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Abstract

The learning trajectories of linguistic phe-
nomena in humans provide insight into lin-
guistic representation, beyond what can be
gleaned from inspecting the behavior of an
adult speaker. To apply a similar approach to
analyze neural language models (NLM), it is
first necessary to establish that different mod-
els are similar enough in the generalizations
they make. In this paper, we show that NLMs
with different initialization, architecture, and
training data acquire linguistic phenomena in
a similar order, despite their different end per-
formance. These findings suggest that there
is some mutual inductive bias that underlies
these models’ learning of linguistic phenom-
ena. Taking inspiration from psycholinguis-
tics, we argue that studying this inductive bias
is an opportunity to study the linguistic repre-
sentation implicit in NLMs.

Leveraging these findings, we compare the rel-
ative performance on different phenomena at
varying learning stages with simpler reference
models. Results suggest that NLMs exhibit
consistent “developmental” stages. Moreover,
we find the learning trajectory to be approxi-
mately one-dimensional: given an NLM with
a certain overall performance, it is possible to
predict what linguistic generalizations it has al-
ready acquired. Initial analysis of these stages
presents phenomena clusters (notably morpho-
logical ones), whose performance progresses
in unison, suggesting a potential link between
the generalizations behind them.

1 Introduction

Children present remarkable consistency in their
patterns of language acquisition. They often ac-
quire linguistic phenomena in a similar order (Kuhl
et al., 1992; Ingram, 1989), and make similar gen-
eralizations and over-generalizations (Kuczaj II,
1977; Pinker, 1995). This consistency provides an
important starting point for linguistic study. For

example, arguments in favor of single or dual sys-
tem accounts of morphological representation are
often backed by computational models of children
learning trajectories (e.g., Rumelhart and McClel-
land, 1986; Pinker and Prince, 1988; Kirov and
Cotterell, 2018). In this paper, we embrace this
program for the study of computational language
models, investigating learning trajectories. 1

The representations that language models (LM)
acquire have been studied extensively, including
studying their learning dynamics to improve train-
ing (see §6). However, very little work aimed at
drawing connections between the training dynam-
ics and the learned representations. In this work
we adopt a behavioral approach, thus revealing that
NLMs share learning trajectories and generalize
in similar ways during training. This implies that
studying trajectories of NLMs is worthwhile, in the
sense that results on one architecture or size are
expected to be reproducible by others.

These findings call for a characterization of these
trajectories, a new and promising territory for re-
search. We take first steps to explore these direc-
tions, emphasizing their potential benefit to a better
future understanding of what models learn.

Specifically, we train NLMs on next-word pre-
diction, but evaluate and compare them by tracking
their performance on grammar learning in English,
using the BLIMP dataset (See 2.1). BLIMP is a
dataset that consists of 67K minimal pairs, where
each pair includes a grammatically correct and
a grammatically erroneous sentence. NLMs are
tested for their ability to assign higher probability
to the correct one. See example in Table 1, and
details of our experimental methodology in §2.

We begin (§3) by establishing that NLMs learn
grammatical phenomena in a consistent order. We
evaluate NLMs at different time points along their
training, showing that the performance on linguis-

1Code is supplied in https://github.com/borgr/
ordert
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Challenge Correct Erroneous

Animate subject Galileo had talked
to Bell.

This car had
talked to Bell.

Drop argument The groups buy. The groups dislike.

Table 1: BLIMP minimal pairs examples.

tic phenomena across initializations is highly cor-
related. We further find many similarities in the set
of examples that they correctly classify.

Still, models of different architectures learn at a
different pace, and hence cannot be directly com-
pared at identical time points. In §3.3, we over-
come this by re-scaling the timeline. We then
show that despite architectural differences, NLMs
present highly correlated performance trajectories.
In §3.4, we further demonstrate that even the choice
of training data has minor influence on the results.
Finally, in §3.5 we show that the learning dynam-
ics essentially follows a single dimension. Namely,
where the average performance is similar, success
on linguistic phenomena is also similar.

We proceed by analyzing the early stages of
learning in §4. We find that, at first, NLMs rely
mostly on local cues and not on word order. They
thus resemble bag-of-words models over a window
of the preceding tokens. Later stages seem to drift
further away from bag-of-words models toward
n-gram models, and with time seem to be more
sensitive to structural cues. We also find evidence
that some latent features that the model learns may
not be related to linguistic phenomena.

Finally, in §5 we take the first steps in catego-
rizing linguistic phenomena by their learning tra-
jectories. We identify links between their repre-
sentations by finding phenomena that progress in
unison. For example, we find that morphological
phenomena are mostly learned at similar stages.
Of particular interest are cases where performance
decreases with time, which may suggest either over-
generalization or biases in the BLIMP challenges.

