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Abstract

In this paper, we propose an entity-based neu-
ral local coherence model which is linguis-
tically more sound than previously proposed
neural coherence models. Recent neural co-
herence models encode the input document
using large-scale pretrained language models.
Hence their basis for computing local coher-
ence are words and even sub-words. An anal-
ysis of their output shows that these models
frequently compute coherence on the basis of
connections between (sub-)words which, from
a linguistic perspective, should not play a role.
Still, these models achieve state-of-the-art per-
formance in several end applications. In con-
trast to these models, we compute coherence
on the basis of entities by constraining the in-
put to noun phrases and proper names. This
provides us with an explicit representation of
the most important items in sentences leading
to the notion of focus. This brings our model
linguistically in line with pre-neural models of
computing coherence. It also gives us better
insight into the behaviour of the model thus
leading to better explainability. Our approach
is also in accord with a recent study (O’ Connor
and Andreas, 2021), which shows that most
usable information is captured by nouns and
verbs in transformer-based language models.
We evaluate our model on three downstream
tasks showing that it is not only linguistically
more sound than previous models but also that
it outperforms them in end applications'.

1 Introduction

Coherence describes the semantic relation between
elements of a text. It recognizes how well a text is
organized to convey the information to the reader
effectively. Modeling coherence can be beneficial
to any system which needs to process a text.

'Our code is available at: https://github.com/
sdeval4/acl22-entity-neural-local-cohe.

michael.strube}@h-its.org

Example Sentence 1
Mr. Specter, seeming exasperated, said in an inter-
view Thursday.
Focus candidates captured by XLNet
_said”, “_in”, “day”, “, “er”

113 113 113

_interview”, “_, “er”,
“_an”, “th”, “s”, “_exasperated”, ..., “spect”

Example Sentence 2

At the same time, unadvertised products may

have almost identical ingredients but less name-
recognition.

Focus candidates captured by XLNet

_name”, “ition”, “_products”, “-”,”_un may”,

“_less”, “_ingredients”, “_have”, ..., “_same”

[ R—

Table 1: The pretrained language model, XLNet Yang
et al. (2019), captures undesirable (sub-)words as focus
(Jeon and Strube, 2020). The sub-words are sorted by
their attention scores in descending order. In the first

LTSN E)

example, “Thursday” is split into four: “th”, “ur”, “s”,
and “day”. In the second example, some sub-words,
such as “ition”’, might be beneficial in their vector space
but the model might exploit spurious information.

Recent neural coherence models (Mesgar and
Strube, 2018; Moon et al., 2019) encode the input
document using large-scale pretrained language
models (Peters et al., 2018). These neural models
compute local coherence, semantic relations be-
tween items in adjacent sentences, on the basis of
words and even sub-words.

However, it has been unclear on which basis
these models compute local coherence. Jeon and
Strube (2020) present a neural coherence model,
which allows to interpret focus information for the
first time. Their investigation reveals that neural
models, adopting large-scale pretrained language
models, compute coherence on the basis of connec-
tions between any (sub-)words or function words
(Table 1, 11). In these cases, the model might
capture the focus based on spurious information.
While such a model might reach or set the state of
the art in some end applications, it will do so for
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the wrong reasons from a linguistic perspective.

This problem did not appear with pre-neural
models, since they compute coherence on the basis
of entities. Early work about pronoun and anaphora
resolution by Sidner (1981, 1983) assumes that
there is one single salient entity in a sentence, its
focus, which serves as a preferred antecedent for
anaphoric expressions. Centering theory (Joshi and
Weinstein, 1981; Grosz et al., 1995) builds on these
insights and introduces an algorithm for tracking
changes in focus. Centering theory serves as ba-
sis for many researchers to develop systems com-
puting local coherence by approximating entities
(Barzilay and Lapata 2008; Feng and Hirst 2012;
Guinaudeau and Strube 2013, inter alia).

In this paper, we propose a neural coherence
model which is linguistically more sound than pre-
viously proposed neural coherence models. We
compute coherence on the basis of entities by
constraining our model to capture focus on noun
phrases and proper names. This provides us with
an explicit representation of the most important
items in sentences, leading to the notion of focus.
This brings our model linguistically in line with
pre-neural models of coherence.

Our approach is not only linguistically more
sound but also is in accord with a recent empirical
study by O’Connor and Andreas (2021) who inves-
tigate what contextual information contributes to
accurate predictions in transformer-based language
models. Their experiments show that most usable
information is captured by nouns and verbs. Their
findings suggest that we can design better neural
models by focusing on specific context words. Our
work follows their findings by modeling entity-
based coherence in an end-to-end framework to
improve a neural coherence model.

Our model integrates a local coherence module
with a component which takes context into account.
Our model first encodes a document using a pre-
trained language model and identifies entities using
a linguistic parser. The local coherence module
captures the most related representations of entities
between adjacent sentences, the local focus. Then
it tracks the changes of local foci. The second com-
ponent captures the context of a text by averaging
sentence representations.

We evaluate our model on three downstream
tasks: automated essay scoring (AES), assessing
writing quality (AWQ), and assessing discourse
coherence (ADC). AES and AWQ determine text

quality for a given text, aiming to replicate human
scoring results. Since coherence is an essential fac-
tor in assessing text quality, many previous coher-
ence models are evaluated on AES and AWQ. ADC
evaluates coherence models on informal texts such
as emails and online reviews. In our evaluation, our
model achieves state-of-the-art performance.

We also perform a series of analyses to investi-
gate how our model works. Our analyses show that
capturing focus on entities gives us better insight
into the behaviour of the model, leading to better
explainability. Using this information, we examine
statistical differences of texts assigned to different
qualities. From the perspective of local coherence,
we find that texts of higher quality are neither se-
mantically too consistent nor too variant. Finally,
we inspect error cases to examine how our model
works differently compared to previous models.

2 Related Work

Entity-based modeling has been the prevailing ap-
proach to model coherence in pre-neural models.
The entity grid is its most well-known implementa-
tion (Barzilay and Lapata, 2008). It represents enti-
ties in a two-dimensional array to track their tran-
sitions between sentences. Many variations have
been proposed to improve this model, e.g., pro-
jecting the grid into a graph representation (Guin-
audeau and Strube, 2013) or converting the grid to
a neural model (Tien Nguyen and Joty, 2017).

However, the neural version of the entity grid
(Tien Nguyen and Joty, 2017) has two limitations.
First, Lai and Tetreault (2018) state that entity grids
applied to downstream tasks are often extremely
sparse. In their evaluation, it is difficult to find
meaningful entity transitions between sentences in
the grids. Accordingly, this model performs worse
than other neural models. More importantly, this
neural model cannot provide any clues of how this
model works since Tien Nguyen and Joty (2017)
apply a convolutional layer on the entity grid. The
feature map of the convolutional layer is not inter-
pretable. They cannot examine which entity is as-
signed more importance than others by their model.
In contrast, we constrain our model to capture fo-
cus on entities using noun phrases. Then our model
tracks the changes of focus. Hence, it provides us
with an interpretable focus (Section 5).

More recently, Moon et al. (2019) propose a neu-
ral coherence model to exploit both local and struc-
tural aspects. They evaluate their model on an arti-
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ficial task only, the shuffle test, which determines
whether sentences in a document are shuffled or not.
However, recent studies (Pishdad et al., 2020) claim
that this artificial task is not suitable to evaluate co-
herence models. Lai and Tetreault (2018) show that
the neural coherence models, which achieve the
best performance on this task, do not outperform
non-neural models on downstream tasks. More
recently, Mohiuddin et al. (2021) find a weak corre-
lation between the model performance in artificial
tasks and downstream tasks. In our evaluation, we
compare Moon et al. (2019) with ours in an arti-
ficial task as well as in three downstream tasks.
Moon et al. (2019) perform the best in the artifi-
cial task, but do not outperform our model in three
downstream tasks (Section 4).

