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Abstract

We examine the extent to which supervised
bridging resolvers can be improved without
employing additional labeled bridging data by
proposing a novel constrained multi-task learn-
ing framework for bridging resolution, within
which we (1) design cross-task consistency con-
straints to guide the learning process; (2) pre-
train the entity coreference model in the multi-
task framework on the large amount of pub-
licly available coreference data; and (3) inte-
grate prior knowledge encoded in rule-based
resolvers. Our approach achieves state-of-the-
art results on three standard evaluation corpora.

1 Introduction

Bridging (Clark, 1975) plays an important role in
establishing entity coherence in a text. In con-
trast to direct anaphors, which indicate the coref-
erence relation between a nominal expression and
its antecedent, bridging anaphors or associative
anaphors link to their antecedents via non-identical
relations. Bridging resolution is the task of recog-
nizing and resolving bridging anaphors in a text.

Bridging resolution and coreference resolution
are closely related to Information Status (IS hence-
forth) classification, the goal of which is to assign
an IS to each discourse entity that indicates how
these entities are referred to in a text (Prince, 1981;
Nissim et al., 2004; Markert et al., 2012). In gen-
eral, an entity is old if it is coreferent with an entity
that has been mentioned before (e.g., “[The busi-
ness]” and “[its]” in Figure 1). Bridging anaphors
are discourse-new but hearer-old. They have not
been introduced in the discourse directly, but are
inferrable from previously mentioned entities (e.g.,
“[the customers]” in Figure 1). New entities are
introduced into the discourse for the first time and
are not known to the hearer before (e.g. “[The
Bakersfield Supermarket]” in Figure 1).

Progress on bridging resolution research is lim-
ited in part by the scarcity of annotated training

S1: [The Bakersfield Supermarket]_new went bankrupt last May. 

S2: [The business]_old closed when [its]_old old owner was 

murdered by robbers. 

S3: [The murder]_old saddened [the customers]_bridging. 

Coreference link
Bridging link

Figure 1: Illustration of information status, bridging and
coreference. Example is from Yu and Poesio (2020).

data. While one of the largest annotated entity
coreference resolution datasets, OntoNotes, is com-
posed of 2802 English documents in its training
split, the two most commonly used English corpora
for bridging resolution research, ISNotes (Mark-
ert et al., 2012) and BASHI (Rösiger, 2018), are
composed of 50 WSJ documents each. Perhaps
the most straightforward way to mitigate this data
scarcity problem is to combine existing annotated
bridging datasets to create a larger training set (Yu
and Poesio, 2020). While it makes sense to com-
bine corpora that are created using the same an-
notation guidelines (e.g., ISNotes and BASHI), at-
tempting to combine corpora created using differ-
ent guidelines (e.g., ARRAU (Poesio and Artstein,
2008) and ISNotes) will likely confuse the learner,
thus limiting the applicability of this method. Some
researchers have instead attempted to create auto-
matically labeled data via lexico-syntactic patterns
(Hou, 2018) and distant supervision (Hou, 2020),
but a manual analysis of the resulting data instances
reveals that they may be too noisy for training: on
average only one-fourth of them are correctly la-
beled (Hou, 2020).

By contrast, we aim to investigate the extent
to which supervised bridging resolvers can be im-
proved without increasing the amount of labeled
bridging data. To this end, we begin by propos-
ing a novel constrained multi-task learning (MTL)
framework for bridging resolution. While Yu and
Poesio (2020) develop a standard MTL model for
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bridging resolution and use coreference resolution
as the only auxiliary task, we propose to (1) ex-
ploit the close connection between IS and bridg-
ing/coreference resolution by introducing IS classi-
fication as the third task into the MTL framework
and (2) guide the learning process by designing
cross-task consistency constraints. For instance, in
Figure 1, the prediction from the coreference reso-
lution module indicating that both “[The business]”
and “[The murder]” are old entities can help the
bridging resolution module to avoid misclassifying
these two mentions as bridging anaphors. Simi-
larly, if the IS classification module predicts “[the
customers]” as a bridging anaphor, then the bridg-
ing resolution module should find an antecedent
for it. We hypothesize that such constraints can
guide the training of a complex model to produce a
more coherent output across different tasks, thereby
improving bridging resolution performance.

While the cross-task consistency constraints
could improve performance, they could also hurt
performance. Returning to our example in Fig-
ure 1, if the IS classification module misclassifies
"[the customers]" as non-bridging, the constraints
will propagate this error to the bridging resolution
module, causing it not to resolve the mention. To
address this problem, we (1) formulate these con-
straints as soft rather than hard constraints, and
(2) improve entity coreference resolution perfor-
mance by leveraging the large amount of publicly-
available coreference-annotated data in OntoNotes
to pre-train the coreference module.

