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Abstract
We propose knowledge internalization (KI),
which aims to complement the lexical knowl-
edge into neural dialog models. Instead of
further conditioning the knowledge-grounded
dialog (KGD) models on externally retrieved
knowledge, we seek to integrate knowledge
about each input token internally into the
model’s parameters. To tackle the challenge
due to the large scale of lexical knowledge,
we adopt the contrastive learning approach and
create an effective token-level lexical knowl-
edge retriever that requires only weak supervi-
sion mined from Wikipedia. We demonstrate
the effectiveness and general applicability of
our approach on various datasets and diversi-
fied model structures.

1 Introduction

Vacuous responses (Li et al., 2016; Ghazvinine-
jad et al., 2018), such as, I don’t know, are com-
monly observed in end-to-end neural dialog mod-
els (Shang et al., 2015; Sordoni et al., 2015). This is
mostly because these models ignore the knowledge
that resides in people’s minds during a conversation.
To bridge the gap, many existing works (Moghe
et al., 2018; Dinan et al., 2018) have attempted to
condition the dialog model on external knowledge,
either a sentence or a paragraph, retrieved based on
the utterance and/or previous context. This curates
datasets with utterance-response-knowledge triples
(see Fig 1(a)). These knowledge-grounded dialog
(KGD) models, despite demonstrated effectiveness,
suffer from two major problems.

First, equipping models with sentence-level
knowledge alone will limit responses’ informative-
ness and diversity. As shown in Fig 1(a), with the
knowledge retrieved giving the utterance, a KGD
model can relate J.K Rowling to Khalsa Aid. How-
ever, retrieval based solely on sentence embeddings
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J.K Rowling donates a lot of money for COVID-19 relief work in India.

Yes. Khalsa Aid received the donation.

JK Rowling donated a six-figure amount to Khalsa Aid for 
their COVID-19 relief work in India.

Retrieve

(a) An utterance-response-knowledge triple.

J.K Rowling is a British author and philanthropist.

Really? J.K Rowling is my favorite British
writer. I now respect her even more.

Donate is to give (money or goods) for a good
cause, for example to a charity.

Wow. It’s so good of her.

COVID-19, also known as the coronavirus, is a 
contagious disease caused severe acute ….

Hope this will help stop the coronavirus in India.

J.K Rowling:

Donate:

COVID-19:

(b) Responses based on different lexical knowledge.

Figure 1: (a) An exemplary KGD data sample with an
utterance (top), a response (bottom), and a sentence-
level knowledge (middle). (b) A list of lexical knowl-
edge (in grey rectangle) related to words from the utter-
ance in (a), and the potential responses (in white speech
balloon) people would make given that knowledge.

will result in ignorance of lexical knowledge asso-
ciated with individual tokens. In this example, the
knowledge about J.K Rowling, COVID-19, donates,
and India, is ignored during the retrieval, due to
the semantic gaps between those lexical knowledge
sentences (see Fig 1(b)) and the utterance. This
makes it rather difficult (if not impossible) for the
model to generate responses carrying relevant in-
formation as shown in Fig 1(b).

Second, retrieving knowledge for open-domain
dialogs during inference incurs heavier computa-
tion, often involving similarity search over tens of
millions of passages (Petroni et al., 2021). Exist-
ing systems (Zhao et al., 2020; Zheng et al., 2020)
alleviate this problem relying on pre-selecting a
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small candidate set based on TF-IDF (Schütze et al.,
2008), in sacrifice of the diversity and the accuracy
of the retriever. Directly conditioning the dialog
model on the retrieved text, these models are easily
effected by the quality of the constructed candidate
set and are thus prone to errors (Dinan et al., 2018;
Kim et al., 2020; Zhao et al., 2020).

In this work, we propose to complement the
lexical knowledge into neural dialog models by
Knowledge Internalization (KI), a training ap-
proach based on contrastive learning (Hadsell et al.,
2006). The central idea of KI is to integrate more
fine-grained lexical knowledge about each input
token internally into model parameters (e.g., word
embeddings), rather than further conditioning the
model on externally retrieved knowledge (e.g., di-
rectly copy and/or modify tokens from external
knowledge when decoding). Our research contri-
butions include:

• a novel training objective (KI; §3.2) that infuses
lexical semantics into word representations. With
the knowledge internalized into the contextualized
representation of every token, a dialog model can
generate informative and diverse responses without
engaging an external knowledge retrieval module
during inference time, thus making the inference
more efficient (§6.1);

• an effective token-level lexical knowledge re-
triever (§4) trained with weak supervision to con-
textually align tokens in dialog corpora to their
related and possibly different knowledge (Ap-
pendix C).

• a demonstration of the effectiveness and general
applicability of KI with extensive experiments on
diversified dialog models and on three benchmark
datasets: DailyDialog (Li et al., 2017), Wizard of
Wikipedia (Dinan et al., 2018), and Commonsense
Reddit Dataset (Zhou et al., 2018).