3  Our Model

Figure 1 presents the architecture of our model.
We first introduce our entity representation and sen-
tence encoding using a pretrained language model.
Next, we describe a novel local coherence model.
We then combine the two representations of local
coherence and the context vector, simply averaged
sentence representations. Finally, we apply a feed-
forward network to produce a score label.

3.1 Sentence Encoding

We use a pretrained language model (Yang et al.,
2019) to encode sentences. XL.Net learns bidirec-
tional contexts by maximizing expected likelihood
using an autoregressive training objective. Hence
it allows to capture the focus in sentences. XLNet
outperforms other language models in tasks which
require processing long texts.

Recent work investigates that pretrained lan-
guage models learn linguistic features that are help-
ful for language understanding (Tenney et al., 2019;
Warstadt et al., 2020). Inspired by this, we encode
two adjacent sentences at once to capture discourse
features, such as coreference relations. In this strat-
egy, items are encoded twice except the items in-
cluded in the first and the last sentence. We interpo-
late items encoded twice to consider context with
regard to the preceding and succeeding sentence.

We encode an input document using XLNet to
obtain word representations. Sentence represen-
tations are means of all word representations in a
sentence. We then feed sentence representations
and the noun phrase representations into the the
coherence modules.

Output: Score Label

‘ Fully Connected Layer ‘
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Figure 1: Our model architecture.

In formal definitions, let L, =
[h(e,i,l)v ) h(e,i,m)v h(e,i+1,1)7 ) h(e,i+1,m)]
denote the output of encoding, where e indicates
the index of encoding, and m indicates the index of
a subword (w) in the sentence (s;). h indicates the
encoded representation of w. This encoding output
includes the encoded representations of s; and s;41
since we encode two adjacent sentences at once.
Likewise, EeJrl = [h(e+l,i+1,1)a ceey h(e+1,i+2,m)]
is the output in the next encoding, and it includes
the encoded representations of s;41 and s;42. Then,
the encoded representation of s; 1 is a sequence of
ih(it1,m) = avg(Me,it1,m)s Ples1,i41,m))> Which
is the interpolated representation of s;1; in the
two encoding stages (e and e + 1). We iterate this
process to encode all adjacent sentences.

3.2 Entity Identification

Pretrained language models encode sequences as
sub-words, but to our knowledge, there is no lin-
guistic parser using sub-words as input. Hence, we
use a linguistic parser to identify noun phrases in
each sentence separately. Kitaev and Klein (2018)
present a neural constituency parser which deter-
mines the syntactic structure of a sentence. To
identify noun phrases and proper names, we ap-
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ply this parser to the original sentences, then map
parsed constituents to sub-word tokens.

Since pretrained language models do not have
the means to represent phrase meaning compo-
sition, we average sub-word representations for
phrases which consists of multiple sub-words.
While this implementation does not capture the
complex meaning of phrases, Yu and Ettinger
(2020) report that it shows higher correlation with
human annotations than using the last word of
phrases, assuming that the last word of a phrase is
its head.

Let NP; = [npi1,npi2, ..., np; ;] denote a se-
quence of noun phases (np) in the ith sentence,
and j indicates the index of a noun phrase in the
sentence. Each representation of a noun phrase
is obtained as np; j = avg(ih; 1, ...,ih; ), where
ih; 1, indicates the subword tokens contributing to
the same entity.

3.3 Local Coherence Module

We compare the semantic representations of noun
phrases between adjacent sentences. The two most
similar representations of noun phrases are taken as
local focus of the respective sentences. These two
representations are averaged to capture the com-
mon context. We use cosine similarity to measure
semantic similarity.

We notice that some sentences do not include
noun phrases, approximately 3.5% in the three
datasets used in our evaluation. This mostly oc-
curs when some words are omitted as in cases of
ellipsis (Hardt and Romero, 2004). In such cases,
we maintain the focus of the previous sentence to
preserve the context.

A depthwise convolutional layer is applied to the
local focus to record its transitions. Unlike a typical
convolutional layer, the depthwise convolutional
layer captures the patterns of semantic changes
between different time-steps for the same spatial
information (Chollet, 2017). In our model, this
layer captures the semantic changes between local
foci considering the context but on the same spatial
dimension of each focus. Hence, it does not hurt the
explainability of our model. We use the lightweight
depthwise convolutional layer (Wu et al., 2019).

Then we update the representations of local foci
to track the semantic changes between them. We
use the Tree-Transformer which updates its hid-
den representations by inducing a tree-structure
from a document (Wang et al., 2019). It generates

constituent priors by calculating neighboring atten-
tion which represents the probability of whether
adjacent items are in the same constituent. The
constituent priors constrain the self-attention of the
transformer to follow the induced structure.
Finally, we apply document attention to produce
the weighted sum of all the updated local focus
representations. The document attention identifies
relative weights of updated representations which
enables our model to handle any document length.
In formal descriptions, let mnyp; ; denote the rep-
resentations of two noun phrases which have the
highest cosine similarity scores between the ith
and 7 + 1th sentence. Then, we define LocalF =
[local fi, ..., local fi], where local f; is an averaged
representation of mnp;; and mnp; ;1. It rep-
resents the sequence of local foci between the
ith and ¢ + 1th sentence, and [ indicates the in-
dex of the local focus in the document. Finally,
the local coherence representation is obtained as
ler = doc_attn(tree_trans(dconv(LocalF)))
where dconwv indicates the depthwise convolutional
layer, tree_trans indicates the Tree-Transformer,
and doc_attn indicates the document attention.

4 Experiments

4.1 Implementation Details

We implement our model using the PyTorch library
and use the Stanford Stanza library” for sentence
tokenization. We employ XLNet for the pretrained
language model. For the baselines which do not
employ a pretrained language model (Dong et al.,
2017; Mesgar and Strube, 2018), GloVe is em-
ployed for word embeddings, trained on Google
News (Pennington et al., 2014) (see Appendix A
for more details).

To compare baselines within the same frame-
work, we re-implement all of them in PyTorch. We
then use our re-implementation to report the per-
formance of models with 10 runs with different
random seeds. We verify statistical significance (p-
value<0.01) with both a one-sample t-test, which
verifies the reproducibility of the performance of
each model, and a two-sample t-test, which verifies
that the performance of our model is statistically
significantly different from other models.

Within the same framework we compare the size
of models used in our experiments. Our neural
model uses a number of parameters comparable to
the state of the art, the transformer-based model

https://stanfordnlp.github.io/stanza
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(Moon et al. (2019): 118M < Jeon and Strube
(2020): 136M < Our model: 137M).

4.2 Baselines: Neural Coherence Models

In all three downstream tasks, we compare our
model against recent neural coherence models.
First, Mesgar and Strube (2018) propose a neural
local coherence model, based on Centering theory.
This model connects the most related states of a
Recurrent Neural Network, then represents the co-
herence patterns using semantic distances between
the states. Second, Moon et al. (2019) propose
a unified neural coherence model to consider lo-
cal and structural aspects. This model consists of
two modules when they employ a pretrained lan-
guage model (Peters et al., 2018): a module of
inter-sentence relations using a bilinear layer and a
topic structure module applying a depth-wise con-
volutional layer to the sentence representations. To
ensure fair comparison, XLNet is employed for
this model as well, instead of ELMo (Peters et al.,
2018). More recently, Jeon and Strube (2020) pro-
pose a neural coherence model approximating the
structure of a document by connecting linguistic in-
sights and a pretrained language model. This model
consists of two sub-modules. First, a discourse
segment parser constructs structural relationships
for discourse segments by tracking the changes
of focus between discourse segments. Second, a
structure-aware transformer updates sentence rep-
resentation using this structural information.

