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Abstract

With the rapid development of deep learn-
ing, Seq2Seq paradigm has become prevalent
for end-to-end data-to-text generation, and the
BLEU scores have been increasing in recent
years. However, it is widely recognized that
there is still a gap between the quality of
the texts generated by models and the texts
written by human. In order to better under-
stand the ability of Seq2Seq models, evaluate
their performance and analyze the results, we
choose to use Multidimensional Quality Met-
ric(MQM) to evaluate several representative
Seq2Seq models on end-to-end data-to-text
generation. We annotate the outputs of five
models on four datasets with eight error types
and find that 1) copy mechanism is helpful for
the improvement in Omission and Inaccuracy
Extrinsic errors but it increases other types of
errors such as Addition; 2) pre-training tech-
niques are highly effective, and pre-training
strategy and model size are very significant;
3) the structure of the dataset also influences
the model’s performance greatly; 4) some spe-
cific types of errors are generally challenging
for seq2seq models.

1 Introduction

Data-to-text generation is a task of automatically
producing text from non-linguistic input (Gatt and
Krahmer, 2018). The input can be in various forms
such as databases of records, spreadsheets, knowl-
edge bases, simulations of physical systems.

Traditional methods for data-to-text generation
(Kukich, 1983; Reiter and Dale, 2000; Mei et al.,
2015) implement a pipeline of modules including
content planning, sentence planning and surface
realization. Recent neural generation systems (Le-
bret et al., 2016; Wiseman et al., 2017a) are trained
in an end-to-end fashion using the very success-
ful encoder-decoder architecture (Bahdanau et al.,
2014) as their backbone. Ferreira et al. (2019) intro-
duce a systematic and comprehensive comparison

between pipeline and end-to-end architectures for
this task and conclude that the pipeline models can
generate better texts and generalize better to unseen
inputs than end-to-end models.

However, with the rapid development of the
Seq2Seq models especially pre-trained models,
more and more end-to-end architectures based
on Seq2Seq paradigm get state-of-the-art results
on data-to-text benchmarks nowadays. Although
BLEU score (Papineni et al., 2002), which is based
on precision, has been improved dramatically on
standard data-to-text benchmarks such as WebNLG
(Gardent et al., 2017), ToTTo (Parikh et al., 2020)
and RotoWire (Wiseman et al., 2017b) over the re-
cent years, it is commonly accepted that, compared
with human evaluation, BLEU score can not evalu-
ate the models very well. It is too coarse-grained
to reflect the different dimensions of the models’
performance and not always consistent with human
judgment (Novikova et al., 2017a; Reiter, 2018;
Sulem et al., 2018). Moreover, existing human
evaluations on data-to-text generation are usually
limited in size of samples, numbers of datasets and
models, or dimensions of evaluation.

In this study, we aim to conduct a thorough and
reliable manual evaluation on Seq2Seq-based end-
to-end data-to-text generation based on multiple
datasets and evaluation dimensions. We want to
know the pros and cons of different Seq2Seq mod-
els on this task, and the factors influencing the
generation performance. Particularly, following
Multidimensional Quality Metric(MQM) (Mariana,
2014), similar to the job on summarization eval-
uation (Huang et al., 2020), we use 8 metrics on
the Accuracy and Fluency aspects to count errors,
respectively. Therefore, compared with existing
manual evaluation reports, it is more informative
and objective.

Using this method, we manually evaluate sev-
eral representative models, including Transformer
(Vaswani et al., 2017), Transformer with Pointer
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Generator (See et al., 2017), T5(small&base) (Raf-
fel et al., 2019), BART(base) (Lewis et al., 2019)
1. We test these models on four common datasets,
including E2E (Novikova et al., 2017b), WebNLG
(Gardent et al., 2017), WikiBio (Lebret et al., 2016),
ToTTo (Parikh et al., 2020). Thus we can discuss
the effectiveness of the pre-training method, some
essential techniques and the number of parame-
ters. We can also compare the differences between
datasets and how they influence the models’ perfor-
mance. Empirically, we find that:

1. Pre-training: Pre-training is powerful and ef-
fective which highly increases the ability of
the Seq2Seq paradigm on the data-to-text task.

2. Size: The size of the model makes difference
to the results. Particularly, T5-base achieves
the best scores on both automatic and human
evaluations.