Finally, since previous work (Hou et al., 2014;
Roesiger et al., 2018) has shown that manually de-
fined rules based on various syntactic and semantic
properties are valuable to recognize and resolve
bridging anaphors, we integrate such prior knowl-
edge about bridging into our MTL framework.
Note that the only hybrid rule-based and learning-
based approach to bridging resolution (Kobayashi
and Ng, 2021) merely applies the rule-based re-
solver and the learning-based resolver in a sequen-
tial manner, without combining them into a single
model.

In sum, our contributions are two-fold. First,
we propose a novel constrained MTL framework
that jointly learns three tasks, bridging resolution,
coreference resolution, and IS classification, via the
use of soft cross-task consistency constraints, prior
knowledge provided by rule-based approaches, and
pre-training on coreference data. Second, exper-

imental results demonstrate that our framework
achieves new state-of-the-art results for full bridg-
ing resolution on three datasets (ISNotes, BASHI,
and ARRAU).

The rest of the paper is structured as follows.
Section 2 describes related work on bridging resolu-
tion and constrained multi-task learning with deep
neural networks. Section 3 describes our model, in-
cluding our multi-task framework for jointly learn-
ing IS classification, entity coreference resolution
and bridging resolution, our cross-task consistency
constraints, and how we integrate rule knowledge
into the framework. We present evaluation results
in Section 4 and our conclusions in Section 5.

2 Related Work

Bridging resolution. Bridging resolution is com-
posed two sub-tasks: bridging anaphora recogni-
tion and antecedent selection. Most previous work
tackles them separately. One line of research mod-
els bridging recognition as part of IS classification
(Rahman and Ng, 2011; Markert et al., 2012; Cahill
and Riester, 2012; Rahman and Ng, 2012; Hou,
2021), while others have focused on antecedent
selection based on gold bridging anaphors (Poesio
et al., 2004; Lassalle and Denis, 2011; Hou et al.,
2013; Hou, 2020).

There are a few studies tackling the challeng-
ing task of full bridging resolution (i.e., bridging
anaphor recognition and resolution). Hou et al.
(2014) and Roesiger et al. (2018) develop rules to
identify bridging links based on syntactic and se-
mantic constraints. Hou et al. (2018) propose a
pipeline system built on top of complex manually
designed features. Yu and Poesio (2020) design
a MTL neural model for bridging resolution that
uses coreference resolution as an auxiliary task.
Recently, Kobayashi and Ng (2021) show the effec-
tiveness of a hybrid rule-based and MTL approach
for bridging resolution. For a detailed overview of
these approaches, we refer the reader to a recent
survey by Kobayashi and Ng (2020).

Constrained multi-task learning with deep
neural networks. Multi-task learning has been
widely adopted in various NLP applications to im-
prove the performance of individual tasks (Ruder,
2017). Recently, several studies have demonstrated
that multi-task training in neural networks can be
further improved by integrating logical constraints
to enforce a coherent output across different tasks
(Li et al., 2019; Wang et al., 2020; Lu and Ng,
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2021). However, for a complex task like bridg-
ing resolution, it is non-trivial to choose auxiliary
tasks and model the relationships between these
tasks in deep neural networks. In this work, we (1)
jointly train three tasks (i.e., bridging resolution,
coreference resolution, and IS classification); (2)
design five soft cross-task consistency constraints
to guide the training process; and (3) integrate prior
knowledge about bridging into our MTL model.

3 Model

In this section, we present our constrained MTL
framework for bridging resolution. Inspired by Yu
and Poesio’s (2020) span-based model for bridg-
ing resolution, which employs an unconstrained
MTL framework that jointly learns bridging and
coreference, our model takes as input a document
D represented as a sequence of word tokens and
gold mentions M , from which we create span repre-
sentations. Our model simultaneously learns three
tasks, namely IS classification, bridging, and coref-
erence, as defined below.

The IS classification task aims to assign each
span i an IS yis taken from an IS inventory.
The model predicts the IS of i to be y∗is =
argmaxyis sis(i, yis), where sis is a function sug-
gesting i’s likelihood of having yis as its IS.

The bridging resolution task involves determin-
ing an antecedent for each bridging anaphor. For-
mally, it assigns span i an antecedent yb, where
yb ∈ Y(i) = {1, ..., i − 1, ϵ}. In other words, the
value of each yb is the id of its antecedent, which
can be one of the preceding spans or a dummy
antecedent ϵ (if the mention underlying i is not a
bridging anaphor) in the associated document. We
define the following scoring function:

sb(i, j) =

{
0 j = ϵ

sa(i, j) j ̸= ϵ
(1)

where sa(i, j) is a pairwise bridging score com-
puted over i and a preceding span j. The
model predicts the antecedent of i to be y∗b =
argmaxyb∈Y(i) sb(i, yb).

The entity coreference resolution task involves
determining an antecedent for each identity
anaphor. Formally, it aims to assign span i an
antecedent yc based on a scoring function sc that
can be defined in an analogous manner as the sb
function in the bridging resolution task.

