be described as follows:

yk+1 = yk +
1

2
F (yk, θk) +

1

2
F (yk + F (yk, θk), θk)

= yk +
1

2
F (yk, θk) +

1

2
F (zk, θk)(28)

where ∂zk
∂yk

= 1 + ∂F (yk,θk)
∂yk

. In this way, the detail
derivation of Eq. (28) is as follows:

∂yk+1

∂yk
=

1

2
·
(

1 + 1 +
∂F (yk, θk)

∂yk
+

∂F (zk, θk)

∂zk
·
(

1 +
∂F (yk, θk)

∂yk

))
=

1

2
·
(

1 +
(

1 +
∂F (zk, θk)

∂zk

)
·(

1 +
∂F (yk, θk)

∂yk

))
(29)

With the chain rule, the error E propagates from
the top layer yL to layer yt by the following for-
mula:

∂E
∂yt

=
∂E
∂yL
· ∂yL
∂yL−1

· ∂yL−1

∂yL−2
· · · ∂yt+1

∂yt
(30)

Here we have

gk =
(

1 +
∂F (yk, θk)

∂yk

)
·
(

1 +
∂F (zk, θk)

∂zk

)
Then, put the Eq. (30) into Eq. (29), the gradient

of E at yt is

∂E
∂yt

=
∂E
∂yL
· 1

2L−t
·
L−1∏
k=t

(1 + gk) (31)

Similarly, we can easily obtain the gradient of
RK2 method where γi = 1:

∂E
∂yt

=
∂E
∂yL
· gL−1 · gL−2 · · · gt

=
∂E
∂yL
·
L−1∏
k=t

gk (32)
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