4.3 Artificial Task: Shuffle Test

We first evaluate our model on the artificial setup,
the shuffle test, used in earlier works (Table 2). We
follow the setup used in Lai and Tetreault (2018).
In this setup, our model outperforms a simple neu-
ral model relying on the pretrained language model.
Moon et al. (2019) evaluate their models only in
this setup. It achieves outstanding performance in
this setup. However, in the following sections, our
results show that this model does not outperform
our model in downstream tasks.

Avg Acc
Moon et al. (2019)-XLNet-1Sent 90.57
Our Model 84.35

Table 2: Shuffle Test: Mean (standard deviation) accu-
racy performance of shuffle test on GCDC, averaged
on four domains. 1Sent indicates that each sentence is
encoded separately on the pretrained language model.

This result is not surprising. There is a line of
recent work which shows that this setup is not ca-
pable of evaluating coherence models from diverse
perspectives. Laban et al. (2021) show that employ-
ing fine-tuned language models simply achieves
a near-perfect accuracy on this setup. O’Connor
and Andreas (2021) measure usable information by
selectively ablating lexical and structural informa-
tion in transformer-based language models. Their
findings show that prediction accuracy depends on
information about local word co-occurrences, but
not word order or global position. We suspect that
exploiting all information of a sentence is sufficient
for shuffle tests to capture patterns to distinguish
whether sentences in a document are shuffled or not.
Based on these findings, we evaluate our model on
three downstream tasks used for evaluating coher-
ence models, automated essay scoring, assessing
writing quality, and assessing discourse coherence.
We advise future work not to evaluate coherence
models on the artificial setup solely.

4.4 Automated Essay Scoring (AES)

Dataset. To evaluate the coherence models on
AES, we evaluate them on the Test of English as
a Foreign Language (TOEFL) dataset (Blanchard
et al., 2013). While the Automated Student As-
sessment Prize (ASAP) dataset? is frequently used
for AES, TOEFL has a generally higher quality of
essays compared to essays in ASAP. The prompts
in ASAP are written by students in grade levels 7
to 10 of US middle schools. Many essays in ASAP
consist of only a few sentences. In contrast, the
prompts in TOEFL are submitted for the standard
English test for the entrance to universities by non-
native students. The prompts in TOEFL do not vary
so much, the student population is more controlled,
and essays have a similar length.

Evaluation Setup. We follow the evaluation setup
of previous work on AES (Taghipour and Ng,
2016). For TOEFL, we evaluate performance with
accuracy for the 3-class classification problem with
5-fold cross-validation. We use the same split
for the cross-validation, used by Jeon and Strube
(2020). The cross-entropy loss is deployed for train-
ing. The ADAM optimizer is used for our model
with a learning rate of 0.003. We evaluate perfor-
mance for 25 epochs on the validation set with a
mini-batch size of 32. The model which reaches the

*https://kaggle.com/c/asap-aes
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Prompt
Model 1 2 3 4 5 6 7 g | Ave
Dong et al. (2017) 6930 6647 6584 6638 68.89 6420 67.11 65.73 | 66.74
Mesgar and Strube (2018) | 56.25 5594 5520 57.20 56.57 55.10 56.97 5839 | 56.45
Averaged-XLNet-1S 7073 6948 6898 67.52 7235 7094 70.14 69.01 | 69.89
Moon et al. (2019)-XLNet | 73.75 72.13 72.92 7329 75.12 74.69 72.89 72.09 | 73.36
Jeon and Strube (2020)-1S | 75.10 73.35 7475 74.18 7638 7430 73.61 73.44 | 74.39
Jeon and Strube (2020)-2S | 76.35 7540 75.00 7485 77.63 74.06 73.71 74.00 | 75.12
Our Model 78.38 7570 7658 76.56 79.10 76.41 75.03 74.57 | 76.54

Table 3: AES: TOEFL Accuracy performance comparison on the test sets, 1S indicates that sentences are encoded
individually and 2S indicates that two adjacent sentences are encoded at once on the pretrained language model

(see Table 12, 13 in the Appendix C for more details).

best accuracy on the validation set is then applied
to the test set.

Baselines. We compare against Dong et al. (2017),
a neural model proposed for AES. They present a
model consisting of a convolutional layer, followed
by a recurrent layer, and an attention layer (Bah-
danau et al., 2015) between the adjacent tokens.
Results. Table 3 reports the performance on
TOEFL. Dong et al. (2017) report better perfor-
mance than the more recent neural model based
on Centering theory (Mesgar and Strube, 2018). A
simple model relying on the pretrained language
model outperforms this model, which averages all
sentence representations (henceforth, Avg-XLNet).
Moon et al. (2019) show that their unified model
outperforms previous models on the artificial task,
the shuffle test. However, it does not outperform
the previous models on the AES task. Jeon and
Strube (2020) outperform previous models. Finally,
our model, which integrates local and structural as-
pects, achieves state-of-the-art performance. We
perform an ablation study to investigate the con-
tribution of individual components. We compare
with Jeon and Strube (2020) who encode two adja-
cent sentences using the pretrained language model
(2SentsEnc). Our results verify that this encoding
improves performance, but our model benefits from
the novel local coherence module even more.

4.5 Assessing Writing Quality (AWQ)

Dataset. Louis and Nenkova (2013) create a
dataset of scientific articles from the New York
Times (NYT) for assessing writing quality. They
assign each article to one of two classes by a semi-
supervised approach: typical or good. Though
articles included in both classes are of good quality
overall, Louis and Nenkova (2013) show that lin-

NYT
Liu and Lapata (2018)-reimpl 54.35 (1.00)
Averaged-XLNet-1SentEnc 67.53 (3.48)
Moon et al. (2019)-XLNet-1Sent | 74.75 (1.27)
Jeon and Strube (2020)-1Sent 75.12 (1.10)
Jeon and Strube (2020)-2Sents 76.43 (0.88)
Our Model 77.52 (0.42)

Table 4: AWQ: Mean (standard deviation) accuracy of
assessing writing quality on the test sets in NYT.

guistic features contribute to distinguish different
classes of writing quality.

Evaluation Setup. For NYT, we follow the setup
used in previous work. Louis and Nenkova (2013)
and Ferracane et al. (2019) undersample the dataset
to mitigate the bias of the uneven label distribution.
Following Ferracane et al. (2019), Jeon and Strube
(2020) partition the dataset into 80% training, 10%
validation, and 10% test set, respectively. We use
the ADAM optimizer with a learning rate of 0.001
and a mini-batch size of 32. We evaluate perfor-
mance for 25 epochs.