2 Related Work

To address the vacuous responses problem in neu-
ral dialog models, researchers propose to ground
dialogs on real world knowledge and construct new
corpora that contain utterance-response-knowledge
triples. Specifically, responses are grounded to
external knowledge derived from different knowl-
edge sources (Zhou et al., 2018; Liu et al., 2018;
Wu et al., 2019; Dinan et al., 2018; Moghe et al.,
2018; Ghazvininejad et al., 2018; Mostafazadeh
et al., 2017; Meng et al., 2020; Zhang et al., 2020).
Among different sources, textual knowledge (Di-

nan et al., 2018; Parthasarathi and Pineau, 2018;
Qin et al., 2019) receives the most attention as it
is easy to obtain and scale. However, the construc-
tion of knowledge-grounded datasets is costly and
time-consuming. To build a more practical system
without assuming a given knowledge, recent stud-
ies enhance KGD models with an extra knowledge
selection component (Dinan et al., 2018; Kim et al.,
2020; Zheng et al., 2020; Zhao et al., 2020).

Most existing KGD models can be viewed as
models with externalized knowledge, where knowl-
edge is explicitly used as part of the model input.
The principle behind these models is to copy words
and/or modify sentences from external knowledge
when generating responses (Wu et al., 2020; Zhu
et al., 2017; Zhao et al., 2019). Our KI, on the
other hand, does not explicitly present knowledge
to dialog models for reading and/or copying. In-
stead, we inject and store external knowledge into
models’ parameters and encourage models to elicit
the encoded knowledge during generation.

The idea of knowledge internalization has also
been explored in language modeling. Factual
knowledge (Zhang et al., 2019; Sun et al., 2020; Liu
et al., 2020), visual knowledge (Tan and Bansal,
2020) and syntactic knowledge (Kuncoro et al.,
2020) have been injected into language models
(LMs) and shown great promise in improving the
performance of downstream tasks. KI differs from
those knowledge-enhanced LMs in two aspects: (i)
KI can be trained end-to-end with dialog models,
while applying LMs on dialog generation often re-
quires multiple rounds of pre-train and fine-tune.
(ii) KI is lightweight that barely introduces extra pa-
rameters to the dialog model while applying LMs
usually introduces hundreds of millions of extra
parameters.

3 Knowledge Internalization for Neural
Dialog Models

In this section, we illustrate how to train a dialog
model with knowledge internalization. To infuse
more fine-grained lexical knowledge to a neural
dialog model, we assume a dialog corpus where
each token is aligned with relevant knowledge (we
will discuss the construction of such a corpus in
§4). In particular, for an input sentence X in the
corpus, we assume each token xi ∈ X is associated
with a corresponding descriptive sentence Ki.
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3.1 Preliminary
Given an utterance-response pair (X,Y ), where
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym},
neural dialog models generally minimize the nega-
tive log-likelihood loss:

LNLL(X,Y ) = −
m∑
i=1

logP(yi), (1)

where P(yi) = P(yi|y<i, X) is the probability
of generating the i-th response token yi given
the utterance X and other tokens generated in
previous steps y<i = {y1, y2, . . . , yi−1}. P(yi)
is generally modeled by a sequence-to-sequence
model (Sutskever et al., 2014), which consists of
an encoder and a decoder. The encoder repre-
sents X as a sequence of hidden vectors H(X) =
h1, h2, ..., hn, where each hi is a low-dimensional
representation of the token xi. The decoder gen-
erates yi based on H(X) and y<i, often with the
attention mechanism (Bahdanau et al., 2014).

3.2 Knowledge Internalization Loss
Given a dialog corpus with token-level knowledge
as discussed above, we now introduce a new train-
ing task: knowledge internalization (KI). In KI, we
seek to boost dialog models by internalizing lexical
knowledge into each token’s representation. In par-
ticular, each token xi and its associated knowledge
Ki are first mapped into a low-dimensional space.
We then adopt contrastive learning to shorten the
distance between xi and Ki in the space while en-
larging that between xi and other irrelevant knowl-
edge.

Note that for each xi ∈ X , dialog models’ en-
coder can embed it into a contextualized represen-
tation hi. Therefore, we only need an extra knowl-
edge encoder to represent Ki as g(Ki) (details will
be given in § 4.2). After hi and g(Ki) are com-
puted, we calculate the similarity between xi and
Ki by the inner product:

s(xi,Ki) = f1(hi)
>f2(g(Ki)), (2)

where f1 and f2 are the functions that map the hi
and g(Ki) into the same vector space and normal-
ize them.

For each (xi,Ki) pair, we randomly sample
an in-batch unrelated knowledge K−i associated
with other input sentences, where K−i 6= Ki, to
construct a negative sample pair (xi,K−i ) in con-
trastive learning. Finally, the objective function

of KI is defined by the contrastive loss between
positive and negative sample pairs:

LKI(X)=

n∑
i=1

max
{
0,m−s(xi,Ki)+s(xi,K

−
i )
}
,

(3)
where m denotes the margin.

3.3 Knowledge-internalized Neural Dialog
Model

We now illustrate how to deploy KI on a neural
dialog model. We use a sequence-to-sequence di-
alog model based on Transformer (Vaswani et al.,
2017) as an example. The original model is trained
to minimize the negative log-likelihood loss of re-
sponse tokens, i.e., LNLL(X,Y ) (see Eq. 1). We
can conveniently integrate KI into the model by
reusing the contextualized representations gener-
ated by the model’s encoder. The training objective
of a knowledge-internalized dialog model can then
be formulated as:

L = LNLL(X,Y ) + λLKI(X) (4)

where λ is a hyperparameter. Note that the token-
level knowledge is only required during training
to compute LKI(X). At the inference time, those
relevant knowledge is no longer required as they
have been internalized into model by KI, making
inference more efficient.