3. Essential Techniques: The copy mechanism
can make noticeable improvements for the
basic Seq2Seq model, decreasing word-level
errors such as Omission and Inaccuracy Ex-
trinsic. But it also introduces more Addition
errors slightly.

4. Dataset Structure: The structure of the dataset
also influences the model’s understanding of
the sequence greatly. Content-controlled gen-
eration is still a little hard for the Seq2Seq
models.

5. Error Type: The most common mistakes of
Seq2Seq models on data-to-text task are Omis-
sion, Inaccuracy Intrinsic and Inaccuracy Ex-
trinsic, indicating the direction we need to im-
prove the effectiveness of the model. On the
other hand, models perform well in fluency.

2 Related Work

Data-to-Text Generation Traditional methods
for data-to-text generation (Kukich, 1983; Mei
et al., 2015) implement a pipeline of modules in-
cluding content planning, sentence planning and
surface realization. Recent neural generation sys-
tems (Lebret et al., 2016; Wiseman et al., 2017a)
are trained in an end-to-end fashion using the very
successful encoder-decoder architecture (Bahdanau
et al., 2014) as their backbone. Many Seq2Seq

1Due to limited computing resources, we didn’t evaluate
T5-large and BART-large models.

models have demonstrated their effectiveness on
data-to-text tasks. Since we want to make a general
comparison on Seq2Seq models, we will focus on
this method. Moreover, with the development of
pre-training methods, more and more work (Kale,
2020; Wang et al., 2021; Kale and Rastogi, 2020)
began to introduce pre-training model for data-to-
text generation.

There is some work evaluating and analyzing the
data-to-text generation task. Perez-Beltrachini and
Gardent (2017) propose a methodology to analyze
the data-to-text benchmarks and apply their method
to WikiBio, RNNLG (Wen et al., 2016) and IM-
AGEDESC (Novikova and Rieser, 2016) datasets.
Ferreira et al. (2019) introduce a systematic com-
parison between pipeline and end-to-end architec-
tures for neural data-to-text generation. Thomson
and Reiter (2020) propose a methodology for hu-
man to evaluate the accuracy of the generated texts.

Sequence-to-Sequence Seq2Seq paradigm is a
general and flexible paradigm that is typically
implemented by an encoder-decoder framework.
Sutskever et al. (2014) discuss sequence to se-
quence learning with neural networks. Further-
more, there are some representative architectures
that have been proposed such as recurrent neural
network (Zaremba et al., 2014) and Transformer
(Vaswani et al., 2017). Seq2Seq paradigm can be
naturally applied to any task, as long as their in-
put and output can be represented as sequences.
Therefore, there have been many attempts to apply
Seq2Seq to different tasks. More recently, pre-
trained models based on Seq2Seq paradigm (Lewis
et al., 2019; Raffel et al., 2019) have proved their
power on lots of tasks (McCann et al., 2018; Yan
et al., 2021). There has been much work analyz-
ing Seq2Seq models which is always task-specific
and based on automatic or human evaluation. For
example, Huang et al. (2020) analyze the common
models’ performance on summarization.

To our knowledge, little work has been done
to comprehensively evaluate the performance of
Seq2Seq models on data-to-text generation. And
much work is based on automatic metrics such as
ROUGE or BLEU which can be different from
human evaluation as some work (Novikova et al.,
2017a; Reiter, 2018; Sulem et al., 2018) shows.
Therefore it is meaningful to manually evaluate
representative Seq2Seq models on the data-to-text
task.
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Dataset Train Size Domain Target Quality Target Source Content Selection
E2E 50.6K Restaurants Clean Annotator Generated Partially specified

WikiBio 583K Biographies Noisy Wikipedia Not specified
WebNLG 25.3K 15 DBPedia categories Clean Annotator Generated Fully specied

ToTTo 120K Wikipedia (open-domain) Clean Wikipedia (Annotator Revised) Annotator Highlighted

Table 1: Summary of data-to-text datasets (Parikh et al., 2020) used in this study

3 Models and Datasets

We conduct experiments using five representative
Seq2Seq models on four commonly used data-to-
text datasets and evaluate the generated texts ac-
cordingly2. Note that we do not use models that
are designed for specific data sets or data struc-
tures (Moryossef et al., 2019; Rebuffel et al., 2020;
Puduppully and Lapata, 2021), but adopt models
that allow inputs of different formats and struc-
tures, which brings convenience to comparison on
different data sets. Besides, most specific mod-
els for data-to-text generation are actually based
on these typical Seq2Seq models (Ferreira et al.,
2019; Rebuffel et al., 2020), which also proves the
rationality of our selection of these models.