Baselines. Liu and Lapata (2018) propose a neural
model which induces structural information with-
out a labeled resource. It induces a non-projective
dependency structure by structured attention.
Results. Table 4 shows the performance on NYT.
Ferracane et al. (2019) reported the best perfor-
mance of the latent learning model for discourse
structure (Liu and Lapata, 2018) on NYT. How-
ever, Jeon and Strube (2020) show that the good
results are due to embeddings obtained by train-
ing on the target dataset. They also report that
Avg-XLNet outperforms this model which employs
Glove embeddings. Moon et al. (2019) show better
performance than this simple model, but it does
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Model Yahoo Clinton Enron Yelp Avg Acc
xLi and Jurafsky (2017) 53.5 61.0 54.4 49.1 51.7
Mesgar and Strube (2018) 47.3(1.8) 57.7(0.6) 50.6(1.2) 54.6(0.3) 52.6
xLai and Tetreault (2018) 54.9 60.2 53.2 54.4 55.7
Avg-XLNet-1Sent 58.0(3.9) 57.6(0.3) 54.3(0.8) 559(0.4) 56.4
Moon et al. (2019)-XLNet-1SentEnc | 56.2 (0.5) 61.0(0.4) 53.6 (0.5) 56.6(0.4) 56.9
Jeon and Strube (2020)-1SentEnc 56.4(0.6) 62.5(0.9) 54.50.4) 56.9(0.3) 57.6
Jeon and Strube (2020)-2SentsEnc 57.2(0.5) 63.0(0.4) 5440.4) 56.9(0.2) 57.9
Our Model 58.4(0.2) 64.2(04) 553(0.3) 57.3(0.2) 58.9

Table 5: ADC: Mean (standard deviation) accuracy performance on the test sets in GCDC (x: reported performance

in Lai and Tetreault (2018)).

not outperform Jeon and Strube (2020). Our model
achieves state-of-the-art performance. An abla-
tion study of the joint sentence encoding, Jeon and
Strube (2020)-2SentsEnc, verifies that our model
gains improvements not only from this encoding
but also from our local coherence module.

4.6 Assessing Discourse Coherence (ADC)

Dataset. While previous work evaluates coherence
models on formally written texts (Barzilay and La-
pata, 2008), GCDC (Lai and Tetreault, 2018) is
designed to evaluate coherence models on infor-
mal texts, such as emails or online reviews. The
dataset contains four domains: Clinton and Enron
for emails, Yahoo for questions and answers in an
online forum, and Yelp for online reviews of busi-
nesses. The quality of the dataset is controlled to
have evenly-distributed scores and a low correla-
tion between discourse length and scores*.
Evaluation Setup. For GCDC, we perform the
experiments following previous work (Lai and
Tetreault, 2018). We perform 10-fold cross-
validation, use accuracy as evaluation measure on
the 3-class classification, and use the cross-entropy
loss function.

Baselines. Li and Jurafsky (2017) propose a neu-
ral model based on cliques, that are sets of adja-
cent sentences. This model uses the cliques taken
from the original article as a positive label and uses
cliques with randomly permutated ones as a neg-
ative label. Lai and Tetreault (2018) show that a
simple neural model which uses paragraph infor-
mation outperforms previous models on GCDC.
Results. Table 5 summarizes the performance on
GCDC. While Avg-XLNet outperforms previous
baselines, other advanced neural models show sim-

“The Pearson correlation between text length and scores is
lower than 0.12 in all domains.

ilar performance. Our model performs slightly
better than Jeon and Strube (2020) with two sen-
tences encoding. This shows that the gains mainly
benefit from this encoding strategy. We suspect
that Jeon and Strube (2020) do not benefit from
structural information since texts on GCDC are not
well-organized. The texts mostly consist of a few
sentences, and they express the writers’ emotion.
Based on this, Lai and Tetreault (2018) state that
texts of lower quality have sudden topic changes.
We also suspect that human annotators recognize
important entities in the texts, such as the name of
a person in the US government.

4.7 Ablation Study

Since our model consists of several components,
we examine the influence of each component on
the performance of the AES task. Specifically, we
first examine the influence of our local coherence
module. Then we examine the influence of the
Tree-Transformer compared to a naive Transformer.
Lastly, we examine the influence of the depth-wise
convolutional layer deployed ahead of the Tree-
Transformer.

Table 7 shows that each component contributes
to the performance meaningfully while the depth-
wise convolutional layer increases the performance
slightly. This suggests that we could design a bet-
ter component in future work to capture semantic
transitions between local foci.

Avg Acc
Ours - Local Coherence Module 72.27
Ours - Tree-Transformer - Depth-Conv | 75.69
Ours - Depth-Conv 76.25
Our Full Model 76.54

Table 7: Ablation study on AES. The averaged accu-
racy performance of all prompts is reported to compare.
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TOEFL: Prompt 1

NYT-1516415

Focus on any (%) | Focus on noun phrases (%)
_broad (3.63) 1(5.45)
_many (1.79) you (2.74)

_special (1.50) broad knowledge (2.64)
i(1.47) it (2.38)

_specialize (1.46) we (1.74)

_know (1.05) knowledge (1.34)
_specialized (0.99) he (1.30)

Focus on any (%) | Focus on noun phrases (%)
_theory (4.03) it (4.96)
_universe (3.22) we (4.13)
_said (2.42) the universe (2.48)

stan (2.42) he (2.48)

ein (2.42) physics (1.65)

dr (2.42) space (1.65)

_do (2.42) string theory (1.65)

Table 6: Comparison of the focus captured on any items using a language model (Jeon and Strube, 2020) and the
focus captured on noun phrases using our model. The essays submitted to prompt 1 in TOEFL and NYT article ID
1516415 (see Table 14 in the Appendix D for more details).

5 Analysis

5.1 Capturing Focus Using Entities

In Centering theory, the focus is described as the
most important item in a sentence. Jeon and Strube
(2020) capture the focus using attention scores and
analyze texts assigned to different qualities using
this focus. They state that the focus is difficult to
interpret when it is composed of sub-words. To
investigate this further, we compare the focus cap-
tured on any (sub-)words and the focus constrained
to entities. Table 6 indicates that constraining focus
to entities leads to better explainability, in partic-
ular on NYT. For example, in the NYT-1516415
news article about String theory, a subword of “ein”
is not an interpretable focus. It may, however, in-
clude useful information in the vector space for a
neural model. In contrast, our entity-based model
leads to better explainability. Instead of “ein”, it
provides the more interpretable focus, “Einstein”,
a theoretical physicist. In TOEFL, “broad knowl-
edge” is a more interpretable focus than a focus
consisting of the single subword tokens, “broad”.
Table 6 also shows that our model mainly uses pro-
nouns, and noun phrases are playing an important
role to represent focus. This suggests that further
investigation is needed to understand how language
models work on pronouns to process a text.

5.2 Local Coherence Patterns

Using interpretable focus information, we inves-
tigate differences in focus transitions of texts as-
signed to different scores. Motivated by the def-
inition of the continue and the shift transition in
Centering theory, we define semantic consistency
which represents the degree of semantic changes
between local foci. Two adjacent sentences are
semantically consistent when the semantic simi-

larity (sim;) between the local foci (I f) is higher
than a semantic threshold (0serm:score). This thresh-
old is determined as the average of semantic sim-
ilarities between local foci of adjacent sentences
in texts assigned the same score. Otherwise, a
semantic transition (st) occurs between the local
foci: st; = 1if sim; < Osem;score- Finally, the
semantic consistency (SC) is defined as follows:
SC =1 — (count(st;)/|Lf]).

Figure 2 illustrates the semantic consistency on
TOEFL, and Table 8 shows the statistics of the se-
mantic consistency on texts assigned to different
scores. Texts assigned a high score show lower
semantic consistency on average. This indicates
that texts of higher quality are overall more se-
mantically variant than texts of lower quality. Ad-
ditionally, we observe that texts assigned a low
score show significantly larger proportions of an
extreme level of semantic consistency. We define
the extreme level as either texts whose semantic
consistency is lower than 5%, indicating texts are
highly variant, or texts whose semantic consistency
is higher than 75%, indicating texts are highly con-
sistent. Hence, these findings indicate that texts of
lower quality are semantically too variant or too
consistent. Texts of higher quality are neither too
variant nor too consistent.