4 Retrieval of Token-level Lexical
Knowledge

In this section, we present how to train an effec-
tive retriever to mine knowledge for each token
in the dialog corpora. Given a dialog utterance
X = {x1, x2, . . . , xn}, the trained retriever will re-
trieve a relevant knowledge Ki for each token xi in
X . The constructed token-knowledge alignments
can then be used to train a knowledge-internalized
neural dialog model as in § 3.

4.1 Training Data Collection
To train such a retriever, we need a corpus with
token-level knowledge annotated. However, to our
best knowledge, no human annotated data exist and
it is prohibitively expensive to build one. We there-
fore seek to train the retriever with distant super-
vision. A straight-forward solution is to align the
noun words in an utterance to certain knowledge
graph triples using entity linking tools (Shen et al.,
2014). The problem of that is it can only cover
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about 15% words in human conversations (Biber
et al., 2000).

To address this issue, we propose to mine token-
knowledge distant annotations from Wikipedia.
In each Wiki article, the first sentence S =
{s1, s2, ..., sn} is mostly declarative that gives a
high-level summary on the topic of the article. Thus
this sentence can used as a lexical knowledge item,
denoted as K (note that K and S refer to the same
sentence here). Inspired by Tan and Bansal (2020),
we then further associate every token in the sen-
tence with this knowledge item. These constructed
alignments (e.g., (si,K)) can then be used to train
a token-level knowledge retriever.

4.2 Training of Retriever
The core of the retriever’s training is to learn a scor-
ing function r(si|S,K) to measure the relevance
between a token si and a knowledge item K, giv-
ing si’context S. Similar as Eq. 2, we implement
the scoring function r(si|S,K) as the inner prod-
uct between si’contextualized token representation
f(hi) and the knowledge representation f(g(K)).
Here, we use a pre-trained BERT (Devlin et al.,
2019) model to obtain hi; we apply another pre-
trained BERT model to encode knowledge K and
further generate g(K) with an average-pooling op-
erator. Two BERT models will be fine-tuned with
the retriever.

Our training objective is to maximize the rele-
vance score of aligned token-knowledge pairs while
minimizing that of unaligned pairs. We also adopt
the hinge loss similar as in Eq 3 by replacing xi
in the dialog corpus to si in the constructed token-
knowledge pairs.

4.3 Mining Token-level Lexical Knowledge
Once the retriever is trained, we can use it to mine
token-level lexical knowledge required in KI. We
first construct a candidate knowledge base K that
consists of 6.4 million knowledge items (first sen-
tence) extracted from Wikipedia articles. Given
a dialog utterance X = {x1, x2, . . . , xn}, we re-
trieve a lexical knowledge Ki for each token xi
by searching for the knowledge item that has the
largest relevance score with xi.

Ki = argmax
K∈K

r(xi|X,K) (5)

To improve the retrieval results, we further employ
two useful strategies: (i) Stopword Masking, where
we discard knowledge associated with stopwords;

(ii) Exact Matching, where if an utterance token
exactly matches the title of a Wikipedia article, we
will directly return the first sentence of this article
as the retrieval result.

The retrieval process has two properties that can
significantly improve dialog corpora’s knowledge
coverage. First, the retrieval is contextualized such
that a token can be aligned to different knowledge
items when it occurs in different contexts. Second,
the retrieval is at token-level that enables us to asso-
ciate each dialog sentence with multiple knowledge
items (See Appendix C).

5 Experimental Setups

In this section, we present the datasets and metrics
used for evaluation.

Datasets We use three datasets from various do-
mains (statistics in Appendix A). The first one is
DailyDialog (Li et al., 2017), a multi-turn dialog
benchmark that contains daily dialogs recorded
as utterance-response pairs. However, there is no
knowledge associated with the dialogs in Daily-
Dialog, making it difficult to evaluate the infor-
mativeness of generated responses. To fully il-
lustrate the strength of KI, we further consider
two knowledge-grounded datasets: (i) Wizard of
Wikipedia (WoW) (Dinan et al., 2018), a multi-turn
dataset that contains utterance-response-knowledge
triples. For each dialog, a sentence retrieved from
Wikipedia is selected to guide response generation.
WoW contains two test sets: Test Seen/Unseen,
where the latter includes topics that never appear
in Train and Valid set. (ii) Commonsense Red-
dit Dataset (CRD) (Zhou et al., 2018): a weakly
knowledge-grounded single-turn dataset. Each dia-
log in the dataset is paired with at least one triple
automatically extracted from ConceptNet (Speer
et al., 2017).

Metrics We conduct both automatic evaluation
and human annotations. For automatic evaluation,
we evaluate the generated responses from three
perspectives 1:
• Appropriateness: we employ Perplexity (PPL),
corpus-level BLEU-4 (Papineni et al., 2002) and
ROUGE-l (Lin, 2004).
• Diversity: the ratio of distinct uni/bi-grams in all
generated texts, i.e., Distinct-1/2 (Li et al., 2016).