3.1 Models

We choose to explore and compare Transformer,
Pointer Generator, BART and T5’s performance
on data-to-text generation and explore the role of
copy mechanism by comparing Transformer and
Pointer Generator, the benefits brought by the pre-
training technique by comparing Transformer with
T5 and BART, the influence of the different pre-
training methods by comparing BART and T5, the
power of parameter size by comparing T5-base and
T5-small.

Transformer Transformer (Vaswani et al., 2017)
is widely used in natural language processing and
has shown its potential on many tasks. It uses
self-attention and multi-head attention which let a
model draw from the state at any preceding point
along the sequence. The attention layer can access
all previous states and weigh them according to a
learned measure of relevancy, providing relevant
information about far-away tokens. There are also
some experiments with Transformer as the baseline
model (Zhao et al., 2020) for data-to-text genera-
tion. Moreover, many improved models for data-
to-text generation are also based on Transformer
(Wang et al., 2020; Zhu et al., 2019). Therefore, it

2The codes and annotated data are available at https://
github.com/xunjianyin/Seq2SeqOnData2Text

is worth and reasonable to explore the performance
of Transformer on the data-to-text task.

Pointer Generator Pointer Network is first pro-
posed by Vinyals et al. (2015) and See et al. (2017)
introduce Pointer Generator based on it. Pointer
Generator can generate words from the vocabu-
lary through the generator or copy content from
the source through the pointer, which addresses
the problem that Seq2Seq models tend to repro-
duce factual details inaccurately. Copy mecha-
nism is widely used in data-to-text tasks and has
achieved great success (Marcheggiani and Perez-
Beltrachini, 2018; Rebuffel et al., 2020; Pudup-
pully et al., 2019). Parikh et al. (2020) and lots of
other work also use the Pointer Generator as the
baseline model. Therefore, the Pointer Generator
is a representative model for data-to-text genera-
tion. We implement the Pointer Generator based on
Transformer so it can take advantage of the copy
mechanism.

BART BART (Lewis et al., 2019) uses a standard
Seq2Seq Transformer architecture with a bidirec-
tional encoder like BERT (Devlin et al., 2018) and
a left-to-right decoder like GPT (Radford et al.,
2018). The pre-training task involves randomly
shuffling the order of the original sentences and
a novel in-filling scheme, where spans of text are
replaced with a single mask token. With the novel
pre-training method and a large number of parame-
ters, BART achieves state-of-the-art on many tasks
(Lewis et al., 2020; Siriwardhana et al., 2021). Our
results show that BART can perform very well on
data-to-text generation too.

T5 T5 (Raffel et al., 2019) is an encoder-decoder
model pre-trained on a multi-task mixture of un-
supervised and supervised tasks and for which
each task is converted into a text-to-text format
whose basic architecture is Transformer. It achieves
state-of-the-art on multiple tasks, which shows the
power of the large pre-training model and Seq2Seq
paradigm. T5-3b (Kale, 2020) obtains the best
result on ToTTo dataset. T5-large with a two-
step fine-tuning mechanism (Wang et al., 2021)
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achieves state-of-the-art on WebNLG benchmark.
We carry out experiments on T5-small which has
60M parameters and T5-base which has 220M pa-
rameters to explore the power of model size.

3.2 Datasets

We use the datasets commonly used in data-to-text
task in the experiments, including E2E, WebNLG,
WikiBio and ToTTo. They have different forms and
characteristics, which can give a comprehensive
comparison of models. The summary of these data-
to-text datasets is shown in Table 1.

E2E The input of E2E dataset (Novikova et al.,
2017b) is the information about the restaurant, and
the output is its natural language description. It
consists of more than 50K combinations and the
average length of the output text is 8.1 words.

WikiBio WikiBio (Lebret et al., 2016) is a per-
sonal biography dataset containing more than 70K
examples. The input is the infobox from Wikipedia,
and the output is the first sentence of the biography.
The average length of the output text is 26.1 words.