2 Experimental Setup

2.1 The BLIMP Dataset

We use BLIMP (Warstadt et al., 2019) to assess
the extent to which generalizations are made by
the NLMs. BLIMP includes 67 grammatical chal-
lenges categorized into 13 super-phenomena (e.g.,
island-related or quantifiers) comprising of 4 broad
fields (e.g., Syntax, Semantics). Each challenge
consists of 1K minimal pairs of sentences. A mini-

mal pair contains a sentence and a near-duplicate
distractor that incorporates an error on a particular
linguistic phenomenon, i.e., only the phenomenon
in question is changed between the sentences in a
pair (see Table 1). Each challenge includes pairs
with the same linguistic phenomenon.

2.2 Training

LM details: as training multiple GPT2 instances
(Radford et al., 2019) is computationally demand-
ing, we train smaller NLMs. Following Turc et al.
(2019), we trained 1 instance of GPT2small (width
768, 12 layers, 8 attention heads) and 4 instances of
GPT2tiny (width 512, 4 layers, 4 attention heads),
with different random seeds.

Similarly, we train a small TransformerXL (Dai
et al., 2019), XLsmall (width 512, 4 layers, 8 at-
tention heads) and a full-sized one (width 4096,
18 layers, 16 attention heads). We stop the full
model after 600K steps, while the perplexity re-
mained high. We use it for comparison to the
early stages of learning of TransformerXL. All
models’ hyperparameters can be found in App. §B.
We also use the results of the fully trained GPT2,
TransformerXL, LSTM and human performance
reported in Warstadt et al. (2019).

In §4, we compare NLMs with simpler models.
To this end, we create two GPT2tiny variations,
denoted BOW and Window-5. BOW replicates
GPT2tiny, but relies only on bag of words. This is
achieved by removing the positional weights, and
replacing the attention weights with a simple av-
erage.2 Window-5 similarly ignores the positions,
and additionally only attends to the last 5 words.
Note that both are unidirectional LMs and consider
only previously predicted words at each step.

Unless explicitly stated otherwise (as in §3.4),
all models were trained on the WikiBooks dataset
(Zhu et al., 2015), which contains the English
Wikipedia (2.1B words) and BookCorpus (854M
words). This dataset resembles BERT’s train-
ing data (Devlin et al., 2019), except that current
Wikipedia is used. Additionally, we trained models
on the following datasets: English openSubtitles
(Lison and Tiedemann, 2016), newsCrawl (Barrault
et al., 2019), GigaWord (Napoles et al., 2012), and

2Supposedly, removing the positional embeddings would
suffice. Empirically, it has little effect. Presumably, as embed-
dings only attend to previous positions, the network manages
to represent positions by the difference between them. This
is in line with the finding that GPT2’s positional embeddings
are not meaning-bearing (Wang and Chen, 2020).
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a sample of openWebText (3B words; Gokaslan
and Cohen, 2019) – a replication of GPT2 dataset.

Throughout this paper, we report Pearson corre-
lation. Using Spearman correlation leads to qualita-
tively similar conclusions. When multiple models
are correlated against each other, their average pair-
wise correlation is reported.

3 The Learning Order of NLMs

In this section, we examine various aspects of
NLMs, generally showing that their learning trajec-
tories are similar.

We evaluate network similarity by adopting a
behavioral approach. Accordingly, networks are
viewed as functions, whose latent features manifest
themselves only by their influence on the network’s
behavior. Latent features are the unobserved causes
of the measured behavior. Consequently, parame-
ters, activation patterns and representations can be
completely different among similar models. This is
unlike the approaches employed by Williams et al.
(2018); Saphra and Lopez (2019); Liu et al. (2021),
which analyze internal representations directly.

To formalize the above notion, let Lt denote a
checkpoint, the language model L at time t. Let
pv(Lt) denote its performance vector – the accu-
racy obtained by L on each BLIMP challenge p:

pv(Lt) = [acc(Lt, p)]p∈BLIMP ∈ R67 (1)

Time t is measured in training steps or perplex-
ity. The trajectory of the performance vector as a
function of t reflects L’s training dynamics.

Given this behavioral definition, we focus on
comparing the relative strength of models. Similar-
ity between models is thus measured as the corre-
lation between their performance vectors. Hence,
models are similar if they rank phenomena in the
same way. On the other hand, models of the same
average performance can be dissimilar: consider
two models that agree on everything except nouns.
One generates only feminine nouns and the other
plural nouns. The models’ average performance
is similar, but due to their biases, they are correct
on different challenges. This dissimilarity suggests
that the models rely on different latent features.

3.1 Consistent Order of Learning
We begin by showing that models produced by
different initializations learn the same phenomena,
in the same order. In terms of our definitions above,
this may imply that despite converging to different

parameter values, the learned latent features and
the generalization patterns made are similar.

Figure 1: High correlation after warmup (5K steps).
Correlation between the performance vectors (mea-
sured by steps) of GPT2tiny models with different ini-
tialization (blue) or training data (orange).