1For PPL and %safe, smaller is better, while for all other
metrics, larger is better.
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• Informativeness: For WoW, we consider
wikiF1 (Dinan et al., 2018), the overlapping F1
between the generated response and the grounded
knowledge. For CRD, we calculate entity score
(Ent.) (Zhou et al., 2018), the average number of
entities per response. To further measure the likeli-
hood of generating safe responses, we define %safe:
the percentage of responses that contains “I’m not
sure” or “I don’t know”. 2 We also report the ac-
curacy of knowledge selection (ACC) following
Zheng et al. (2020).

We further perform human annotations by
randomly sampling 200/200/300/300 examples
from WoW Test Seen/WoW Test Unseen/
CRD/DailyDialog, respectively. We recruit 5 anno-
tators from a commercial annotation company to
rate each response on a scale of 1-5 for its appro-
priateness (Zhang et al., 2020; Zheng et al., 2020)
and informativeness (Young et al., 2018; Zhu et al.,
2019). The former measures whether the topic of
the response fits that of the utterance, while the
latter evaluates whether a response provides new
information. A response is scored 1 if it is not
appropriate/informative at all, 3 if part of the re-
sponse is appropriate/informative, 5 if it is highly
related to utterance and context or it can provide
rich information to deepen the discussion. 2 and 4
are for decision dilemmas.

6 Experiments

We evaluate the performance of KI by comparing
it with three sets of baselines:

1. We first investigate the effectiveness and gen-
eral applicability of KI by applying KI on conven-
tional dialog models that are randomly initialized
and trained with utterance-response pairs only.

2. We then investigate whether KI can comple-
ment or even further improve the state-of-the-art
KGD model’s performance.

3. As discussed in §2, although LMs differ from
KI in many aspects, they also capture knowledge
in their parameters. We thus compare KI with LMs
to investigate its effectiveness in encouraging infor-
mative and appropriate responses.

All model structures and training setups are given
in Appendix B.

2Upon manual inspection, we find that these two are the
most common safe responses generated.

6.1 vs. Conventional Dialog Models
We first deploy KI on two representative neu-
ral dialog models that do not directly condi-
tion on any external knowledge: (i) Seq2Seq: a
LSTM-based (Hochreiter and Schmidhuber, 1997)
sequence-to-sequence model with the attention
mechanism (Bahdanau et al., 2014); (ii) Trans-
former (Vaswani et al., 2017): an encoder-decoder
architecture relying solely on the attention mecha-
nisms.

Effectiveness As shown in Table 1’s Setup 1
(rows 1-8), dialog models with KI consistently out-
perform their counterparts without KI on almost
all the metrics across the datasets used. We want
to point out the advantage of KI from two perspec-
tives:

(1) Promoting informativeness. We first ob-
serve that applying KI can significantly improve
the wikiF1 and Ent. scores. Unlike KGD models
that can generate informative responses by explic-
itly copying words from given knowledge, models
discussed here are not provided with any external
knowledge during testing (thus copy mechanism is
not applicable for them). This suggests that the im-
provement in informativeness should be attributed
to the effectiveness of KI in injecting knowledge
into models’ parameters. The Info. scores from
human evaluation in Table 2 can also substantiate
our findings.

(2) Promoting diversity and reducing occurrence
of safe response. Compared with the plain mod-
els, models with KI can significantly improve
the Distinc-1/2 scores on all the test sets (some-
times doubled, even tripled). We also see a sig-
nificant reduction of safe responses by the gap in
%safe scores. Those improvements are powered
by the rich lexical knowledge used in KI (see Ap-
pendix C).

Efficiency Besides the improvements in re-
sponses’ quality, KI is also very efficient during
inference. We report the decoding speed of Trans-
former and Transformer+KI in Table 3. As we
can see, KI does not incur any extra computation
during inference.

6.2 vs. KGD
We then apply KI on DiffKS (Zheng et al., 2020) 3:
a state-of-the-art model that uses a knowledge-
aware decoder to generate a response based on

3github.com/chujiezheng/DiffKS
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Setup 1: Models without externalized knowledge (trained with utterance-response pairs)

Row Model DailyDialog CRD
PPL BLEU-4 ROUGE-l Distinc-1/2 %safe PPL Ent. BLEU-4 ROUGE-l Distinc-1/2 %safe

1 Seq2Seq 28.94 3.84 14.22 2.85/11.74 2.50 55.54 1.32 2.59 10.58 1.13/4.47 41.81
2 Seq2Seq+KI 29.35 4.65 14.64 3.36/14.10 2.70 47.32 2.26 2.90 11.13 1.86/7.37 35.08
3 Transformer 23.37 2.65 12.97 1.48/5.10 7.14 35.86 2.99 2.12 11.88 2.01/7.40 23.90
4 Transformer+KI 19.72 6.13 17.48 4.39/21.88 0.53 28.50 3.29 3.01 11.92 3.24/17.81 8.05

Row Model WoW Test Seen WoW Test Unseen
PPL wikiF1 BLEU-4 ROUGE-l Distinc-1/2 %safe PPL wikiF1 BLEU-4 ROUGE-l Distinc-1/2 %safe