3.1 Model Structure
Figure 2 shows the structure of our constrained
MTL framework. Below we describe the details.
Span Representation Layer Following Yu and
Poesio (2020), we use BERT embeddings as the
input to a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to encode tokens and their con-
texts. Then, we set gi, the representation of span
i, to [hstart(i);hend(i);hhead(i); fi], where hstart(i)

and hend(i) are the hidden vectors of the start and
end tokens of i, hhead(i) is an attention-based head
vector and fi is a span width feature embedding.1

IS Prediction Layer For each span i, we pass
its representation gi to FFNNis, a standard feed-
forward neural network. FFNNis outputs a vector
oii of dimension of S, where S is the number of
possible IS labels. Specifically:

oii = FFNNis(gi) (2)

sis(i, yis) = oii(yis) (3)

where oii(yis), the yis-th element of oii, is a score
that indicates i’s likelihood of belonging to IS yis.
This score is then used to compute sis.

Bridging Prediction Layer To predict bridging
links, we define the pairwise score between span i
and span j as follows:

sa(i, j) = FFNNb([gi; gj ; gi ◦ gj ;uij ]) (4)

where ◦ denotes element-wise multiplication, gi◦gj
encodes the similarity between span i and span j,
uij is a feature embedding encoding the distance
between two spans1, and FFNNb is the FFNN used
in the bridging prediction layer. This pairwise score
is then used to compute sb (see Equation (1)).

Coreference Prediction Layer The coreference
prediction layer is defined in the same way as the
bridging prediction layer, with the coreference pair-
wise score sc(i, j) between two spans i and j com-
puted by another FFNN, FFNNc. Note that the first
few layers of FFNNc and FFNNb are shared.

3.2 Incorporating Consistency Constraints
As noted before, we propose to guide the learning
process by incorporating consistency constraints
on the three tasks involved in our model. Below we
design five cross-task consistency constraints and
show how they can be incorporated into our model
in a soft manner.

1This feature embedding is originally proposed by Clark
and Manning (2016). See their paper for details.

761



Span	Representa+on	Layer

[The	Bakersfield	Supermarket]	went	…	[The	business]	closed	when	[its]	old	…	[The	murder]	saddened	[the	customers]	…

The	Bakersfield		
Supermarket The	business its The	murder the	customers ……

IS	Predic+on	Layer

its The	murder the	customers

Old Old Brid.

Bridging	Predic+on	Layer

its
dummy

The	murder
dummy

the	customers
dummy

Brid.Brid.Brid.

Coreference	Predic+on	Layer

its
dummy

The	murder
dummy

the	customers
dummy

Coref. Coref. Coref.

Shared	FFNN Bridging	Pairs	extracted		
by	a	Rule-based	Resolver

Constraints

Constraints

Bidirec+onal	LSTM

Figure 2: Model structure of the constrained MTL framework for bridging resolution.

Constraint P1: If a span i has BRIDGING as its
IS value, then its bridging antecedent must not be
the dummy antecedent.

To enforce P1 in a soft manner in our model,
we define a penalty function p1, which imposes a
penalty on span i if it violates the constraint, as
shown below:

p1(i) =


0 argmax

yis∈Y
sis(i, yis) ̸= brid

sis(i, brid)− max
yis∈Y\{brid}

sis(i, yis) otherwise

(5)
where Y is the set of possible IS labels. Intuitively,
p1 estimates the minimum amount that needs to be
adjusted so that span i’s IS type is not BRIDGING.
In particular, p1 returns 0 (i.e., no penalty) if i’s IS
type is not BRIDGING.

We incorporate p1 into the model as a penalty
term in sb (Equation (1)). Specifically, we redefine
sb(i, j) when j = ϵ, as shown below:

sb(i, ϵ) = sb(i, ϵ)− γ1p1(i) (6)

where γ1 is a positive constant that controls the
hardness of the constraint. The smaller γ1 is, the
softer the constraint is. Intuitively, if P1 is violated,
sb(i, ϵ) will be lowered by the penalty term, and
the dummy antecedent will less likely be selected
as the antecedent of i.
Constraint P2: If a span i has OLD as its IS
value, then its coreference antecedent must not be
the dummy antecedent.

The penalty function p2 used to enforce P2 is
formulated in the same way as P1.
Constraint P3: If the IS task predicts a span i as
non-BRIDGING, then its antecedent selected in the
bridging task must be the dummy antecedent.

Similar to P1, we define a penalty function p3 to
enforce P3:

p3(i) =


0 argmax

y∈Y
sis(i, y) = brid

max
y∈Y\{brid}

sis(i, y)− sis(i, brid) otherwise

(7)
We employ p3 to update sb as follows:

sb(i, j) = sb(i, j)− γ3p3(i) (8)

where γ3, like γ1, is the hardness coefficient. This
penalty is applied only when P3 is violated. Specif-
ically, if IS task predicts a span i as non-BRIDGING

but its antecedent selected in the bridging task is
not the dummy antecedent, then the penalty term
will lower the sb score for each of i’s non-dummy
antecedents, which in turn makes it more likely
for the dummy antecedent to be selected as the
antecedent of i.
Constraint P4: If a span i does not have OLD as
its IS value, then its coreference antecedent must
be the dummy antecedent.