WebNLG The WebNLG challenge (Gardent
et al., 2017) consists of mapping sets of RDF triples
to text. The latest WebNLG dataset contains more
than 40K data-text pairs. The average length of the
output text is 22.3 words.

ToTTo ToTTo (Parikh et al., 2020) is an open-
domain English table-to-text dataset with over
120,000 training examples that proposes a con-
trolled generation task: given a Wikipedia table
and a set of highlighted table cells, produce a one-
sentence description.

4 Evaluation Method

We first evaluate models’ performance using auto-
matic metric BLEU (Papineni et al., 2002), and the
BLEU scores are comparable to the mainstream
research. Then, we use human evaluation similar
to PolyTope (Huang et al., 2020) to further ana-
lyze and evaluate the performance of the models
on different datasets.

BLEU is a precision-based metric for evaluating
the quality of generated text and it is widely used
by work on data-to-text generation.

Multidimensional Quality Metric (MQM) (Mari-
ana, 2014) is a framework for describing and defin-
ing custom translation quality metrics. It defines

flexible issue types and a method to generate qual-
ity scores. Based on MQM, Huang et al. (2020) in-
troduce an error-oriented fine-grained human eval-
uation method PolyTope. It defines five issue types
about accuracy, three issue types about fluency,
syntactic labels and three error severity rules. Note
that we do not use the syntactic labels in PolyTope,
as they are not the focus of our evaluation in this
study. The definitions of our evaluation dimensions
are very similar to Huang et al. (2020), but for the
sake of the integrity of the paper and more specifi-
cally to the task of Data2Text, we still explain them
below.

After annotating every generated sentence with
these error types and severity, we finally calcu-
late an overall score to evaluate the model’s perfor-
mance.

4.1 Issue Type

According to the MQM principle, we define error
types in two aspects: accuracy and fluency. Errors
related to accuracy mean the generated text is not
faithful to the original data or does not reflect the
critical information totally from the original data.
This type consists of five sub-types:

Addition The generated text contains unneces-
sary and irrelevant fragments from the source data.

Omission The key point does not exist in the
output.

Inaccuracy Intrinsic Terms or concepts appear-
ing in the original data are distorted in the output.

Inaccuracy Extrinsic The generated text shows
the content which does not exist in the source data.

Positive-Negative Aspect The generated text is
positive, whereas the source data represents a nega-
tive statement and vice versa.

Fluency aspect evaluates the linguistic quality of
the generated text, which is a primary natural lan-
guage requirement. It consists of three sub-types:

Duplication Unnecessarily repeat a word or
longer part of the text.

Word Form Problems related to the form of
words, including consistency, part of speech, tense
and so on.
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Input Model’s Output
Object: Austin Texas

Property: is Part Of Subject: Texas
Object: Texas

Property: language Subject: English language
Object: Austin Texas

Property: is Part Of Subject: Williamson County Texas
Object: Williamson County Texas

Property: largest City Subject: Round Rock Texas
Object: Williamson County Texas

Property: county Seat Subject: Georgetown Texas

Austin is part of Williamson County Texas
where the English is spoken .

The largest city in Williamson County is Georgetown.

Table 2: Example output with Inaccuracy Intrinsic and Omission errors. The Georgetown is not the largest city
but the county Seat so it is the Inaccuracy Intrinsic error. And the generated text do not mention the county Seat so
there is an Omission error.

Word Order Problems about the order of words
in outputs.

One example output with errors on WebNLG
dataset is shown in Table 2.

4.2 Severity

Severity describes how severe a particular error is.
There are three levels: Minor, Major and Critical.
Each specific error in the sentence will be allocated
a severity. It is decided by the annotator and will
be considered as a weight to score the quality of
the annotated sentence automatically.

Minor Errors that do not affect content availabil-
ity or understandability. For example, we regard
the repetition of function words as an error, but this
error will not affect the understanding of the text,
so we think this error is Minor.

Major Errors that affect content availability or
comprehensibility but do not make content unus-
able. For example, we think additional attributes
will not make the content unsuitable for the purpose
although it may cause the reader to make additional
efforts to understand the intended meaning.

Critical Errors that make content unsuitable for
use thoroughly. Each error type can make the text
completely unusable when it is too severe. For ex-
ample, when the critical elements in the sentence
are missing or too many errors are misleading peo-
ple’s understanding, we think this error is the key.