We next inspect the focus of texts assigned to
different scores (see Table 15,16, and 17 in the
Appendix D for more details). This shows that
pronouns more frequently indicate the local focus
in texts of lower quality than in texts of higher
quality. The essays in TOEFL are argumentative
essays, and good essays should use facts and evi-
dence to support their claim (Wingate, 2012). We
observe that texts assigned a low score frequently
include claims without convincing evidence. This
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Figure 2: Semantic consistency on TOEFL. The green horizontal line indicates the average of semantic similarities
between local foci. The blue line indicates the semantic similarities between adjacent local foci. A semantic
transition occurs when the semantic similarity between the local foci is lower than the green line. Texts of lower
quality are mostly semantically too consistent (id:10226) or too variant (id:598381).

causes our model to capture focus based on pro-
nouns more frequently in these texts. In contrast,
texts assigned a high score include convincing ev-
idence to support claims, and this lets our model
capture different types of foci in these texts.

5.3 Error Analysis

Finally, we conduct an error analysis to investigate
how our model works differently compared to pre-
vious coherence models on TOEFL. We first com-
pare the predicted scores with Moon et al. (2019)
and a simple model which only considers context,
averaged-XLNet. These two baselines show biased
predictions in the middle score. We suspect that
this is caused by the label bias in TOEFL (Blan-
chard et al., 2013). Biased label distributions cause
biased predictions, and they benefit from these bi-
ased predictions. In contrast, our model benefits
more from predicting high scores correctly as well
as other scores, indicating that our coherence model
assesses text quality better.

We then compare with the previous state of the
art (Jeon and Strube, 2020). This baseline induces
discourse structure to model structural coherence.
It captures semantic relations between discourse
segments, not just between adjacent sentences. We
observe two error cases when this baseline strug-
gles to predict correctly. It predicts scores lower
than the ground-truth score for texts which lack
support and evidence for claims. However, these
texts have a well-organized paragraph for one or
two claims. We suspect that this leads human an-
notators to assign a mid or a high score though
the text is not well-organized overall. In contrast,
it predicts scores higher than ground-truth scores
when unrelated claims are listed or claims are listed

Stow | Smid | SHigh
Avg SC 55.87 | 54.45 54.05
(std) (24.53) | (21.38) | (19.70)
Prop of Ext level | 17.63 11.54 8.59

Table 8: Semantic consistency statistics (%) for the
texts assigned to different scores (5). An extreme level
(Ext) is defined as either semantic consistency to be
lower than 5% (semantically too variant) or higher than
75% (semantically too consistent).

without evidence. Our model, which captures lo-
cal coherence between adjacent sentences, deals
with these cases better (see Table 18 and 19 in the
Appendix D for more details).

6 Conclusions

We propose a neural coherence model based on
entities by constraining the input to noun phrases.
This makes our model better explainable and sets
a new state of the art in end applications. It also
allows us to reveal that texts of higher quality are
neither semantically too consistent nor too variant.

Our findings suggest a few interesting directions
for future work. Our analysis shows that pretrained
language models frequently exploit coreference re-
lations to capture semantic relations. We could
design an advanced neural model which exploits
these relations explicitly. Lastly, our work could
be extended to a multilingual setup. Our model
is not tied to a specific pretrained language model
but connect a language model with linguistic in-
sights. It can employ a multilingual model (Xue
et al., 2021), and our datasets can be translated to
other languages.
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A Training and Parameters

For the three datasets, we use a mini-batch size
of 32 with random-shuffle. The ADAM optimizer
is used to train our models with a learning rate
of 0.001 and epsilon of 1e-4. We evaluate perfor-
mance for 25 epochs. For the baseline models
which do not use a pretrained language model,
we use Glove pretrained embeddings with 100-
dimensional for TOEFL and with 50-dimensional
for NYT. We clip gradients by 1.0. To update sen-
tence representations obtained by a pretrained lan-
guage model, we use the same dimension of the
pretrained language model on a tree-transformer.
We manually tune hyperparameters.

We encode adjacent two sentences at once us-
ing XLNet instead of the whole document at once.
Our dataset consists of long documents i.e., journal
articles with more than 3,000 tokens. For employ-
ing the pretrained model, it is practically infeasible
to encode all words in a document at once due to
memory limitations. We use 23GB GPU memory
a NVidia P40 on ADC and AES and 46GB GPU
memory of two NVidia P40s for each run on AWQ.
For training our model, it takes approximately 0.8
days on TOEFL, 6.5 days on NYT, and 0.6 days on
GCDC.

B Data Description Details

Table 9 describes statistics on two datasets,
TOEFL? and NYT®. We split a text at the sentence
level by Stanford Stanza library, and tokenize them
by the XLNet tokenizer. Table 10 describes the
topic of each prompt in TOEFL. They are all open-
ended tasks, that do not have given context but
require students to submit their opinion.

C Focus Examples

Table 11 shows the cases that the pretrained lan-
guage model, XL Net, captures the undesirable (sub-
)words as focus. We observe that the subword
tokenizer often split named entities into subword
tokens unexpectedly, and some words are unex-
pectedly split into subword tokens as prefixes and
suffixes, such as “_un” or “ition”. These observa-
tions suggest that we need to consider tokens as a
span to capture the meaning of words better.

Shttps://catalog.ldc.upenn.edu/LDC2014T06
®https://catalog.ldc.upenn.edu/LDC2008T19

Dataset | #Texts Avglen (Std) Max #tokens Scores
G-Y 1,200 173 (48) 378 1-3
G-C 1,200 200 (65) 385 1-3
G-E 1,200 203 (67) 388 1-3
G-P 1,200 198 (58) 374 1-3
T-P1 1,656 401 (97) 902 1-3
T-P2 1,562 423 (97) 902 1-3
T-P3 1,396 407 (102) 837 1-3
T-P4 1,509 405 (99) 852 1-3
T-P5 1,648 424 (101) 993 1-3
T-P6 960 425 (101) 925 1-3
T-P7 1,686 396 (87) 755 1-3
T-P8 1,683 407 (92) 795 1-3
NYT 8,512 1,841 (1,221) 18,728 1-2

Table 9: Three Datasets statistics on tokenization: 1)
four domains in GCDC, Yahoo (G-Y), Clinton (G-C),
Enron (G-E), Yelp (G-P), ii) each TOEFL prompt (T-P),
and iii) NYT.

D Evaluations Details

We report not only the more details of the perfor-
mance on test sets (Table 12) but also the perfor-
mance on validation sets on the AES task (Table
13).

E Analysis Details

We compare the focus captured on (sub-)words and
the focus constrained to entities on more datasets
(Table 14). We observe that our entity modeling
leads to better explainability.
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Prompt 1

Agree or Disagree: It is better to have
broad knowledge of many academic
subjects than to specialize in one spe-
cific subject.

Prompt 2

Agree or Disagree: Young people en-
joy life more than older people do.

Prompt 3

Agree or Disagree: Young people
nowadays do not give enough time
to helping their communities.

Prompt 4

Agree or Disagree: Most advertise-
ments make products seem much bet-
ter than they really are.

Prompt 5

Agree or Disagree: In twenty years,
there will be fewer cars in use than
there are today.

Prompt 6

Agree or Disagree: The best way to
travel is in a group led by a tour guide.

Prompt 7

Agree or Disagree: It is more impor-
tant for students to understand ideas
and concepts than it is for them to
learn facts.

Prompt 8

Agree or Disagree: Successful people
try new things and take risks rather
than only doing what they already
know how to do well.

Table 10: Topic description: TOEFL.