The penalty function p4 used to enforce P4 is
formulated in the same way as P3.
Constraint P5: If a span i has a non-dummy
antecedent as its coreference antecedent, then
its bridging antecedent must be the dummy an-
tecedent.

The penalty function p5 used to enforce P5 is
defined as follows:

p5(i) =


0 argmax

j∈Y(i)
sc(i, j) = ϵ

max
j∈Y(i)\{ϵ}

sc(i, j) otherwise

(9)

762



where Y(i) is the set of candidate antecedents of
span i. We employ p5 to update sb as follows:

sb(i, j) = sb(i, j)− γ5p5(i) (10)

where γ5 is the hardness coefficient.

3.3 Incorporating Prior Knowledge

Next, we incorporate the prior knowledge provided
by rule-based resolvers into our model. Specifi-
cally, we employ the set of corpus-specific rules
designed by Rösiger et al. (2018). Recall that the
output of a rule-based bridging resolver is a set of
links between a bridging anaphor and one of its an-
tecedents. We incorporate these bridging links into
our model by encoding them as a binary feature,
rij , whose value is 1 if and only if the rule-based
resolver posits a bridging link between span i and
span j. This feature will be used as an additional
feature for FFNNb and FFNNc.

As noted by Rösiger et al. (2018), rule-based
resolvers are precision- rather than recall-oriented.
The reason is that these hand-crafted rules are de-
signed to resolve specific (rather than all) cate-
gories of bridging anaphors. For instance, one
rule is designed to resolve a building part (e.g.,
"the door") to the building of which it is a part
(e.g., "the house"). Because of the low-recall nature
of rule-based resolvers, the feature rij , which we
compute based on the rule-based outputs, could be
perceived as not particularly useful by our model.
Consequently, to encourage the model to seriously
take into consideration the potentially useful in-
formation encoded in rij , we design a rule loss
(see Section 3.4), which imposes a penalty on the
model during training if the antecedent selected by
the model is a non-dummy antecedent that is nei-
ther a correct antecedent of i nor the one selected
by the rules (as encoded in rij).

3.4 Training

The loss function, L(Θ), consists of the losses of
the three tasks and the rule loss as follows:

L(Θ) =
d∑

i=1

(λbLb+λcLc+λisLis+λrLr) (11)

where d is the number of training documents and
the hyperparameters (i.e., the λ’s), which determine
the trade-off between the task losses, are tuned us-
ing grid search to maximize the average resolution
F-scores on development data.

Task Losses We employ a max-margin loss for
the bridging and coreference resolution tasks.

Defining the bridging loss is tricky since the
antecedents for each bridging anaphor are evalu-
ated in the form of coreference clusters. We adopt
the entity coreference loss function originally de-
fined by Wiseman et al. (2015). Specifically, let
GOLDb(i) denote the set consisting of span i’s
bridging antecedent as well as the spans preced-
ing i that are coreferent with the antecedent, and
ylb be argmaxy∈GOLDb(i)

sb(i, y). In other words,
ylb is the highest scoring (latent) antecedent of i
according to sb among all the antecedents of i.

The loss function for bridging is defined as:

Lb(Θ) =
∑n

i=1 max
j∈Y(i)

(∆b(i, j)(1 + sb(i, j)− sb(i, y
l
b)))

(12)
where ∆b(i, j) is a mistake-specific cost function
that returns the cost associated with a particular
type of error if an error exists and 0 otherwise (Dur-
rett and Klein, 2013).2 Intuitively, the loss function
penalizes a span i if the predicted antecedent j has
a higher score than the correct latent antecedent ylb.

The task loss for coreference, Lc, is defined in
the same way as the bridging loss, having an analo-
gous mistake-driven cost function ∆c(i, j).3

The task loss for the IS prediction task, Lis, is the
weighted softmax cross entropy loss, where mis-
classified bridging mentions and non-bridging men-
tions are weighted according to a mistake-driven
cost function ∆is(i, j).4

The rule loss is motivated by the bridging loss.
Specifically, the model will be penalized if there ex-
ists an incorrect non-dummy candidate antecedent
whose sb score is higher than the score of the an-
tecedent chosen by the rules, as shown below:

Lr(Θ) =
∑

i∈N ′ max
j∈Y(i)\ϵ

(∆r(i, j)(1 + sb(i, j)− sb(i, yr)))

(13)
where N ′ is the set of candidate anaphors for which
the rule-based system found a (non-dummy) an-

2In ∆b(i, j), there are three error types: (1) false link
(incorrectly resolved anaphoric mentions); (2) false new
(anaphoric mentions misclassified as non-anaphoric); and
(3) wrong link (non-anaphoric mentions misclassified as
anaphoric). We use hyperparameters αb1, αb2, and αb3 to
determine their trade-offs.