4.3 Calculation

Given original data and generated text, annotators
are required to find all errors in the sentence and
label them with error types and severity. After
the work is done for all samples, the error score of

every type and an overall system performance score
will be calculated automatically with the below
equations:

EScoret =

∑
e∈Et

αe × Le

wordcount
(1)

Score = (1−
∑
t∈T

EScoret)× 100 (2)

where T is the set of error types and Et is the set
of all error segments of type t. αe is the deduction
ratio which is set 1:3:7 for the three severity levels:
Minor, Major and Critical. Le is the word length of
the error3. wordcount is the total number of words
in samples. We can see the highest system perfor-
mance score can reach 100 if there is no error in the
sentences, and it is the higher the better. Through
this method, we can get Score, an overall eval-
uation of each model, and error scores EScoret
that indicate each error type’s punishment for the
overall score.

4.4 Human Annotation
After training and testing, we hire five annotators
with satisfactory levels in reading from eight can-
didates. They are all highly educated enough to
understand structured data and tables, and their
English level is also very high to understand the
text. Before formal annotation, we conduct detailed
training to make them have a clear understanding of
various errors and the severity of PolyTope frame-
work. Examples used in training do not appear in
the final annotation. In order to ensure objectiv-
ity and impartiality, they know nothing about the
name, architecture, BLEU score of the model and
dataset in the process of annotation.

3Note that we set the length of an Omission error to 1.
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E2E WikiBio WebNLG ToTTo Average
Transformer 76.88 81.31 76.32 45.41 69.98
Pointer-GEN 86.97 82.98 78.76 54.57 75.82

T5-small 86.04 86.28 93.92 85.44 87.92
T5-base 96.36 91.38 94.10 88.59 92.61

BART-base 91.55 86.37 93.43 90.71 90.52
Average 87.56 85.66 87.31 72.94

Table 3: Human evaluation scores of each model on each dataset (higher means better).

E2E WikiBio WebNLG ToTTo
Transformer 56.74 43.39 27.95 33.49
Pointer-GEN 61.57 49.39 27.54 35.28

T5-small 62.88 49.45 55.66 45.35
T5-base 59.96 49.12 59.48 48.91

BART-base 62.66 53.25 52.84 48.22

Table 4: BLEU Scores of each model on every dataset
(higher means better).

During testing, annotators are asked to locate
every error’s position, point out the type of the
error, choose the severity of the error and explain
the reason. We check their answers and score them.
Through the overall performance in the test, we
select the best five annotators and ensure all of
them really understand our evaluation method and
have the ability to do the annotation work.

For each dataset, we select 80 data-text pairs and
input them into each model respectively. There
are four datasets and five models, so we have 1600
texts to annotate. Each text is annotated by two
different annotators respectively and if the differ-
ence of their error scores is too large, the text will
be abandoned and a new text will be selected to
join the evaluation. They are not allowed to com-
municate with each other in the annotation process.
They can choose to abandon the texts that confuse
them, and these texts will be replaced by candidate
texts. Each annotator must label all the five outputs
generated by five models of one input sequence at
a time to keep equality. In general, we strive to
balance the fairness and quality of the evaluation.

5 Result Analysis

We evaluate the five models mentioned above on
four datasets using the above metrics. The overall
human evaluation score and BLEU score of each
model on each dataset are shown in Table 3 and
Table 4, respectively. The detailed error scores of
different error types are shown in Table 5. We can
compare the performance of the models to see the

influence of the pre-training technique, the copy
technique and the mode size. Comparing the results
on different datasets using the same model, we can
discover how the structured data input influences
the performance of the Seq2Seq models. Moreover,
we can also analyze the detailed error scores to
find out the weakness and advantages of specific
models.

5.1 Copy Mechanism

Through comparing the results of Pointer Gener-
ator and Transformer on all datasets, we can see
that the copy mechanism has an noticeable effect
on the improvement of the results. It improves the
generation performance on all the datasets. Par-
ticularly, it reduces the Inaccuracy Intrinsic error
score by about 3 or 4 points on three datasets (E2E,
WebNLG and ToTTo), as shown in Table 5. It is
easy to understand because using copy mechanism,
the model can generate words from the vocabu-
lary through the generator or copy content from
the source through the pointer. Pointer Generator
with copy mechanism reduces almost all types of
errors compared with vanilla Transformer such as
Duplication error. The reason may be that the copy
mechanism can interpolate vocabulary level proba-
bility with copy probability, reducing reliance on
previous outputs.