In order to examine the hypothesis empirically,
we compute the correlation between 4 random ini-
tializations (Fig. 1). Results confirm the hypothesis,
the correlation between GPT2tiny instances is ex-
tremely high. It is already high after 10K steps, and
remains high throughout training. We note that the
correlation at step 0 is 0 (not shown), and that after
10K warm-up steps the network’s ability as a LM
is still poor. For example, perplexity is 10.9 after
10K steps and 6.7 after 70K steps.

3.2 Effects of Architecture

Figure 2: Similar Accuracy despite different initial-
izations and sizes of the GPT2small models. Trans-
formerXL perplexity is not computed on the same vo-
cabulary, but still shows a (rescaled) similar trend. The
graph depicts trajectories on an example phenomenon
(“existential there”). y-axis is the accuracy during train-
ing and x-axis is the model’s perplexity.

Next, we show that different architectures also
present similar trajectories. As the learning pace is
not comparable across models, computing correla-
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tion in fixed and identical intervals is not informa-
tive. Instead, we choose t to be the perplexity on
the development set, comparing models at the same
performance level. TransformerXL is not directly
comparable as perplexity requires the vocabulary
to be the same.

Following this paradigm, we see that GPT2small

and GPT2tiny are highly correlated (>0.9), present-
ing similar learning order throughout training. Ob-
serving the trajectories per challenge qualitatively,
we see that they align very well (cf. Fig. 2 and App.
§A, §C). TransformerXL also seems to share the
general tendencies of the GPT2 architectures.

Interestingly, we see that models behave simi-
larly not only in terms of relative performance, but
also at the example level (binary decision per min-
imal pair). We find that GPT2small and GPT2tiny
have an average agreement of κ = 0.83 (Fleiss
et al., 1969). This implies strong consistency in
the order of learning of different examples also
within phenomena. Henceforth, we focus on the
phenomena-level as it is more interpretable, lend-
ing itself more easily to characterization. We dis-
cuss per-example similarity further in App. §D.

3.3 Comparison to Off-the-shelf Models

So far, we have observed the common trajectories
presented by NLMs that are trained in parallel. We
proceed to compare trajectories of one model to
other models’ performance vectors at a single point
of interest in their learning, i.e. a checkpoint’s per-
formance vector. This allows us to analyze how
similarities evolve, rather than whether two trajec-
tories are synced. We compare fully trained off-the-
shelf NLMs with the trajectory of GPT2tiny (Fig.
3a) and GPT2small (App. §E).

The observed similarity to off-the-shelf models
is high (0.6-0.8), implying that NLMs in general
share tendencies and biases. Moreover, similarity
increases until the point of same performance and
then (when relevant) decreases. This suggests that
the small NLM approaches off-the-shelf tendencies
as it improves and stops somewhere on the same
trajectory of generalizations (cf. §3.5). Further-
more, we find considerable correlation with the
performance levels of humans on the different chal-
lenges, but still, all NLMs correlate better with our
model than humans correlate with it.

These results present a curious order imposed on
the NLMs. Both GPT2tiny and GPT2small (App.
§E) are more similar to the LSTM model than to

TransformerXL, and even less similar to GPT2large.
Interestingly, our models are more similar to an
RNN and a model with a different architecture,
than to a larger model with the same architecture.
Thus, it seems that the architecture type cannot
explain the similarities in the relative order. We
further examine this issue in the next section.

3.4 Effect of Training Data
This section examines the possibility that the simi-
larities reported in Fig. 3a can simply be explained
by the similarity in the NLM’s training data. More
specifically, since the ranking by model similar-
ity reported above fits the similarity between the
training sets that the models were trained on, we
view it as a potential confound and attempt to con-
trol for it. Our training data (WikiBooks) consists
mostly of Wikipedia and so do the LSTM’s and
TransformerXL’s training sets, which are trained
on earlier versions of Wikipedia and WikiMatrix
(Schwenk et al., 2019) respectively. GPT2, on the
other hand, is trained on openWebText, which con-
sists of scraped web pages.

To tease apart the effect of training data, we
trained 3 additional GPT2tiny instances over
the openWebText, openSubtitles and newsCrawl
datasets. Results (Fig. 1) show that the dataset has
more effect on the correlation than initialization.
Hence, the choice of training data does affect the
learning trajectory, but its effect decreases with
training (correlation gets higher with more training
steps). We also recompute the correlations from
§3.3 after training GPT2tiny on the same data as
GPT2large (App. §F), and find that the relative
order between the NLMs remains the same, with
GPT2large being the least similar.

We conclude that while the training data affects
the learned generalizations, it only very partially
explains the observed similarities between NLMs.