3In ∆c(i, j), the error types are the same as those in
∆b(i, j). We use hyperparameters αc1, αc2, and αc3 to deter-
mine their trade-offs.

4In ∆is(i, j), there are two error types: (1) false new
(bridging mentions misclassified as non-bridging); and (2)
false bridging (non-bridging mentions misclassified as bridg-
ing). We use hyperparameters αis1 and αis2 to determine
their trade-offs.
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tecedent, yr is the antecedent selected by the rules,
and ∆r(i, j) is an indicator function that returns 0
if j is the correct antecedent and 1 otherwise.

3.5 Pre-Training

As mentioned in the introduction, we pre-train the
coreference module in our MTL framework on the
English portion of OntoNotes 5.05, excluding those
documents that appear in ISNotes or BASHI. To
do so, we pre-train the full model shown in Fig-
ure 2, setting λb to 1 and the remaining λ’s to 0 in
the loss function so that only the network weights
associated with the coreference module will be up-
dated. Note that we follow Yu and Poesio (2020)
and use the softmax cross entropy loss rather than
the max-margin loss for Lb during pre-training, the
reason being that this could simplify pre-training
by obviating the need to tune the hyperparameters
associated with the mistake-specific cost functions.

4 Evaluation

4.1 Experimental Setup

4.1.1 Corpora
We use three English corpora that are arguably
the most widely used corpora for bridging evalu-
ation, namely ISNotes (composed of 50 WSJ arti-
cles in OntoNotes) (Markert et al., 2012) , BASHI
(The Bridging Anaphors Hand-annotated Inventory,
composed of another 50 WSJ articles in OntoNotes)
(Rösiger, 2018), and ARRAU (composed of arti-
cles from four domains, RST, GNOME, PEAR, and
TRAINS) (Poesio and Artstein, 2008; Uryupina
et al., 2020). Following previous work, we report
results only on RST, the most comprehensively an-
notated segment of ARRAU. Table 1 shows the
statistics on these corpora.

For ARRAU RST, we use the standard train-
test split. For ISNotes and BASHI, we divide the
documents in each corpus into 10 folds (8 folds
for training, 1 fold for development, and 1 fold for
testing) and report 10-fold cross-validation results.

4.1.2 Evaluation Setting
Following previous work (Hou et al., 2014; Roe-
siger et al., 2018), we report results for full bridging
resolution based on gold mentions. In this setting,
a system is given as input both a document and its
the gold mentions. The goal is to identify bridging
anaphors from the gold mentions and resolve them

5https://catalog.ldc.upenn.edu/
LDC2013T19

Corpora Docs Tokens Mentions Anaphors
ISNotes 50 40,292 11,272 663
BASHI 50 57,709 18,561 459

ARRAU RST 413 228,901 72,013 3,777

Table 1: Statistics on different corpora.

to their antecedents, which are also chosen from
the gold mentions.

There is a caveat in this evaluation setting, how-
ever. In ISNotes and BASHI, some bridging an-
tecedents correspond to events (see Example (4)
in Table 5), and previous studies differ in terms
of how event antecedents should be handled. The
reason is that while these event antecedents are an-
notated, they are not annotated as gold mentions.
When reporting results on resolving gold mentions,
some previous work (e.g., Hou et al. (2014), Hou
et al. (2018)) chose not to include these event an-
tecedents in the list of candidate antecedents and
others (e.g., Roesiger et al. (2018), Yu and Poe-
sio (2020)) did. Obviously, the setting in which
gold event antecedents are not included in train-
ing/evaluation is harsher because it implies that
anaphors with event antecedents will always be re-
solved incorrectly. We believe that including gold
event antecedents during evaluation does not repre-
sent a realistic setting, and will only report results
using the "harsh" setting in this paper.

4.1.3 Evaluation Metrics
Following Yu and Poesio (2020), we report results
for bridging recognition and resolution in terms
of precision (P), recall (R), and F-score (F). For
recognition, recall is the fraction of gold bridg-
ing anaphors that are correctly identified, whereas
precision is the fraction of bridging anaphors iden-
tified by the system that is correct. For resolution,
recall and precision are defined in a similar fashion.
In addition, we report IS classification results in
terms of accuracy and coreference results in terms
of CoNLL score (Pradhan et al., 2014), which is
the unweighted average of the F-scores provided by
three metrics, MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), and CEAFe (Luo, 2005).