We can observe that the improvement of Pointer
Generator over Transformer is the largest on ToTTo
dataset. This may be related to ToTTo’s need to
pay more attention to the highlighted part of the
input sequence, which emphasizes controllability.

Nevertheless, it is interesting that Addition error
is increased slightly compared with Transformer.
The likely reason may be that the auto-regressive
decoder tends to copy longer sequences from the
source and it is hard to interrupt the copy action.
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dataset model Addition Duplication Extrinsic Intrinsic Omission Positive-Negative Aspect Word Form Word Order

E2E

Transformer 2.52 0 5.46 7.14 5.97 0 0 2
ptr-gen 2.41 0.33 1.66 3.56 2.45 0 0.92 1.66

T5-small 0.99 0 0 5.18 5.06 1.75 0 0.95
T5-base 0 0 0 1.6 1.11 0 0 0.91

BART-base 0.81 0 0.81 1.53 3.73 0 0 1.53

WikiBio

Transformer 0.38 1.53 4.52 2.73 8.82 0.67 0 0
ptr-gen 1.47 0.86 3.51 2.97 7.70 0.49 0 0

T5-small 0.69 0 1.22 3.35 8.44 0 0 0
T5-base 0 0 1.32 2.17 4.83 0 0.28 0

BART-base 0.15 0 1.15 2.70 9.61 0 0 0

WebNLG

Transformer 1.02 2.84 1.89 10.44 7.03 0 0.44 0
ptr-gen 3.90 2.69 0 6.38 7.27 0 0 0.97

T5-small 0 0.69 0 4.56 0.81 0 0 0
T5-base 0 0 0.34 3.50 1.49 0.54 0 0

BART-base 0 0 0.44 4.45 1.66 0 0 0

ToTTo

Transformer 4.38 2.38 11.03 17.02 19.74 0 0 0
ptr-gen 11.01 1.31 9.11 13.47 7.48 0 3.01 0

T5-small 0 0 0 5.36 9.19 0 0 0
T5-base 0 0 1.86 4.38 4.38 0 0 0.76

BART-base 0 0 1.79 2.41 2.66 0 0 2.41

Table 5: Error score of each error type for each model on 80 data-text pairs of every dataset. The results are scored
based on manual evaluation and retained to two decimal places. Lower means better. Errors may be approximated
to 0 because there are too few errors.
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Figure 1: Comparison results of pre-trained models
with different numbers of parameters (higher means
better).

5.2 Pre-training

In Table 3, we can see almost all the pre-training
models outperform the non-pre-training models by
a large margin among all the datasets except E2E
dataset which may be too simple to evaluate the
ability of models. The reason why the pre-training
models can achieve better scores may be that they
have learned helpful knowledge from lots of raw
texts. And the pre-training method also helps the
models become more powerful. BART and T5 are
both pre-trained on tasks where spans of text are
replaced by masked tokens. The models must learn
to reconstruct the original document. According
to the average scores of all the datasets, we can
say that T5-base may be the best Seq2Seq model
among our experimented models and BART-base is

not far behind. And the models achieve the highest
score on different datasets: BART-base is the best
on ToTTo and T5-base is the best on the other
datasets relatively.

5.3 Model Size

It is evident that the parameter quantity is the criti-
cal factor to the pre-trained model’s performance.
BART-base has 139M parameters, T5-base has
220M parameters and T5-small has 60M param-
eters only. With the same architecture and same
pre-training method, T5-base totally outperforms
T5-small. Due to pre-training methods and other
factors, T5-base and BART-base achieve the best
results on different datasets. But on average, T5-
base is the best. The relation between model size
and the performance on different datasets is shown
in Figure 1. The only exception mentioned above is
ToTTo, where BART-base achieves the best results.
One of the likely reasons is the pre-training strat-
egy of BART which helps it have better denoising
and reconstruction ability. Another reason will be
mentioned in section 5.4.