Example Sentence 3
Einstein’s defection from the quantum revolution was a blow
to his more conservative colleagues.
Focus candidates captured by XL Net
_stein”, “_was”, “_his”, “_more”, “_blow”, “_the”, “”,
“ein”, ..., “_from”

73

Example Sentence 4
On Thursday, responding to evidence that Celebrex and Bex-
tra may pose the same risks, the FED.A. recommended that
physicians limit their use of the drugs.
Focus candidates captured by XL Net
_on”, “_th”,“_ur”, “_s”, “_day”, “)”, “
_evidence”, ..., “_drugs”

13 >

_responding”, “_to”,

113

Example Sentence 5
Dr. Elizabeth Tindall, president of the American College of
Rheumatology, said in a statement last week.
Focus candidates captured by XL Net
_said”, “ology”, “_week”, “_in”, “_of”, “”, “_college”,
“_the”, “_last”, “11”, “_a”, ..., “dr”
Example Sentence 6
Current American testing focuses only on finding the prion
that causes bovine spongiform encephalopa thy in cows and
“variant” Creutzfeldt-Jakob disease in humans.
Focus candidates captured by XL Net
“opathy”, “t”, “_disease”, “-”, “_humans”, “_the”, “
“en”, “_and”, “_cre”, ..., “_pr”
Example Sentence 7
These days the concepts of family values,traditions and culture
have lost their meaning and the you$g people often end up
neglecting these important concepts.
Focus candidates captured by XLNet
“_concepts”, “ing”, *“_lost”, “_of”, ““_concepts”, “_the”, “_val-

% 2

ues”, “_these”, “_end”, “people”, “_have”, ..., “radi”

<

vine”,

Example Sentence 8
The community plays an important role in shaping a person-
his desires, actions, thoughts, opinions etc.
Focus candidates captured by XL Net
_etc”, “_role”, “s”, *“_desires”, “s”, “_person”, “_the”, “op”,
“ions’, ..., “_important”

«

“«

Example Sentence 9
On the other hand, the time that have been used by them to
community service is enough already for the fact that learning
is the primary task that they should focus on at their age
anyway.

Focus candidates captured by XLNet

_on”, “_them”, “_at”, “_on”, ”_already”, “_to”, “_used”,
““they”, “_for”, “_that”, “_anyway”, “_by", ..., “_the”

Table 11: Examples showing the pretrained language
model, XLNet Yang et al. (2019), captures undesirable
(sub-)words as focus (Jeon and Strube, 2020). The sub-
word tokens are sorted by their attention scores in de-
scending order.
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Prompt

Model 1 2 3 4 5 6 7 ] Avg Acc

Dong et al. (2017) 6930 6647 65.84 6638 6889 6420 67.11 65.73 66.74
(0.41) (0.58) (0.56) (0.56) (0.38) (0.64) (0.59) (0.31)

Mesgar and Strube (2018) 56.25 5594 5520 5720 56.57 5510 5697  58.39 56.45
(0.72) (0.44) (0.75) (0.16) (0.49) (0.39) (0.56) (0.29)

Averaged-XLNet-1SentEnc 70.73  69.48 6898 67.52 7235 7094 70.14 69.01 69.89
(0.73)  (0.53) (1.12) (0.51) (0.46) (0.82) (0.42) (0.56)

Moon et al. (2019)-1SentEnc 73.75 7213 7292 7329 7512 7469 7289  72.09 73.36
(0.67) (0.58) (0.54) (0.35) (0.50) (0.57) (0.35) (0.35)

Jeon and Strube (2020)-1SentEnc 75.10 7335 7475 7418 7638 7430 73.61 73.44 74.39
0.74) (0.92) (0.61) (1.07) (0.91) (1.13) (0.72) (1.15)

Jeon and Strube (2020)-2SentsEnc | 76.35 7540 75.00 7485 77.63 7406 73.71 74.00 75.12
(0.44) (0.75) (0.34) (0.50) (0.40) (0.37) (0.25) (0.63)

Our Model 7838 75,70 76.58 76.56 79.10 76.41 75.03 74.57 76.54
(042) (0.60) (0.46) (0.37) (0.35) (0.20) (0.32) (0.38)

Our Model+Coref 75770 7536  75.04 7492 7697 7443 7353 7281 74.84
(0.60) (0.63) (0.37) (0.60) (0.51) (0.72) (0.69) (0.38)

Table 12: TOEFL Accuracy performance comparison on the test sets (std), where 1SentEnc indicates that sentences
are encoded individually and 2SentsEnc indicates that adjacent sentences are encoded at once on the pretrained
language model.

Prompt

Model 1 2 3 4 P 5 6 7 ] Avg Acc

Averaged-XLNet-1SentEnc 71.06 70.56  67.17 67.02 7142 69.76 6854 68.72 69.28
(0.43) (0.50) (0.99) (0.98) (0.31) (0.77) (0.73) (0.51)

Moon et al. (2019)-1SentEnc 7431 71.15 7283 7371 7494 7389 7218 72.04 73.13
0.67) (0.12) (0.96) (0.80) (0.53) (1.00) (0.76) (0.73)

Jeon and Strube (2020)-1SentEnc 73.76  71.09 72,57 7186 73.87 71.08 7149 71.46 72.15
0.74) (0.92) (0.61) (1.07) (0.91) (1.13) (0.72) (1.15)

Jeon and Strube (2020)-2SentsEnc | 76.66 7548 7446 7472 7624 7526 73.82 73.19 74.98
(0.50) (0.68) (0.74) (0.36) (0.50) (0.53) (0.43) (0.67)

Our Model 7744 7548 76.72 7657 79.22 7589 75.66 74.33 76.41
0.59) (0.74) (0.72) (0.46) (0.61) (0.85) (0.77) (0.74)

Table 13: TOEFL Accuracy performance comparison on the validation sets (std), where 1SentEnc indicates that
sentences are encoded individually and 2SentsEnc indicates that adjacent sentences are encoded at once on the

pretrained language model.
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TOEFL-P1-NP (%) TOEFL-P2-NP (%) TOEFL-P3-NP (%) TOEFL-P4-NP (%)
i(5.45) young people (5.57) young people (5.26) 1(4.67)
you (2.74) they (5.21) i4.71) it (3.83)
broad knowledge (5.64) 1(4.42) they (3.70) they (3.61)
it (2.38) life (4.12) time (1.64) advertisements (2.03)
we (1.74) older people (2.70) enough time (1.52) products (1.96)
knowledge (1.34) it (1.50) it (1.46) you (1.82)
he (1.30) you (1.40) | their communities (1.23) we (1.59)
people (1.20) we (1.05) people (1.19) people (1.49)
they (1.17) old people (1.02) we (1.10) | most advertisements (1.10)
many academic subjects (0.95) people (0.95) them (0.92) the product (0.96)
TOEFL-P5-NP (%) TOEFL-P6-NP (%) TOEFL-P7-NP (%) TOEFL-P8-NP (%)
cars (4.54) 1(7.73) 1(5.16) 1(4.90)
i(4.25) you (4.16) | ideas and concepts (3.74) they (3.51)
twenty years (3.26) a group (3.96) facts (3.73) you (2.70)
people (2.07) a tour guide (3.49) students (3.05) he (2.24)
it (1.81) we (2.36) it (2.82) it (2.22)
we (1.71) it (2.20) they (2.61) successful people (2.13)
they (1.50) they (1.45) you (1.89) people (2.01)
use (1.49) people (1.39) we (1.87) risks (1.85)
today (1.13) the best way (0.92) them (1.10) new things (1.76)
a car (0.75) the tour guide (0.85) the facts (1.09) success (1.57)
NYT-1458761-NP (%) NYT-1516415-NP (%) NYT-1705265-NP (%) NYT-1254567-NP (%)
1(3.82) it (4.96) 1(4.79) he (4.22)
colorado (3.82) we (4.13) he (4.79) it (3.52)
2001 (2.29) the universe (2.48) they (3.42) einstein (3.52)
montana (2.29) he (2.48) diet (2.74) schrodinger’s (2.82)
colorado springs 2004 (1.53) physics (1.65) cancer (2.74) they (2.11)
denver (1.53) space (1.65) it (2.05) itself (2.11)
qwest (1.53) string theory (1.65) breast cancer (2.05) bohr (2.11)
we (1.53) life (1.65) people (2.05) a physicist (1.41)
the state (1.53) i(1.65) those (2.05) berlin (1.41)
jobs (1.53) dimensions (1.65) prostate cancer (1.37) light (1.41)