4.1.4 Implementation Details
To train the neural models in our experiments, we
use ADAM (Kingma and Ba, 2014) as the opti-
mizer and set all model parameters that originated
in Yu and Poesio’s (2020) model to the same val-
ues as those reported in their paper. Each model is
trained for up to 150 epochs in ISNotes and BASHI
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Model
Bridging IS Coreference

Recognition Resolution Classification Resolution
P R F P R F Accuracy CoNLL

ISNotes
Roesiger et al. (2018) 46.8 17.7 25.6 32.0 12.1 17.5 - -

Y&P-MTL 51.8 27.2 36.7 (±1.6) 25.3 12.5 17.4 (±1.3) - 62.6
Hybrid 44.8 35.5 39.6 (±0.2) 24.7 19.6 21.9 (±1.6) - 62.6

MM-MTL 45.5 41.6 43.4 (±0.8) 21.1 19.3 20.2 (±0.7) - 64.5
Full model 54.1 48.0 50.9 (±0.2) 27.6 24.5 26.0 (±0.0) 78.0 76.3

BASHI
Roesiger et al. (2018) 33.5 22.9 27.2 17.3 11.8 14.0 - -

Y&P-MTL 35.7 15.2 21.3 (±1.5) 19.3 8.2 11.5 (±0.8) - 57.2
Hybrid 32.4 32.3 32.3 (±0.7) 16.3 16.3 16.0 (±0.4) - 57.2

MM-MTL 37.9 27.7 32.0 (±0.3) 15.6 11.4 13.2 (±0.6) - 57.0
Full model 40.7 35.3 37.5 (±0.7) 20.1 17.5 18.6 (±0.1) 85.3 72.6

ARRAU RST
Roesiger et al. (2018) 18.3 33.9 23.7 11.7 21.7 15.2 - -

Y&P-MTL 27.6 23.1 25.2 (±0.3) 20.5 17.2 18.7 (±0.1) - 55.9
Hybrid 16.8 43.2 24.2 (±0.1) 11.3 29.1 16.3 (±0.1) - 55.9

Full model 26.1 45.6 33.2 (±1.2) 17.1 29.8 21.7 (±0.0) 84.5 61.2

Table 2: Results of different resolvers on bridging resolution and related tasks. Each result is the average of two
runs. For each model with a learning component, the recognition and resolution F-scores are accompanied with the
corresponding standard deviation scores (in parentheses).

and up to 200 epochs in ARRAU, with early stop-
ping based on the development set.

For our model, we pre-train the corefer-
ence model for 15 epochs, and the remain-
ing parameters are chosen jointly using grid
search to maximize resolution F-score on de-
velopment data. Specifically, the weights as-
sociated with each task and the rule in the
loss function (i.e., the λi’s) are searched out of
{0.1, 0.5, 1, 5, 10, 20, 30}. The weights associated
with the mistake-driven cost functions (i.e., the
∆i’s) are searched out of {0.1, 0.5, 1, 5, 10, 15, 20}.
The hardness coefficients of the consistency
constraints (i.e., the γi’s) are searched out of
{0.05, 0.1, 0.5, 1, 5, 10, 20, 30}.6

4.2 Baseline Systems

We employ three baselines. The first one is Rösiger
et al.’s (2018) rule-based approach, which con-
sists of rules that are built on top of Hou et al.
(2014).7 The second one, Y&P-MTL, is Yu and
Poesio’s (2020) MTL system.8 The third one is
the Hybrid rule-based and learning-based system
proposed by Kobayashi and Ng (2021) in which
the rules are first applied and then Y&P-MTL is
used to resolve the remaining bridging anaphors.

6See Appendix A for the final hyperparameters chosen for
the full model.

7We used the publicly available implementation of
these rule-based systems from https://github.com/
InaRoesiger/BridgingSystem.

8We used their publicly available implementation from
https://github.com/juntaoy/dali-bridging.

4.3 Results and Discussion
Results are shown in Table 2. A few points about
the baseline results deserve mention. First, in terms
of bridging recognition and resolution performance,
the best baselines are Hybrid for both ISNotes and
BASHI and Y&P-MTL for ARRAU RST. Hence,
these two baselines can be viewed as the prior state
of the art. Second, while Rösiger et al.’s rule-based
model never achieves the best results on any of the
three datasets, it is not always the worst performer:
Y&P-MTL is the worst baseline on BASHI in terms
of resolution.9 Third, Hybrid fails to improve the
performance of Y&P-MTL in ARRAU RST, mean-
ing that the rules fail to provide additional benefits
to Hybrid. This could be attributed to the fact that
the rules in ARRAU RST have much lower recog-
nition and resolution precision scores than those in
ISNotes and BASHI (Roesiger et al., 2018).