3.5 One Dimension of Learning
Based on the findings of the previous sub-sections,
we hypothesize that current NLMs all learn in a
similar order, where the effect of training data and
architecture is secondary. In other words, training
time, size and efficiency may affect what a model
has learned, but not its learning order. This implies
that stronger models may improve performance,
but still follow a similar learning trajectory. If this
hypothesis is correct, models should be most simi-
lar to models with the same performance; similarity
should drop as the gap in performance widens.
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(a) Off-the-shelf and human (b) GPT2small checkpoint after X steps

Figure 3: Reference models correlate the most with GPT2tiny when they have the most similar performance (or
near it). Correlation during GPT2tiny training compared to off-the-shelf LMs and human performance (left) or to
mid-training GPT2small checkpoints (right). Curves correspond to fixed performance vectors. Where the X-axis
follows the training trajectory of gpt, each line represents similarity to a different checkpoint, either of different
fully trained models (left) or to checkpoint during the training of a larger model (right). Numbers are the average
performance of the checkpoint, and are placed over the step where this average performance is the most similar to
that of GPT2tiny. The best score of GPT2tiny is 67.

Controlled comparison supports this hypothe-
sis. Fig. 3b presents the correlation of GPT2tiny
training trajectory with several static checkpoints
taken during GPT2small training. We observe that
at the point in which the average performance
of GPT2tiny is closest to that of the checkpoint,
the correlation peaks, and then decreases again
as GPT2tiny surpasses the checkpoint in average
performance. So overall correlation peaks when
average performance is most similar. Note that de-
spite the different network sizes and convergence
rates, the correlation’s maximal value is very high
(higher than 0.9).

Further experiments show similar trends. Fig. 3a
presents a similar investigation, albeit with more
varied architectures and training datasets. Here too
the maximum correlation is obtained around the
point of most similar performance.

3.6 Comparison to 5-gram

NLMs are most similar to other NLMs with the
same performance. However, when compared to
non-neural LMs, this is no longer the case.

More specifically, we compare GPT2tiny to
two 5-gram LMs trained on the same dataset as
the NLMs (WikiBooks) and another (GigaWord)
dataset. Results are shown in Fig. 4, which is qual-
itatively different from Fig. 3a. Here, similarity in
performance implies neither high correlation, nor
the point of highest similarity. This serves both as a
sanity check to our methodology, and as a reminder
of model biases: In general, models may have dif-
ferent biases and tendencies, regardless of overall

performance. In our case, it seems that NLMs share
biases between them that are not necessarily shared
with other LMs.

While not the main purpose of the analysis, our
comparison reveals other noteworthy trends. For
example, 5-gram LMs trained on different corpora
have different correlations to the GPT2tiny trajec-
tory. This is further discussed in App. §G.

Figure 4: Correlation during training of GPT2tiny com-
pared to a 5-gram model trained on the same data
(WikiBooks) and on GigaWord. On each curve, we
mark the point at which the accuracy is most similar to
GPT2tiny , and additionally indicate the corresponding
overall average accuracy of the reference models.

3.7 Discussion

We find that the order of learning is surprisingly
stable across architectures, model sizes and train-
ing sets. Therefore, given a new NLM, the order
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in which it will learn linguistic phenomena can be
predicted by another model that achieves a similar
average accuracy. When considering non-neural
LMs, this observation does not always hold: in-
herently different architectures (such as 5-grams)
have very different trajectories. Hence, future mod-
els with very different induced biases may present
different orders.

4 Phases of Learning

Having established that different NLMs learn in
a consistent order, we investigate the emerging
learning trajectory by comparing it with simpler
reference models. Our goal is to identify distinct
learning phases that characterize NLM’s training.

Setup. We compare GPT2tiny to fully trained
LMs (same as §3.3), as well as to a variety of met-
rics. For each metric m we compute the average
score over each example for each of the 67 sets
Epi∈p [m (pi)] ∈ R67. The results are replicated
with GPT2small and TransformerXL and lead to
similar conclusions (see App. §E).

Sentence-level Metrics. First, we consider two
sentence-level metrics: sentence length (in tokens)
and syntactic depth. Assuming a sentence parse
tree, the depth is the longest path from a word to
the root. Sentence length is often considered to
be a source of challenge for infants (Brown, 1973)
and networks (Neishi and Yoshinaga, 2019), re-
gardless of the sentence’s complexity. Syntactic
depth (Yngve, 1960) is a measure used to assess
how cognitively complex a sentence is. We leave
the question of which measure of linguistic com-
plexity (Szmrecsányi, 2004) correlates best with
the trajectory exhibited by NLMs to future work.

Figure 5: Correlation between the performance vectors
of different metrics and models against the vector of
GPT2tiny at different stages of learning.

Our results (Fig. 5) show that neither sentence-
level metric (length and syntactic depth) can predict

well what is difficult for the model. This is not
surprising, as both measures only capture sentence
complexity at a general level, and are not directly
related to the linguistic phenomenon that is being
tested. We do see that the syntactic depth starts
off as a worse predictor of the NLM performance
and ends as a better one. We provide a different
perspective on this initial learning phase, before
and after that switch, later in this section.