Table 14: Top-10 most frequent focus (proportions) of essays, captured on noun phrases, submitted to the same
prompt in TOEFL (see Appendix. A for given topics) and four articles in NYT whose id is 1458761, 1516415,
1705265, and 1254567, respectively. The title of NYT articles are as follows, 1458761: “Among 4 States, a Great
Divide in Fortunes”, 1516415: “One Cosmic Question, Too Many Answers”, 1705265: “Which of These Foods
Will Stop Cancer?”, and 1254567: “Quantum Theory Tugged, And All of Physics Unraveled”.
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P1-Local-Low (%)

P1-Single-Low (%)

P1-Local-High (%)

P1-Single-High (%)

1(8.77) 1(6.44) 1(5.98) 1(5.05)

you (3.51) broad knowledge (3.43) you (3.23) you (2.29)

it (3.42) we (2.19) it (2.70) it (2.21)

one specific subject (2.58) you (2.19) one specific subject (1.73) | broad knowledge (1.84)

we (2.48) it (2.13) we (1.37) we (1.65)

broad knowledge (1.78) |many academic subjects (1.42) a broad knowledge (1.27) knowledge (1.56)

many academic subjects (1.67) he (1.42) one (1.22) he (1.22)

he (1.19) they (1.24) he (1.20) they (1.11)

they (1.04) knowledge (1.05) this (1.17) |a broad knowledge (1.09)

that (0.08) that (0.95) |jmany academic subject (1.16) specialization (1.09)
P3-Local-Low (%) P3-Single-Low (%) P3-Local-High (%) P3-Single-High (%)

1(8.97) 1(5.57) young people (6.33) young people (4.79)

young people (6.65) young people (4.77) 1(5.91) 1(4.48)

they (5.53) they (4.63) they (4.35) they (3.42)

the young people (2.72) it (1.94) it (1.98) time (1.69)

it (2.44) their communities (1.79) the young people (1.91) it (1.43)

enough time (1.96) time (1.79) the community (1.74) enough time (1.24)

them (1.80) enough time (1.65) their communities (1.70) | their communities (1.18)

their communities (1.76) we (1.18) this (1.60) people (1.18)

we (1.64) them (1.13) them (1.50) we (1.05)

there (1.24) the young people (1.04) people (1.36) them (0.89)
P7-Local-Low (%) P7-Single-Low (%) P7-Local-High (%) P7-Single-High (%)

1(9.08) 1(5.95) 1(6.81) 1(5.29)

it (4.11) ideas and concepts (3.70) it (3.78) |ideas and concepts (4.16)

they (3.29) facts (3.56) facts (3.48) facts (3.86)

we (3.09) students (3.23) ideas and concepts (3.23) students (2.97)

facts (2.90) they (3.14) you (2.59) it (2.90)

ideas and concepts (2.57) it (1.95) they (2.08) they (2.36)

you (2.23) we (2.34) the facts (2.05) you (2.13)

students (2.15) ideas (1.69) students (1.91) we (1.60)

the students (1.68) you (1.45) a student (1.58) them (1.25)

the facts (1.41) them (1.26) we (1.45) ideas (1.06)
P8-Local-Low (%) P8-Single-Low (%) P8-Local-High (%) P8-Single-High (%)

1(8.07) 1(5.45) 1(9.90) i(4.56)

they (4.83) they (4.73) you (6.55) they (2.88)

new things (3.91) he (3.10) they (5.16) you (2.64)

you (2.75) successful people (2.85) new things (2.65) it (2.09)

it (2.64) new things (2.43) it (2.30) he (2.02)

he (2.64) people (2.01) he (1.90) risks (1.94)

successful people (1.80) you (1.88) people (1.52) success (1.78)

people (2.04) it (1.59) risks (1.49) | successful people (1.77)

we (1.45) success (1.55) successtul people (1.44) people (1.64)

success (0.74) we (1.26) we (1.44) new things (1.47)

Table 15: Comparison of the top-10 the most frequent local focus, captured on the two adjacent sentences, (propor-
tions) and single focus, captured on a sentence solely, of essays submitted to each prompt in TOEFL for the low
and the high score (see Appendix. B for given topics).
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# | Example text of low quality

1 | I absolutely agree about the many academic sub-
jects are beneficial for knowledge, because it pro-
vide lots of opportunities'?, I mean it’s good for
our future.

2 | In my experience, when I’ was second grade in
middle school, a teacher gave a homework® to us
which was to find our talant.

3 | PP* tried to think what am I good at and what do I
like.

4 However, I* couldn’t, because I couldn’t find my
talants’.

5 | after my highschool finally, I found my talants’.
6 | My talant® is to study a law.

7 | When I° was first grade in the highschool, I’ had a
friend who called Che-Jea-Heong.

8 | He was very special friend”®.

9 | He always tried to think strange way®’.

10 | At first, I’ didn’t want to talk with him, but when
we'? talked about the talant, we became a friend.
11 | Actually, his father'®!! is police.

12 | And his family'' is very poor.

13 | So, first we'? started to talk his father.

14 | why he'*" is poor.

15 | After that we'>!* began to think law.

16 | Then we'* found our talant'>.

17 | Actually, this'® I found this talant® from the
school project.

18 | When I'*!7 was 3grade in middle school, T took
a class which was Korean language class, in the
class, we had a special study which was law.

19 | Because, my teacher'”'® thought law is beneficial
for stundent.

20 | So we' tried to study the law'® just one semester
with a game.

21 | However, my friends are really bored about this,
but me? I really enjoyed that law class'.

22 | So after that semester, I’>?! asked the teacher to
study more laws, but she couldn’t, because lots of
people didn’t like that.

23 | Anyway, I''?? really like the law, also I'll study
law in the university.

24 | From this semester, can think many way to
find my talant from the school subjects.

25 | T%* can think math, science, music or art.

26 | So we*** can have our opportunities.

27 | Now days, many students cannot understand the
school about the acadmic subjects that why they
have to learn too much subject®>*®.

28 | I* was too, but now I understand the school. And
I really thanks from the school.

I22,23

Table 16: Local focus on an example text assigned to
the low score. The example is rewritten by us following
the texts in TOEFL due to the non-public license. Bold
style indicates local focus identified in our sentence en-
coding strategy, which encodes adjacent sentences at
once. Superscripts indicate the order of this encoding.

# | Example text of high quality

Getting more knowledge'? could expand ones
boundary; serve as a parth to discover ones true
passion; allow us to talk to other people and be
capable of understanding the world around us.

2 | Firstly, getting more knowing” of many academic
subject areas could expand our boundaries because
we know different subjects in different fields’.

3 | Each subject has its own uniquness, therefore it*
would be beneficial to know a bit about each ar-
eas’.

4 | Secondly, exploring more knowledge*® could
serve as a path for people to discover their true
passion.