While Y&P-MTL uses undersampling (to reduce
the number of negative examples used to train the
bridging module) and a likelihood loss, we addi-
tionally experiment with a max-margin loss (see
Section 3.4) without undersampling in our model.
To see how these two changes impact performance,
we create another model, MM-MTL, which is sim-
ply a max-margin version of Y&P-MTL without

9The baseline results in Table 2 are lower than those re-
ported in the original papers because (1) we report results
using the "harsh" setting (see Section 4.1.2); (2) Roesiger et al.
(2018) and Kobayashi and Ng (2021) postprocess the system
output with gold coreference information, and (3) Yu and
Poesio (2020) and Kobayashi and Ng (2021) use additional
labeled data for model training.
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undersampling. Results on the development set
are mixed: while MM-MTL outperforms Y&P-
MTL on ISNotes and BASHI, the reverse is true
on ARRAU RST. Consequently, we use the max-
margin loss without undersampling when training
our model on ISNotes and BASHI, but fall back on
the likelihood loss with undersampling for ARRAU
RST. To better understand the impact of using a
max-margin loss with undersampling, we show in
Table 2 the test results of MM-MTL. As we can see,
MM-MTL outperforms Y&P-MTL by 6.7–10.7%
points in F-score for bridging recognition and 1.7–
2.8% points in F-score for bridging resolution in
ISNotes and BASHI.

The last row of each section of Table 2 shows
the results of our full model, which outperforms
the best baseline by 5.2–11.3% points in F-score
for bridging recognition and 2.6–4.1% points in
F-score for bridging resolution. Hence, the full
model establishes new state-of-the-art results on
these three datasets. For bookkeeping purposes, we
also report the scores for each component of our
model in terms of IS classification accuracy and
coreference CoNLL score.

4.4 Model Ablations

To evaluate the contribution of the different com-
ponents in our full model, we show in Tables 3 and
4 ablation results on ISNotes, which we obtain by
removing one component at a time from the model
and retraining it. Note that for coreference we show
the anaphor recognition results as they are affected
by the consistency constraints.

Consistency constraints. Ablating the consis-
tency constraints means removing all the penalty
terms from sb and sc. The resulting system resem-
bles a typical multi-task learning setup, where the
different tasks only interact via a shared representa-
tion. As we can see in Table 3, bridging resolution
F-score drops by 1.7% points, coreference recogni-
tion F-score drops by 0.5% points, and IS bridging
recognition F-score drops by 1.2% points. These re-
sults suggest the effectiveness of using consistency
constraints in a multi-task setup.

Soft→Hard. Next, we replace soft constraints
with hard constraints. Comparing with the results
in row 2, bridging resolution F-score drops by 1.2%
points. This indicates that having hard constraints
is worse than having no constraints at all.

Rule loss and feature. Bridging resolution F-
score drops by 1.1% points when ablating only the

Bridging IS Coref.
Recog. Resol. Brid. Old Recog.

1 Full 50.9 26.0 48.3 86.7 88.4
2 – Constraints 46.1 24.3 47.1 86.7 87.9
3 Soft→Hard 47.7 23.1 46.4 87.1 88.8
4 – Rule loss 49.8 24.9 47.6 86.6 88.3
5 – Rule loss+feat. 48.1 23.6 46.9 86.5 88.1
6 – Pre-training 49.6 20.2 49.1 86.6 84.5
7 – Coref. task 47.4 22.6 46.3 88.6 -
8 – IS task 44.2 22.7 - - 87.8

Table 3: Ablation results of the full model.

Constraints Bridging IS Coref.
Recog. Resol. Brid. Old Recog.

1 Full 50.9 26.0 48.3 86.7 88.4
2 – P1 50.2 24.2 49.6 86.7 88.2
3 – P2 49.1 24.5 48.1 86.5 88.0
4 – P3 48.2 24.8 48.0 86.6 88.0
5 – P4 49.5 24.3 47.9 86.8 88.1
6 – P5 50.0 23.7 48.1 86.6 88.0

Table 4: Ablation results of the full model w.r.t individ-
ual soft constraints.

rule loss and by 2.4% points when ablating both the
rule loss and the rule feature. These results suggest
that the rule feature is useful and that the rule loss
enhances the effectiveness of the rule feature.

Pre-training. Next, we do not pre-train the coref-
erence component in the multi-task framework.
This causes bridging resolution F-score and corefer-
ence recognition F-score to drop abruptly by 5.8%
points and 3.9% points respectively, suggesting the
important role played by pre-training.

Coreference resolution and IS classification
tasks. Next, we ablate one of the tasks in the
multi-task framework. Bridging resolution F-score
drops by 3.4% points when ablating coreference
and by 3.3% points when ablating IS classification.
These results suggest that both tasks contribute con-
siderably to bridging resolution performance.

Individual soft constraints. Finally, we ablate
one soft constraint at a time from the full model.
Results are shown in Table 4. Bridging resolution
F-score drops by 1.2–2.3% points, suggesting the
positive contribution of each soft constraint.

While our discussion of these results has focused
on bridging resolution, the same trends can be ob-
served for bridging recognition for the most part.
Overall, these results suggest that each component
contributes positively to bridging resolution.

4.5 Error Analysis

Although our full model outperforms all previous
models for bridging resolution, it is still far from
perfect. To better understand what areas of im-
provement are required, we discuss some common
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errors made by our full model in this subsection.