5 Seq2Seq 77.50 6.15 1.94 10.09 1.81/5.48 53.02 144.64 6.11 1.47 10.78 2.58/10.25 36.06
6 Seq2Seq+KI 67.69 9.59 2.25 12.45 4.99/17.32 36.24 122.46 7.09 1.62 11.23 3.12/12.05 37.98
7 Transformer 48.91 6.83 2.02 11.29 1.95/4.44 83.69 93.92 5.43 1.48 10.08 1.43/3.27 84.67
8 Transformer+KI 46.68 10.69 2.85 12.84 5.66/18.68 35.18 93.02 7.13 1.82 11.23 3.82/12.98 41.62

Setup 2: Models with externalized knowledge (trained with utterance-response-knowledge triples)

Row Model WoW Test Seen WoW Test Unseen
ACC wikiF1 BLEU-4 ROUGE-l Distinc-1/2 %safe ACC wikiF1 BLEU-4 ROUGE-l Distinc-1/2 %safe

9 DiffKS 25.30 67.06 5.73 17.48 9.61/37.29 5.10 19.72 64.77 4.60 15.75 3.83/12.15 7.36
10 DiffKS+KI 26.24 74.23 6.14 17.82 9.96/39.61 6.34 21.08 72.03 5.11 16.97 4.10/13.38 8.26

Table 1: Automatic evaluation results for models with internalized knowledge (trained with utterance-response
pairs), and models with externalized knowledge (trained with utterance-response-knowledge triples).

utterance and the knowledge retrieved from a set
of candidates. In the empirical study, DiffKS has
outperformed many KGD models like CCM (Zhou
et al., 2018) 4 and ITDD (Li et al., 2019). We
enhance DiffKS by applying KI on its context en-
coder. The rest of the model remains unchanged.

Table 1 Rows 9-10 show that DiffKS with KI im-
proves ACC over the plain DiffKS model. The rea-
son is that with the injection of token-level knowl-
edge, DiffKS can better understand the utterance,
which leads to more accurate knowledge selection
and thus less noisy external knowledge. As a result,
we observe clear gains on overlapping-based met-
rics (BLEU and ROUGE). These results emphasize
the importance of more fine-grained knowledge in
KGD. Human evaluation results (Table 2) also sug-
gest that KI can help KGD models in generating
more informative and appropriate responses.

6.3 vs. Pre-trained Language Models

We follow previous practice (Rothe et al., 2020)
to replace the Transformer’s encoder with LMs
and keep the decoder the same as the Transformer
above. 5 We consider two baselines: (i) Bert2Rnd:
Initializing Transformer’s encoder with a pre-
trained BERT, which has been shown capturing
rich factual knowledge during pre-training (Petroni
et al., 2019; Jiang et al., 2020). (ii) Ernie2Rnd:
Initializing the encoder with ERNIE 2.0 (Sun et al.,
2020), a knowledge-enhanced BERT which is pre-
trained with novel objectives that injecting lexical,

4Comparison with CCM is in Appendix D
5We keep the hidden state dimension of decoder consis-

tent with the LMs to enable encoder-decoder attention.

syntactic, and semantic knowledge into its parame-
ters (Zhang et al., 2019).

From Table 4, we see that parameters of LM-
based models (Bert2Rnd and Ernie2Rnd) are more
than three times than that of the Transformer base-
line. But they do not seem to help improve informa-
tiveness (based on wikiF1, BLEU-4, and Info.) of
responses. This indicates that although pre-trained
LMs can encode knowledge in their parameters,
eliciting the encoded knowledge for response gen-
eration is difficult when we only have utterance-
response pairs for training. Another reason might
be that previously learned knowledge is forgotten
due to catastrophic forgetting (McCloskey and Co-
hen, 1989). Comparing with knowledge-enhanced
LMs, KI is more lightweight and more effective.

In addition, we observe that introducing LMs
can significantly improve responses’ diversity as
KI does. However, according to Appr. metric and
upon manual examination, we find that although
the generated responses are diverse, they are of-
ten inconsistent with the context or hallucinating
non-existing facts (e.g., "Yea, Canada is the largest
country in the US."). These are known issues for
LMs as discussed in Dou et al. (2021); Shuster et al.
(2021); Chen et al. (2020).

We also apply KI on Bert2Rnd/Ernie2Rnd, but
we do not observe significant improvements as
when applied on randomly initialized models. This
could be due to the fact that we implement KI us-
ing knowledge from Wikipedia, which is already
part of LMs’ training corpora. We leave it as future
work to investigate how to use KI to elicit knowl-
edge from LMs better (e.g., use adapters (Xu et al.,
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Model DailyDialog CRD WoW Seen WoW Unseen Model WoW Seen WoW Unseen
Appr. Info. Appr. Info. Appr. Info. Appr. Info. Appr. Info. Appr. Info.

Transformer 3.65(1.27) 2.15(1.08) 3.65(1.27) 3.15(1.08) 3.0(1.3) 3.2(1.2) 2.9(1.2) 3.3(1.1) DiffKS 3.6(1.0) 3.6(1.0) 3.7(0.9) 3.7(1.0)
Transformer+KI 4.22(1.27) 3.51(1.11) 4.22(1.27) 3.51(1.11) 3.7(0.9) 3.5(0.9) 3.7(1.0) 3.6(0.8) DiffKS+KI 3.9(0.9) 4.0(0.9) 4.0(0.9) 4.2(0.8)
Human Response 4.73(1.23) 3.21(1.24) 4.73(1.23) 4.21(1.24) 4.4(0.7) 4.3(0.8) 4.5(0.7) 4.5(0.7) Human Response 4.5(0.7) 4.3(0.8) 4.4(0.8) 4.2(0.8)

Table 2: Average of human annotations results on Appropriateness (Appr.) and Informativeness (Info.). Standard
deviations are shown in the brackets.