Next, we compare the performance vector with
task difficulty for humans, as reported in the orig-
inal BLIMP paper. We observe that correlation is
fairly high after a sufficient number of steps. In
fact, the network becomes more similar to humans
as it improves: at the beginning, the network relies
on different features than humans, but with time
more of the hurdles are shared. However, correla-
tion saturates at a mid-range correlation of under
0.5. This suggests that the network (partially) relies
on features that are not used by human annotators.
These may be valid generalizations not tested by
BLIMP, or erroneous ones that are still beneficial
to reduce the score on the task it was trained on (cf.
McCoy et al., 2019). We revisit this issue in §5.

Comparison with Limited Context and Local-
ity. Our methodology opens the door to examine
other potential biases of LMs. We now do so, start-
ing with context and locality.

We consider models that take into account dif-
ferent scopes of context: unigram, and 2-5 gram
LMs that can exploit the order of preceding words.
We argue that the correlation between NLMs and
n-gram LMs may indicate that features based on
limited context are also employed by NLMs.

Surprisingly, the unigram model, which doesn’t
use context, perfectly classifies 7 phenomena,
achieves 98.1% accuracy on 1, and completely fails
(0% accuracy) on 8. This suggests that high accu-
racy on some syntactic and semantic challenges
(as defined by BLIMP) can be achieved by simple
heuristics. Note, however, that the NLMs we test
are not trained towards any specific phenomena
and are not fine-tuned in any way. Hence, NLMs
can only attain heuristics or biases (generalization
errors) which are beneficial in general, not ones
specific to our test challenges.

While NLMs initially present a strong corre-
lation with the unigram model, this correlation
quickly drops (see Fig. 5). From the outset,
GPT2tiny succeeds on 6 of the 8 phenomena that
are classified well by unigrams, and 4 of the 8 that
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the unigram model utterly fails on. Interestingly,
for 3 of the other phenomena on which the unigram
failed, GPT2tiny initially achieves 0% accuracy
(chance level is 50%), but its accuracy does climb
during training (e.g., see App. §A). We conclude
that, as expected, the NLM acquires a bias towards
predicting frequent words early in training, but that
this bias is weighed in against other (contextual)
considerations later on in training.

Figure 6: Correlation between the performance vec-
tors of GPT2tiny throughout learning with simple LMs.
The figure focuses on LMs found also on Fig. 5.

Comparing different scopes of context, our re-
sults (Fig. 6 and App. §E) show that through-
out training, the network presents high correlation
with n-gram models. From a certain point onward,
the network becomes more similar to the bi-gram
model than to the other n-gram LMs. We also
note that similarity peaks early on, but with time
the correlation decreases. This may suggest that
initially, the NLMs acquire grammatical behavior
that resembles a Markov model, or even a bi-gram
model. Only later does the network rely more on
global features. This is in line with our earlier find-
ings, which show an increasing correlation with
syntactic depth as compared to sentence length.

At the very beginning, NLMs often generate one
word repetitions (e.g., "the" Fu et al., 2020). This
seems to be at odds with our finding that grammar
learning already begins at this early stage. How-
ever, while frequency may dictate the most proba-
ble predictions, comparing two options that differ
only slightly may prove to depend more on context,
as our results indicate.

Limited Context and Word Order. By compar-
ing NLMs to n-grams, we examined the effect of
context within a fixed window size. Now we ex-

amine the effect of word order, within a window
and in general. To this end, we create two ablated
GPT2tiny models. BOW is agnostic to the order be-
tween preceding tokens, while Window-5 is similar
but relies only on 5 tokens (details in §2).

Our results suggest that initially, the identity of
the preceding words is more important than their
order. Both BOW and Window-5 better correlate
with our NLM than the n-gram models. Later on,
this trend reverses and the n-grams, that do ex-
ploit word order, become better correlated. Fur-
thermore, the correlation with Window-5 is sig-
nificantly smaller than with BOW at later stages
of learning, suggesting that the network gradually
learns to rely on more context (cf. Saphra and
Lopez, 2019).

5 Classifying the Learning Trajectories

To understand the latent features learned by NLMs,
we categorize linguistic phenomena through the
lens of their learning trajectories. We ask whether
linguistically similar phenomena are learned in a
similar fashion, and whether what is learned simi-
larly is defined by linguistic terms.

We inspect linguistic categories by comparing
the learning trajectories of their phenomena. In the
Morphology field, we find that they display similar
gradual curves, ultimately reaching high perfor-
mance (median accuracy 0.85, see Fig. 7a). This
may indicate that some latent features learned are
morphological, and affect performance on almost
all ’Morphology’ phenomena.

Syntax-semantics phenomena also present
unique behavior: their scores plateau near chance
performance (see Fig 7b), suggesting that the
learned features are insufficient to correctly repre-
sent phenomena in this field. The other fields, "se-
mantics" and "syntax" (Figs 7c,7d), do not present
prototypical learning curves, suggesting that they
are too broad to correspond to a single learning pat-
tern. This, in turn, may suggest that they do not all
correspond to a well-defined set of latent features.