Bridging anaphora recognition errors. Recall
errors in bridging anaphora recognition are the re-
sult of a system’s failure in identifying bridging
anaphors. We find that on the three datasets, the
highest proportion of the recall errors (57% on
ISNotes, 61% on ARRAU, and 82% on BASHI)
is due to the fact that a large number of bridg-
ing anaphors are misclassified as new or other10

mentions in the IS classification module, such as
“income” in Example (1) in Table 5.

Precision errors in bridging anaphora recogni-
tion are the result of a system’s misclassification of
non-bridging mentions as bridging anaphors. Sim-
ilar to the recall errors described above, most pre-
cision errors are new or other mentions being mis-
classified as bridging, which account for 50%, 74%
and 82% of the precision errors in ISNotes, AR-
RAU, and BASHI, respectively. In Example (2),
“service” is misclassified by both the bridging and
IS components as a bridging anaphor.

In general, it seems that our system struggles
to distinguish bridging anaphors from generic new
mentions with simple syntactic structures, an obser-
vation that has also been reported in previous work
(Hou, 2021; Kobayashi and Ng, 2021). Note that
most of these bridging or new mentions are rela-
tional nouns (de Bruin and Scha, 1988). Normally,
whether additional implicit arguments are required
to interpret such relational nouns depends on the
surrounding context. In Example (1), “the indus-
try” is necessary to fully understand the meaning
of “income”; while in Example (2), no additional
implicit arguments are required to understand the
meaning of “service”.
Bridging anaphora resolution precision errors.
Precision errors in bridging anaphora resolution
appear when a system selects the wrong antecedent
for a bridging anaphor. A major reason for this
error is that our model largely fails to exploit con-
textual information. In Example (3), the model
links the bridging anaphor “a spokesman” to the
wrong antecedent “[the state]”, which is reason-
able if one does not look into the context. However,
according to the context, the correct antecedent
should be “Gov. Deukmejian”, which requires a
system to know that “Gov.” is the abbreviation for

10Unlike ISNotes and ARRAU, BASHI does not have IS
annotations. We use heuristics to derive four IS types: old,
mediated/bridging, mediated/comparative and other. A men-
tion’s IS is other if it is not annotated as mediated and is not
coreferent with any previous mentions.

(1) In 1984, an attempt was made to crack down on the in-
dustry with tougher restrictions. Then, in 1988, a proposal
to keep better track of income by selling prepaid cards for
pachinko was fielded in parliament.
(2) The Bay Area Rapid Transit system, which runs subway
trains beneath the bay, is braced for a doubling of its daily
regular ridership to 300,000. BART has increased service
to 24 hours a day in preparation for the onslaught.
(3) Both Mr.Brown, the state’s most influential legislator,
and Gov. Deukmejian favor a temporary sales tax increase
– should more money be needed than [the state] can raise
from existing sources and the federal government. Ac-
cording to a spokesman, the governor is also studying the
possibility of raising state gasoline taxes.
(4) ... the drug still lacks federal approval for use in the
youngest patients. As a result, many youngsters have been
unable to obtain the drug ...

Table 5: Examples of the errors made by our full model.

“Governor” and that normally a governor will have
a spokesman.

In addition, on ISNotes, 6% of the bridging
anaphors have a non-mention antecedent (see “a
result” in Example (4)) and 12% of the bridging
anaphors have antecedents that are more than five
sentences away. Currently our system does not
handle these difficult cases.

5 Conclusion

We proposed the first neural model for full bridging
resolution that (1) exploits the connection between
information status classification, entity coreference
resolution, and bridging resolution in a multi-task
learning framework, (2) employs soft cross-task
consistency constraints to guide the learning pro-
cess, (3) pre-trains the entity coreference model,
and (4) integrates prior knowledge encoded in hand-
crafted bridging resolution rules into the learn-
ing framework. Our model outperformed several
strong baselines and achieved state-of-the-art re-
sults on three evaluation datasets. Ablation results
provided suggestive evidence that each component
of our model contributed positively to bridging res-
olution performance.
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A Final Hyperparameters and
Computing Environment

We conduct our experiments using a NVIDIA
QUADRO RTX 6000. The estimated GPU hour
per model in this paper is approximately 6 hours on
average. Table 6 shows the final hyperparameters
for our full model on the three datasets.
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Parameter Source Parameters ISNotes BASHI ARRAU RST
Loss function λb, λc, λis, λr 1.0, 1.0, 1.0, 0.5 1.0, 1.0, 1.0, 20.0 1.0, 1.0, 1.0, 20.0
∆b αb1, αb2, αb3 0.1, 5.0, 5.0 0.1, 10.0, 10.0 0.1, 5.0, 5.0
∆c αc1, αc2, αc3 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0
∆is αis1, αis2 10.0, 1.0 10.0, 1.0 10.0, 1.0
Constraints γ1, γ2, γ3, γ4, γ5 0.5, 0.05, 0.5, 0.05, 1.0 1.0, 0.05, 0.5, 0.05, 1.0 0.5, 0.05, 0.5, 0.05, 1.0

Table 6: Final hyperparameters for the full model.
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