Dataset Transformer Transformer+KI
sent/s tok/s Time(s) sent/s tok/s Time(s)

DailyDialog 215 2136 31.4 192 1980 35.1
CRD 158 5263 126.7 184 4506 108.8
WoW Seen 131 3397 25.9 133 2925 25.4
WoW Unseen 152 3943 22.4 140 3331 24.3

Table 3: Number of sentences/tokens decoded per sec-
ond in testing and the total decoding time (in seconds).

Setting # Para wikiF1 BLEU-4 Distinc-1/2 Info. Appr.
Transformer 42.9M 6.83 2.02 1.95/4.44 3.0(1.3) 3.2(1.2)
Bert2Rnd 147.9M 4.89 0.94 3.96/15.35 2.2(1.2) 2.4(1.2)
Ernie2Rnd 147.9M 5.15 0.91 3.95/19.73 2.2(1.1) 2.3(1.2)
Transformer+KI 43.2M 11.25 2.85 5.66/18.68 3.7(0.9) 3.5(0.9)
Bert2Rnd+KI 148.5M 5.19 1.31 8.23/40.98 2.6(1.2) 2.6(1.2)
Ernie2Rnd+KI 148.5M 5.02 1.19 5.01/21.27 2.3(1.1) 2.4(1.2)

Table 4: Results on LMs-based dialog generation.

2021) or prompt (Liu et al., 2021)).

7 Method Analysis

In this section, we perform an in-depth analysis to
understand the effectiveness of KI.

7.1 Working Principle of KI
We investigate the working principle of KI by vi-
sualizing the token embeddings learned on WoW.
We use principal component analysis (PCA) to map
embeddings into a two-dimensional space as shown
in Fig 2. Since there is no co-occurrence of British
and Rowling in WoW, their embeddings learned by
Transformer are distant (see Fig 2(a)). However,
their embeddings learned by Transformer+KI (see
Fig 2(b)) are much closer. This is because KI in-
jects lexical knowledge (i.e., a British author) into
the embedding of Rowling. Specifically, the Eu-
clidean distances between British and Rowling are
0.37 for Transformer and 0.22 for Transformer+KI,
respectively. This observation sheds light on the
working principle of KI: the contrastive learning ob-
jective shortens the embedding distance between a
token and tokens from its lexical knowledge. Thus
when decoding, if a token is predicted (e.g. Rowl-
ing), its relevant knowledge tokens (e.g., British)
are likely to receive high probabilities and be se-
lected in the following steps (see the J.K Rowling
example in Fig 1(b).

7.2 Effectiveness of Token-level Knowledge

Firstly, we experiment with a model variant (de-
noted as Random), which randomly assign knowl-
edge to each utterance token. Results in Table 5
(Row 2) validate the effectiveness of the proposed
token-knowledge retriever.

To further show the advantage of token-level
knowledge, we consider a model variant in which
we degenerate token-level KI to sentence-level
by assigning all utterance tokens to a same lex-
ical knowledge (we denote it as Sentence-level
knowledge). Given the lexical knowledge retrieved
for each token in an utterance, the sentence-level
knowledge is chosen as the most-frequent one
among all token-level knowledge. The results are
summarized in Table 5 (Row 3). Note that token-
level knowledge results in better performance than
sentence-level knowledge. This shows that fine-
grained information is useful in promoting more
informative and diverse responses.

Lastly, we dive deep into the lexical knowledge
retrieved to investigate which type of knowledge
is most helpful in response generation. We clas-
sify a retrieved knowledge into two types: factual
knowledge, which describes a real-world subject
(e.g., knowledge about J.K Rowling), and is of-
ten associated with noun words in the utterance;
linguistic knowledge, which explains the meaning
of certain words (e.g., knowledge about donate,
see Fig 1(b), and is often associated with words
except nouns.We use part-of-speech (POS) tags
to classify tokens and their associated knowledge.
We consider two model variants that only use fac-
tual/linguistic knowledge in KI respectively, de-
noted as factual and linguistic. In Fig 3, we com-
pare these two model variants to a vanilla model
without KI (denoted as base), and a full model that
uses both knowledge (denoted as both). We find
that injecting factual knowledge brings significant
improvements on BLEU-4 and ROUGE-l. We also
observe similar, albeit smaller improvements when
equipping with linguistic knowledge. More inter-
estingly, these two types of knowledge can com-
plement one another to further improve the model
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Figure 2: Visualization of word embeddings learned by Transformer and Transformer+KI. We use words from
two sources: 1) lexical knowledge retrieved for Rowling: “J.K. Rowling is a British author and philanthropist.” 2)
tokens from WoW that co-occur with “Rowling” in a sentence. Note that there is no co-occurrence of Rowling and
British/author in WoW. All words are lower cased in the visualization. We use the K-means algorithm to group
tokens into 3 clusters (shown in different colors).
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Figure 3: Automatic evaluation results on WoW Test Seen and Unseen. Base is the Transformer baseline without
KI. Both is the Transformer+KI, with both linguistic and factual knowledge. Linguistic/Factual only considers
linguistic/factual knowledge in KI, respectively.