5 | Sometimes if we stay ’inside the box’, it would
be difficult for us to find other ways and have the
oppurtunity>® to think whether it was truly their
passion or not.

6 When I° was in Grade 11, I’ took courses in differ-
ent areas, such as Chemistry, Accounting, Physical
Education, Business, History etc.

7 | T wans’t sure of what I wanted to study in uni-
versity, and I don’t want to limit my area of study,
therefore I¥ decided to broaden my knowledg by
taking many acdemic subjects.

8 | However my friend, who seriously wanted to be-
come a doctor, took all science courses®’, because
she wanted to explore her passion.

9 | As a result, I believe it would be better to have
a broad knowledge of many subjects®!? before
specializing one, unless you have found something
that you really want to pursue.

10 | Moreover, by studying more subjects'’, it''
makes people easy to dive in conversations with
new people.

11 | Everyone have different backgrounds, therefore if
you have knowledge from different areas'?, it''
could be easier to socialize with people whom have
different fields from we have.

12 | A way of knowing more subjects can be
to read every section of the newspaper such as
Businss, World, Entertainment etc.

13 | This could help us to know more knowledge'* and
therefore we can be more talkative meeting new
people'*.

14 | Since the world'® changes everyday, everyday
something new '*will happen.

15 | If we don’t have the basic background of a certain
subject'>S, we cannot understand others.

16 | Moreover, a lot of subjects are tied on each other,
therefore you will need knowledge from other ar-
eas'®!7 to understand the material better.

17 | For example, business ties with politics, politi-
cal changes could affect the business environment,
henceforth it is mandatory for us to have a sim-
ple background'”!® of politics to understand the
changes of business around the world.

18 | In conclusion, with all the reasons discussed so far,
I believe that it is better to have broad knowledge
of many acadmic subjects'® than specializing in
one specific subjects.

—

12,13

Table 17: Local focus on an example text of high qual-
ity. The examples is rewritten by us following the texts
in TOEFL due to a non-public license. Bold style in-
dicates local focus identified in the sentence encoding,
which encodes two sentences at once. Superscripts in-
dicate the order of this encoding.
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Error Type | Example Essay

Ch In my opinion is better to have a knowledge specialize in one particular subject since
this is better to know a thing as well as you can. This is true in all the experiences of
the life: refered to the university, e.g., the italian university, we can take the example
of the of the two years of specialization. An other example we can see in a top-tier
company, in fact each people that there are in this have a specific work to do and this
bring to an excellent final operation. A person that are magnifically prepared on one
thing will arrive at a sicure result because that ""is your bred""; we can also observe
that the most good professors, scientists, sport players are all specialize on that they
work and do not specialize on many works. We can also observe that the colloboration
of great brains, each of them specialized on a thing, is important in many ways of the
our life.

Co I strongly agree with the statement that knowing several subjects and being polyvalent
in various fields is much more important that specializing in one area.

These days, things are changing so fast that the moment you start a career or a
specialization, the minute the facts and figures of the subject have changed. This
essence of broad knowledge is what makes people succeed in the world. Unless you
are 100% sure that you vocationally desire to specialize in a subject, the risk of not
finding a suitable job because of the deviation of job offering is too high. Both with
respect to time and money. For example, imagine that you decide to study IT sometime
around the Internet boom. After you finish the 5 years of studying, you get out to
society with high hopes and great expectations and suddenly you realize that the world
does not need for IT people anymore because the market crashed down! Then you
would most probably regret not to have chosen a more general Engineering degree
such as an Electronical Engineering degree. Take the example of a devoted music
students that really loves to play music to the point that they drop classes so they can
go and play their music. Perhaps, they will become a succesful singer or solo player,
but the chances that they fail are there and when that really comes true, they will not
be able to attend university classes because they didn’t passed high-school. Good and
innovative ideas often are the result of composing other ideas. If on one side, you know
how pollution of carbon dioxide is chemically produced and on the other, you are an
expert on plant species, perhaps you can find a way to create a system to purify the air
in the world. And moreover, if you have skills of marchandising and marketing, you
can probably be in the Forbes’ next month main page.

Think that you can always specialize in the future. Going from the trunck of a tree to
the tip of a branch is easy, but getting from one tip to another tip is, literally, as going
back in time.

Table 18: Example Essays for Error Cases (C7, C3) on TOEFL (the examples are rewritten by us following the
texts in TOEFL due to the non-public license). For texts corresponding to the C7, Jeon and Strube (2020) predicts
a low score and our model predicts a mid score (C; : Sys = L, So = M). For texts corresponding to the C5, Jeon
and Strube (2020) predicts a mid score and our model predicts a high score (Cs : S;5 = M, So = H).
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Error Type | Example Essay

Cs It seems difficult to choose one direction, becuse they are also have colorful life
between the young people and the older people, but it does not mean, they are similar
to me. I would like to agree with the young people enjoy life more than older people
do, if a personal quality can be considerated as criterion to choose things.

First of all, nowadays, era of information, many young people enjoy their life via the
internet, even everything is possible in the digital industy. For instance, if a grandson
of the older people live abroad, and the communication between the grandson and
the grandfather is only via the telephone instead the internet online chatting what is
cheaper than the international telephone call, but the older people can not use the
internet, even they can not use a computer.

On the other hand, the young people can adapt an environment quickly, so that they
can migrate to another city for the different experience. most of older persons can not
accept the different enviroment and what they will eat in the different areas, if the older
person migrate to other citys or countries, they will be illness easier.

The important things determining the young people enjoy life better is that they are
educated in the signifcant era of information, so they are developed with the world
development.

For all mentioned above is why I agree with the statement that young people enjoy life
more than older people do. Now, I do strongly agree with the statement.

Cy Yes, it is better to have a broad knowledge of many academic subjects than specialisze
in one specific area because of various reasons.

If people have knowledge about a particular subject,it is good. But if they want to
refrain themselves from foraying from other subjects they should make sure that they
are very thorough with that subject.Because finally they should find a job on that basis
only and more ver all the academic topics are interconnected so, it imperative to have
knowledgein various fields.

The above option would be good only if they find a job. They should always keep in
mind the different possibilities in their carreer. They should ask themselves ""what if i
dont get a job in my desired field of study?""

For instance I am a mechanical engineering student. as every one knows there is a
difficult of getting jobs for mechanical engineers.if i continue with the same field
would be left unemployed.Here I need to have an alternate option.I have my alternate
option as computer sciences .I started learning some computer subjects.Now even if
i do not get a job in my field of study, i may have a chance of getting it in field of
computers.This would not leave me unemployed.I personally feel that being employed
is better than being unemployed.

This criteria not only works for two fields of same backround, it also works for a
technical background and an arts background. For example, an electrical engineer who
does not have a job and whose hobby is singing , can survive by giving some stage
shows . Which would also be considered as an employment.

Additionally, broader knowlege would not leave you speechless when you are in a
group. Because when a group is discussing a topic and if you are silent , you may feel
embarassing with that. But if you are familiar with the topic you can also give your
opinion on the topic. this is possible only if you do not confine yourself to a particular
field.

Therefore, I conclude that having a broad knowledge is better than to specialize in one
subject.

Table 19: Example Essays for Error Cases (C3, Cy) on TOEFL (the examples are rewritten by us following the
texts in TOEFL due to the non-public license). For texts corresponding to the C'3, Jeon and Strube (2020) predicts
a mid score and our model predicts a low score (C'3 : Sy = M, So = L). For texts corresponding to the Cy, Jeon
and Strube (2020) predicts a high score and our model predicts a mid score (Cy : Sy5 = H, So = M).
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