Next, we follow the reverse direction and cluster
the learning curves of GPT2tiny. We use spectral
clustering with 10 clusters and sklearn default pa-
rameters, by projecting the learning curves into a
normalized Laplacian and applying k-means. Intu-
itively, learning curves with similar values along
the principal directions, are clustered together.
Other clustering methods show similar results.

The clusters (Fig. 8 and App. §H) reflect several
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(a) Morphology (b) Syntax-Semantics (c) Semantics (d) Syntax

Figure 7: Morphology and Syntax-Semantics (left) characterize NLM learning well, while semantics and syntactic
phenomena show little similarity (between lines). Learning curves of GPT2tiny per challenge (lines), clustered
according to different fields (graphs) and colored by super-phenomena.

(a) (b) (c) (d)

Figure 8: Some phenomena are learned, others (c) deteriorate, implying the network (that learns language mod-
elling, not phenomena) learns orthogonal features. Learning curves of GPT2tiny on BLIMP challenges, obtained
by spectral clustering and colored by fields.

learning profiles, some more expected than oth-
ers. For some, accuracy improves as learning pro-
gresses (see Fig. 8a). Some are barely learned, and
accuracy remains at near-chance level (see Fig. 8b).
Perhaps more surprisingly, some clusters deterio-
rate, and accuracy drops to nearly 0 as learning
progresses (see Fig. 8c). Notably, some challenges
are quite easy – NLMs instantly reach perfect ac-
curacy (see Fig. 8d), while some are confusing
– NLMs performance is worse than chance (see
Fig. 8c). In the latter cases, the NLMs presumably
learn unrelated, harmful generalizations.

When inspecting the emerging clusters, many
(but not all, see Fig. 8b) contain a shared promi-
nent field, but often varied super-phenomena (see
Fig. 8a). Thus, while the categorization in BLIMP
reflects a common linguistic organization of gram-
matical phenomena, from the perspective of learn-
ing trajectories only few of the super-phenomena
in BLIMP show consistent behavior. We cautiously
conclude that there is some discrepancy between
the common linguistic categorization of grammati-
cal phenomena and the categorization induced by
the learning trajectories of NLMs. An interesting
direction for future work would therefore be the
development of a theory that can account for the
patterns presented by NLMs’ learning trajectories.

We manually inspect a few phenomena with
strong initial performance that then deteriorates.
We find that some of these challenges are solvable

by a simple rule, easily learnable by an n-gram
model. For example, in "principle A case 1", al-
ways preferring subjective pronouns (e.g., "she" or
"he") over reflexive ones (e.g., "himself", "herself")
is sufficient to obtain a perfect score, and preferring
"not ever" over "probably/fortunately ever" solves
"sentential negation NPI licensor present". The fact
that NLM performance deteriorates, fits our finding
that nascent NLMs resemble an n-gram model.

6 Related Work

Characterizing what networks learn is a long-
standing challenge. Recently, studies suggested
methods to analyze trained models such as prob-
ing (Tenney et al., 2019; Slobodkin et al., 2021),
analyzing attention heads (Voita et al., 2019; Ab-
nar and Zuidema, 2020) and neurons (finding also
correlations across epochs; Bau et al., 2018) and
assessing the extent to which LMs represent syntax
(van Schijndel et al., 2019). Other works compare
outputs, like us, to assess network generalizations
(Choshen and Abend, 2019; Ontan’on et al., 2021),
look for systematic biases (Choshen and Abend,
2018; Stanovsky et al., 2019) or evaluate character-
istics of outputs (Gehrmann et al., 2021; Choshen
et al., 2020). McCoy et al. (2020) fine-tuned BERT
and tested generalizations on the adversarial dataset
HANS (McCoy et al., 2019), finding models to
make inconsistent generalizations. Their results
differ from ours, but so is their setup, which in-
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volves fine-tuning for inference.
Characterizing the features learned by networks

according to the order in which examples and phe-
nomena are learned is a relatively new topic. Re-
cently, Hacohen et al. (2020); Hacohen and Wein-
shall (2021); Pliushch et al. (2021) showed that
classifiers learn to label examples in the same or-
der. While their focus was on computer vision, it
provided motivation for this work. Other studies
use learning dynamics as a tool, rather than a topic
of study. They choose training examples (Toneva
et al., 2018), categorize examples (Swayamdipta
et al., 2020) or characterize the loss-space (Xing
et al., 2018). Little research on NLM learning dy-
namics and generalization types was previously
conducted.

Perhaps the closest to this work is Saphra and
Lopez (2019), which compared LSTM represen-
tations with 3 types of linguistic tagger outputs,
finding that correlation is low and that later in train-
ing, more context is used. The latter is reminiscent
of our findings in §4.