Row Setting wikiF1 BLEU-4 ROUGE-l Distinc-1/2 %safe
1 Token-level 11.25 2.85 12.84 5.66/18.68 35.18
2 Random 5.38 1.27 9.39 1.01/2.31 92.10
3 Sentence-level 8.41 2.31 11.72 2.98/7.77 66.32

Table 5: Comparison of model variants for Trans-
former+KI, using different type of knowledge. Models
are evaluated on WoW Test Seen.

performance. This emphasizes the need to consider
non-factual knowledge in KGD, which is usually ig-
nored in previous study. To understand what causes
the difference between using factual and linguistic
knowledge, we compute Knowledge Coverage: the
percentage of ground truth response tokens that
have been recalled in the retrieved knowledge. As
we can see from Fig 3(c), factual knowledge is
more helpful because people tend to respond based
on knowledge related to subjects (usually nouns)
appearing in the dialog.

7.3 Case Study

We show an example case in Appendix E to demon-
strate how KI improves dialog generation and what
the limitation is.

8 Conclusion

We propose knowledge internalization (KI), which
aims to incorporate the lexical knowledge into neu-
ral dialog models. Models with KI can generate
informative and diverse responses without explic-
itly conditioning on external knowledge. To pro-
vide the fine-grained knowledge needed in KI, we
also build an effective token-level lexical knowl-
edge retriever that contextually align tokens in a
sentence to their related knowledge. We show the
effectiveness and general applicability of KI by
evaluating KI on various datasets and diversified
model structures.
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Dataset Train Valid Test
WoW 166,787 17,715 8,715/8,782
CRD 3,384,185 20,000 10, 000
DailyDialog 54,889 6,005 5,700

Table 6: Dataset statistics. WoW includes two test sets:
Test Seen/Unseen, where the latter contains topics that
never appear in Train and Valid set.

A Dataset Statistics

B Implementation Details

The vocabulary size for DailyDialog/WoW/CRD
is 14,696/22,168/22,512, respectively, with sen-
tences tokenized using BERT’s tokenizer provided
by Transformers (Wolf et al., 2020). For Seq2Seq
and Transformer, we use a shared vocabulary be-
tween the encoder and the decoder. In Seq2Seq,
we adopt a 2-layer bidirectional LSTM as the en-
coder and an unidirectional one as the decoder. The
hidden size is set to 256, with a dropout probabil-
ity of 0.3. The Transformer we used has 6 en-
coder/decoder layers. The dimensions of the input
layer, output layer, and inner feed-forward layer
are set to 512, 512, and 1,024, respectively. The
number of attention heads is set to 4.

We use Adam with β1 = 0.9, β2 = 0.98 for
model optimization and start training with a warm-
up phase where we linearly increase the learning
rate from 10−7 to 0.005. After that we decay the
learning rate proportional to the number of up-
dates. Each training batch contains at most 4,096
source/target tokens. We early-stop the training if
validation loss does not improve over ten epochs.
We perform beam search with a beam size of 5.
The λ (see Eq 3) is set to 1 in all our evaluation.

For Bert2Rnd and Ernie2Rnd, we initialize the
Transformer’s encoder with the pre-trained LMs
using the Transformers (Wolf et al., 2020) and keep
the decoder the same as above. Note that due to
the exist of encoder-decoder attention, we modify
the dimensions of input/output layer to 768 to be
compatible with BERT (bert-base-uncased) and
ERNIE (nghuyongernie-2.0-en). We share the em-
beddings between encoder and decoder. Models
are learned with Adam optimizer with β1 = 0.9,
β2 = 0.98. Learning rate is set to 1e4 with a lin-
ear scheduler. Each training batch contains 128
samples. The LMs are fine-tuned together with the
decoder. We also experimented with LMs frozen,
but this generally works worse.

Number of knowledge items WoW DailyDialog CRD
per token 30 26 38
per sentence 15 12 9

Table 7: Averaged number of knowledge items associ-
ated with each token/sentence.

Context: one of our favorite books is the wonderful
wizard of oz by author l . frank ba ##um and published
in 1900 !
Knowledge: The Wonderful Wizard of Oz is an Ameri-
can children’s novel written by author L. Frank Baum
and illustrated by W. W. Denslow, originally published
by the George M. Hill Company in May 1900.
Context: it ’ s about a young wizard at hog ##wart ##s
, right ?
Knowledge: The book follows Harry Potter, a young
wizard, in his third year at Hogwarts School of
Witchcraft and Wizardry.

Table 8: An example case from WoW. Given different
contexts, the token wizard is aligned to different knowl-
edge items.

C Analysis of Token-level Knowledge
Retrieval

Since our retrieval component is based on the con-
textualized representations (see § 4.2), the same
token can be aligned to different knowledge when
it occurs in different contexts. As the supporting
evidence, in Table 7, we report the averaged num-
ber of knowledge items associated with each token.
In Table 8, we show an example of the same token
being aligned to different knowledge items when
giving different contexts. In addition, our approach
exposes each dialog sentence to very diverse knowl-
edge items. The rich lexical knowledge, both at the
token-level and sentence-level, is the key to KI’s
good performance.