5.4 Dataset

We can compare the difficulty level of the datasets
by the average and the highest scores of all mod-
els. In Table 3, the ToTTo dataset has the lowest
average score of 72.9. And the highest score on it
achieved by BART-base is 90.7 which is also the
lowest among all the datasets. ToTTo is made as a
controlled generation task that given a Wikipedia
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Addition Duplication Extrinsic Intrinsic
Average Scores 1.48 0.63 2.30 5.25

Omission Positive-Negative Aspect Word Form Word Order
Average Scores 5.97 0.17 0.23 0.56

Table 6: Average error score of each error type across all models and datasets (lower means better).

table and a set of highlighted table cells, the model
needs produce a one-sentence description of the
highlighted part. It is much more complicated than
other datasets describing all the given structured
data. Maybe it is a bit confusing for models to
find out what actually should be noticed, although
the scores of the pre-training models are still very
high. And the gap between pre-training models and
non-pre-training models is the biggest on ToTTo
among all datasets which indicates that the simple
non-pre-training models can not handle the com-
plex controlled generation very well. Of course
the quantity of the data-text pairs and the length
of the input and output sequence also influence the
models’ performance.

5.5 Error Types

Table 6 shows the average error scores of each error
type across all models and datasets. From Table
5 and Table 6, we can find that different types of
errors have different effects on the performance of
the models. We can find that Omission Error is the
most frequent and severe error and its error score is
almost up to 6. The likely reason is that the input
sequence is too long, so it is hard to encode all its
meaning. So the models tend to omit some infor-
mation from the input. And Inaccuracy Intrinsic
Error and Inaccuracy Extrinsic Error also can not
be ignored which are 5.25 and 2.31, respectively.
From the perspective of the pre-training model, it
may be because they learn too much from the raw
texts on pre-training stage and the knowledge lets
them tend to generate inaccurate texts.

It is excited that all the models perform very
well in terms of fluency. The errors of Duplication,
Word Form and Word Order are very sporadic. This
shows the Seq2Seq models can generate fluent text
with the structured input.

6 BLEU or Human Evaluation?

We can see that the overall trend of the BLEU
score is consistent with human evaluation, which
can basically reflect the overall performance of the
model. And many conclusions we made above can

also be proved by the BLEU score. For example,
the biggest pre-training model T5-base achieves
the highest BLEU score too among the selected
models, Pointer Generator with copy mechanism
still performs better than Transformer and ToTTo
is still the most difficult dataset.

Although our primary goal is not to promote a
human evaluation metric, our dataset with human
annotations gives us a testbed to analyze the cor-
relations and differences between automatic and
human metrics. There have been a lot of discus-
sions in the community about the unreliability of
BLEU metric. Sulem et al. (2018) recommend not
using BLEU on text simplification. They found that
BLEU scores can neither reflect grammar nor the
meaning of preservation. Novikova et al. (2017a)
show that BLEU and some other commonly used
indicators are not well consistent with human judg-
ment when evaluating NLG tasks.

We compute the Pearson correlation coefficients
between BLEU score and manual evaluation in
terms of Accuracy and Fluency. We categorize the
error types into accuracy and fluency aspects ac-
cording to the definition in Section 4.1, and use
Equation 2 to calculate Accuracy score and Flu-
ency score respectively. The Pearson correlation
coefficient between BLEU score and Accuracy is
0.61 and in Fluency aspect is 0.08. There is a huge
gap between them and we can see that BLEU can
evaluate Accuracy to a certain extent and it is poor
at Fluency. Moreover, the BLEU metric is too
coarse-grained to reveal the model’s specific prob-
lems, which enlighten us on how to improve the
model. Our result is consistent with views of other
work.

7 Conclusion

We empirically compared five representative
Seq2Seq models on the data-to-text task using a
fine-grained set of human evaluation metrics based
on MQM. We aim to make a systematic and com-
prehensive evaluation and analysis on end-to-end
Seq2Seq models for the data-to-text task. We ana-
lyze the effect of milestone techniques such as copy
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and pre-training, the influence of the dataset and
model size and the models’ performance in terms
of different types of errors. Our evaluation shows
that pre-trained models can generate quite good
texts. But there is still much room for improvement
in this task. Furthermore, the improvement of spe-
cific errors such as Omission Error and Inaccuracy
Intrinsic Error is also worth exploring in the future.
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