In parallel work, Liu et al. (2021) probe models
during training. They show that, early in train-
ing, information required for linguistic classifi-
cations is found somewhere in the layers of the
model. Our work supports their findings by show-
ing that grammar learning experiments conducted
with one model are likely to replicate on another.
Our methodology differs from theirs in requiring
the information the model learnt to manifest itself
in behavior rather than to be extractable with a
dedicated classifier.

Studying the trajectories of language learning
is a mostly untapped area in NLP, but is a long-
established field of research in linguistics and psy-
chology. Such lines of research study topics such
as acquisition of phonemes (Kuhl et al., 1992), mor-
phology (Marcus et al., 1992), complex construc-
tions (Gropen et al., 1991; Qing-mei, 2007) and
innate learning abilities (Tomasello, 2003). Con-
siderable computational work was also done on
constructing models that present similar learning
trajectories to those of infants (McClelland and
Rumelhart, 1981; Perfors et al., 2010; Abend et al.,
2017, among many others).

Our work suggests that the generalizations
NLMs make are coupled with the bottom-line per-
formance. This gives a new angle and opens av-
enues of research when combined with previous
work about bottom-line performance. For exam-

ple, the bottom-line performance of small models
could predict the performance of larger models
(Ivgi et al., 2022). In such cases, the type of gener-
alizations made might also be predicted from the
smaller models.

Our work is also closely related to fields such as
curriculum learning (Bengio et al., 2009; Hacohen
and Weinshall, 2019), self-paced learning (Kumar
et al., 2010; Tullis and Benjamin, 2011), hard data
mining (Fu and Menzies, 2017), and active learning
(Krogh and Vedelsby, 1994; Hacohen et al., 2022;
Ein-Dor et al., 2020). In these fields, the order in
which data should be presented to the learner is
investigated. On the other hand, in our work, we
study the order of the data in which the learner
is learning – which may shed some light on the
advancement of such fields.

7 Summary and Conclusions

We showed that NLMs learn English grammatical
phenomena in a consistent order, and subsequently
investigated the emerging trajectory. Our findings
suggest that NLMs present consistent and infor-
mative trends. This finding suggests a path for
studying NLMs’ acquired behavior through their
learning dynamics, as a useful complementary per-
spective to the study of final representations.

Future work will consider the impact of addi-
tional factors, architectures and learning phases
that appear only later in training. We hope that this
work will increase the affinity between the knowl-
edge and methodologies employed in developmen-
tal studies, and those used for studying NLMs. Our
goal is to obtain a better understanding of what
makes linguistic generalization complex or simple
to learn, for both humans and NLMs.
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A Per challenge Graphs

We include behaviours of each model trained over
the main dataset used (Wikipedia and books) on
each BLIMP challenge by perplexity. In general,
accuracy is similar despite different initialization
and size of the GPT2 models. TransformerXL
shows a similar trend, despite the uncomparable
Perplexity. We supply several examples here and
leave the rest to the data accompanying this paper.

Figure 9: The accuracy on determiner noun agreement
during training. Accuracy is similar despite different
initialization and size of the GPT2 models. Trans-
formerXL shows a similar trend, despite the uncompa-
rable Perplexity.

Figure 10: The accuracy on wh vs that with gap during
training.

B Details on experimental settings

We include further settings to ensure reproduciblity
of the results. Parameters shared by all the trained
NLMs include 32K tokens in the vocabulary, 5 ·
10−5 learning rate, max gradient norm of 1, Adam
optimizer (Kingma and Ba, 2015), and 10K warm-
up steps. TransformerXl vocabulary is kept to its

Figure 11: The accuracy on causative during training.

default. All other parameters, including GPT2small

size parameters, are the defaults according to the
HuggingFace transformers library.

Our 2-5 grams are KenLM (Heafield, 2011)
trained on WikiBooks. A second 5-gram model
trained on GigaWord corpus (Graff et al., 2003), as
reported by BLIMP. The Uni-gram LM is defined
according to the frequency of a word in WikiBooks.
Sentence probability is normalized by the number
of words, which is helpful for the rare cases where
the minimal pairs are of different lengths.

C Correlation during training

We see that tendencies during training are not only
similar between instances of the same architec-
ture but also between different architectures. On
comparable stages of learning, the GPT2tiny and
GPT2small correlate well (>0.9) with respect to
their performance vectors. We present the cor-
relations of GPT2tiny compared to GPT2small in
Fig. 12. We find the two learn in a similar order
throughout their training.

We manually compare the results to Trans-
formerXL. Qualitatively, observing the trajectories
per challenge (Trajectories are found in Supp. §A
and the supplied data) of TransformerXL, it seems
to share the general tendencies of the GPT2 archi-
tectures. However, reaching a lower stage of train-
ing, it never improves on some challenges (e.g.,
determiner-noun agreement).

D Models are consistent on per example
level

We compute the binary score of every example
by each model. We reframe the question as an
annotator agreement problem and ask whether the
models agree on the right answer for each example.
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Figure 12: Correlation between the performance vec-
tors of GPT2tiny and GPT2small, aligned by perplex-
ity.