We further conduct an ablation study to inves-
tigate the effectiveness of two additional retrieval
strategies: stopword masking and exact matching
(§ 4.3). We remove each strategy and keep the other
unchanged. The results are presented in Table 9.
As we can see, both strategies are useful for gen-
erating appropriate (based on PPL, BLEU-4, and
ROUGE-l), informative (based on WikiF1), and
diversified (based on Distinc-1/2) responses.

Row Setting wikiF1 BLEU-4 ROUGE-l Distinc-1/2 PPL
1 Transformer+KI 11.25 2.85 12.84 5.66/18.68 46.68
2 wo stopwords masking 5.23 2.63 12.68 5.48/21.74 57.27
3 wo exact matching 10.74 2.54 11.99 4.75/15.27 47.65

Table 9: Retrieval strategy ablation results on WoW
Test Seen.
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Model PPL Ent.
CCM 39.18 1.18
Transformer+KI 28.50 3.29

Table 10: Automatic evaluation on CRD. Numbers of
CCM are taken from their paper.

Context:
SpeakerA: I like Dylan’s Bars, do you?
SpeakerB: Yes Dylan’s Candy Bar is my favorite bou-
tique candy store.
Utterance: They have everything! I just love it.
Gold Response: Yes Ralph Lauren’s daughter Dylan
Lauren owns them.
Transformer: I’m not sure , but I do know that they
have been around for a long time!
Transformer+KI: I love their chocolate chip cookies!
They’re actually the second largest candy company in
the world!
Knowledge for Dylan’s: Lauren was inspired to create
the store, which is asserted to be the "largest unique
candy store in the world", by the Roald Dahl story of
Willy Wonka the Chocolate Factory
Knowledge for like: In English, the word like has a
very flexible range of uses, ranging from conventional
to non-standard.

Table 11: An example case from WoW Seen.

D Comparison with CCM

Similar to KI, CCM augments dialog corpora with
token-level commonsense knowledge. In each en-
coding and decoding step, CCM explicitly uses
the retrieved commonsense knowledge triples by
concatenating their representations with the token
representation. As existing KGD models, CCM
also requires extra knowledge as input during both
training and inference. Training CCM on the CRD
dataset takes about a week on one Titan X GPU.
The comparison of model performance is shown in
Table 10. As we can see, there is a significant gap
between CCM and Transformer+KI. Thus in §6.2,
we consider applying KI on a more state-of-the-art
and recent KGD model: DiffKS.

E Case Study

We show an example case in Table 11 to demon-
strate how KI improves dialog generation and what
the limitation is. From the generated results, Trans-
former returns a vacuous response, as it has no
idea on what “Dylan’s Candy Bar” is. However,
Transformer+KI, which perceives the knowledge
about “Dylan’s Candy Bar” during training, gives a
much more informative response. Meanwhile, we
further observe some inaccuracy during the knowl-

edge transfer (“largest” becomes “second largest”).
We take this as an interesting future work.

F Comparison with BART

In § 6.3, we observe that KI can outperform mod-
els whose encoders are initialized with pre-trained
BERT or ERNIE. Here we dive deeper to com-
pare KI with a fully pre-trained seq2seq model:
BART (Lewis et al., 2020). BART has demon-
strated superior performance on conditional lan-
guage generation, including translation, summa-
rization, and dialogue response generation. We
start from the BART-base checkpoint 6. We fine-
tune the model for five epochs with a learning
rate of 3e-5. We do not report PPL since these
two models use different tokenization methods.
As we can see from Table 12, by introducing
only a few extra parameters and computation,
KI can significantly boost the Transformer’s per-
formance. Although a pre-trained BART model
can generate slightly more diverse responses than
Transformer+KI (higher Distinc-1/2), these gener-
ated responses are often inconsistent with the in-
put (lower BLEU-4/ROUGE-l) or less informative
(lower WikiF1).

6https://huggingface.co/facebook/bart-base
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Row Model DailyDialog CRD
BLEU-4 ROUGE-l Distinc-1/2 %safe BLEU-4 ROUGE-l Distinc-1/2 %safe

1 Transformer 2.65 12.97 1.48/5.10 7.14 2.12 11.88 2.01/7.40 23.90
2 Transformer+KI 6.13 17.48 4.39/21.88 0.53 3.01 11.92 3.24/17.81 8.05
3 BART-base 0.65 13.40 4.95/19.47 5.51 0.48 11.60 5.03/26.89 7.40

Row Model WoW Test Seen WoW Test Unseen
WikiF1 BLEU-4/ROUGE-l Distinc-1/2 %safe WikiF1 BLEU-4/ROUGE-l Distinc-1/2 %safe

4 Transformer 6.83 2.02/11.29 1.95/4.44 83.69 5.43 1.48/10.08 1.43/3.27 84.67
5 Transformer+KI 10.69 2.85/12.84 5.66/18.68 35.18 7.13 1.82/11.23 3.82/12.98 41.62
6 BART-base 8.85 1.99/11.30 6.43/24.91 15.79 6.51 1.65/11.85 5.16/20.90 15.82

Table 12: Automatic evaluation results for Transformer+KI and BART-base.
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