Framed this way, the methodology is clear. We
compute Fleiss kappa (Fleiss et al., 1969) and find
the per example correlation. The full results per
step and challenge are added as a supplemental
file. The average overall kappa is 0.83, models not
only agree on the order of learning phenomena but
also on the order of learning examples within each
per-phenomenon (if learnt at all). While there are
phenomena with lower and higher agreement, there
are only two phenomena in the range of 0.5-0.6
agreement. Meaning even the most different ones
have high example correlation and there is little
variance between models to explain.

Our main aim in this work is to compare models
acquisition. However, we see the per example order
of acquisition as less informative, unless we can
cluster or name the examples learnt. The reason to
choose the phenomena was to extract such names,
and we hence focus in our work on them.

Note, that consistency per example was shown
before in the scope of computer vision (Hacohen
et al., 2020). However, a critical difference is that
they deal with classification and check whether
which examples are learnt first. We however, aim
to ask about generalization, given that you learn
one task (language modelling), what type of gen-
eralizations do you make, tested on another. For
example, while learning to predict the next word,
the network understands after X steps that the verb
should be in agreement with the subject.

E Reproducing with other models

We provide the GPT2small correlation with other
models and with various metrics and models in Fig.
13 and 14 respectively. We also supply the average
BLIMP accuracies of the models we trained in Fig.
15.

Figure 13: Correlation between the difficulty of GPT2
and of other models for each phenomena in each train-
ing step.

Figure 14: Correlation between the difficulty predicted
by BLIMP models and the difficulties for the model for
each phenomena in each training step.

Figure 15: Overall BLIMP accuracy by step.
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E.1 Results mainly replicate in
TransformerXL

We replicate the same experiment over the train-
ing of the TransformerXL instance. The Trans-
formerXL seems to reach a lower stage of learning,
probably due to the vast vocabulary and model.

The model replicates some of the general no-
tions seen on GPT2small. It correlates most with
simpler models, then with humans and then with
global features. At first, sentence length makes a
sentence more challenging than its actual structure,
5 window BOW starts as more relevant than BOW
over all the sentence.

We do see that the overall graph is quite straight.
With that, the increase in correlation with humans
is quite small, the BOW models don’t drop and the
evidence of relying on more abstract knowledge in
late stages is less apparent. This might be expected,
as we know the network reached an early step on
the performance scale.

Figure 16: Correlation between the difficulty predicted
by metrics and the difficulties for the model for each
phenomena in each time step.

F Reproducing with other data

As comparison to the correlations with our main
model, we provide the correlations of GPT2tiny
trained on OpenWebText with the two 5-gram mod-
els, one on WikiBooks and one on Giga word (Fig.
17). We see that the higher resemblence to Wiki-
Book trained model is kept despite being trained
on the same data, but the difference is lower at the
beginning and more stable. It might be the case
that over reliance on the specific data is shown at
those first steps where the difference is large, but it
would require further evidence.

We also compare the model to several other
trained models in Fig. 18.

Figure 17: Correlation during training of GPT2tiny
on OpenWebText compared to 5-gram model trained
on WikiBooks and on GigaWord. Correlation is over
BLIMP challenges. Numbers indicate the overall aver-
age of the reference models over BLIMP and are found
over the step with most similar accuracy on GPT2tiny .
GPT2tiny best score is 67.

Figure 18: Correlation during training of GPT2tiny
trained on OpenWebText data compared to Off-the-
shelve models and XL smaller models. The correlation
with itself during training is shown in gray. Correlation
is over BLIMP challenges. Numbers indicate the over-
all average of the reference models over BLIMP and
are found over the step with most similar accuracy on
GPT2tiny .
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G 5-grams notes

The gap between the correlation with the two 5-
grams decreases during the first 50K steps or so,
and then remains constant. This suggests that
the choice of a dataset is more important during
early NLM training. Because, at the beginning
the network learn generalizations which are more
common to counts of one (huge, general domain)
dataset than another, and this effect diminishes.
Possibly, this is because at this point NLMs rely
more on word identity, rather than on abstract gen-
eralizations, that are shared to a greater extent
across corpora (see §4). We observe that the 5-
gram trained on WikiBooks correlates better with
GPT2tiny, even when GPT2tiny is not trained on it
(not reported). We cannot offer a simple explana-
tion for this trend.

H Clustering BLIMP

We include the learning curves of GPT2tiny on
BLIMP dataset, clustered according to fields
(Fig. 19)„ super-phenomena (Fig. 20), and the spec-
tral clustering (Fig. 21). Due to restrictions on ap-
pendix files the figures are found in corresponding
folders in the supplied data.

Figure 19: Cluster of semantic phenomena, each line is
the trajectory of learning of a phenomenon.

Figure 20: Anaphor agreement super phenomena tra-
jectories.
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Figure 21: Cluster of phenomebna chosen by spectral clustering. The phenomena behave similarly but do not
follow the same linguistic categorizations.
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