Meta-learning via Language Model In-context Tuning
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Abstract

The goal of meta-learning is to learn to adapt
to a new task with only a few labeled examples.
Inspired by the recent progress in large lan-
guage models, we propose in-context tuning
(ICT), which recasts task adaptation and pre-
diction as a simple sequence prediction prob-
lem: to form the input sequence, we concate-
nate the task instruction, labeled in-context ex-
amples, and the target input to predict; to meta-
train the model to learn from in-context ex-
amples, we fine-tune a pre-trained language
model (LM) to predict the target label given
the input sequence on a collection of tasks.

We benchmark our method on two collections
of text classification tasks: LAMA and Bina-
ryClfs. Compared to MAML which adapts the
model through gradient descent, our method
leverages the inductive bias of pre-trained
LMs to perform pattern matching, and out-
performs MAML by an absolute 6% average
AUC-ROC score on BinaryClfs, gaining more
advantage with increasing model size. Com-
pared to non-fine-tuned in-context learning
(i.e. prompting a raw LM), in-context tuning
meta-trains the model to learn from in-context
examples. On BinaryClfs, ICT improves the
average AUC-ROC score by an absolute 10%,
and reduces the variance due to example order-
ing by 6x and example choices by 2x.

1 Introduction

Few-shot learning (FSL) refers to a system’s ability
to quickly adapt to new tasks when very few labeled
examples are available for training. FSL is a key
feature of human learning (Lake et al., 2016), but
current machine learning systems often rely on
large amounts of labeled training data (Silver et al.,
2016; He et al., 2016; Adiwardana et al., 2020).
Recently, prompting large pre-trained language
models (LMs) for FSL has achieved remarkable
progress (Brown et al., 2020; Schick and Schiitze,
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2021a). LM prompting with in-context learning
reduces the “task learning and predict” process to
a simple sequence prediction problem. To perform
a new task, Brown et al. (2020) prompt a raw LM
(i.e., a pre-trained LM not fine-tuned on any labeled
data) with the concatenation of the task instruction,
some input-output examples, and the target input
to be predicted on; then they extract the answer
from the LM’s continuation of the concatenated
sequence (Figure 1 left). For example, to coax the
model into performing sentiment classification on
the target input “This movie is a waste of time”, we
prompt the LM with the sequence “I like the movie!
Positive review? Yes. Horrible Movie! Positive
review? No. This movie is a waste of time. Positive
review? ___ 7, and predict “positive” if the next
word is more likely to be “Yes” rather than “No”.

However, raw LMs are not optimized for in-
context FSL during pre-training, and exhibit unde-
sirable behavior when used for FSL. For example,
Zhao et al. (2021) observed that LMs suffer from
the “recency bias”, which assigns higher probabil-
ity to labels that appear closer to the target input.
As a result, the accuracy becomes extremely sen-
sitive to the ordering of the in-context examples.
Previous work has also shown that prompting raw
LMs is often oversensitive to example choices and
instruction wording (Schick and Schiitze, 2021a;
Jiang et al., 2020; Gao et al., 2021; Liu et al., 2021).

We address this weakness through a meta-
learning lens and directly fine-tune the LM for
FSL. Under the meta-learning framework, we meta-
train a model to learn to adapt to new tasks from a
few examples on a wide range of tasks, so that it
learns to leverage the few-shot examples to adapt
to new tasks at test time. Since LM prompting
already reduces the “task learning and predict” pro-
cess to a simple sequence prediction problem, we
meta-train a LM by directly fine-tuning it to op-
timize for this sequence prediction problem on a
wide range of tasks (Figure 1 left). Since we fine-
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In-Context Tuning

Instruction: “Is the comment positive?”
x1: “Good movie!” y1: “yes”
x2: “Bad movie!” y2: “no”
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Figure 1: MAML (right): MAML aims to learn a task-agnostic model initialization 6 that can adapt fast to new
tasks. To adapt the model initialization to a new task T, a task-specific model ¢’ initialized with 6 is updated
with gradient descent using task examples from T. Meta-training of MAML involves bi-level optimization, where
the inner optimization learns a task-specific model 6’ using task examples from T, and the outer optimization
learns a meta-initialization # to minimize few-shot prediction loss of 6’ on task 7. In-context Tuning (ours)
(left): our approach adapts to new tasks via in-context learning, and learns a single model 6 shared across all tasks
that is directly optimized with the FSL objective (Section 2.2). Because model parameters are frozen during task
adaptation, our approach does not involve bi-level optimization during meta-training.

tune our model to learn in-context learning, we
call our approach in-context tuning (ICT). Unlike
optimization-based meta learning approaches such
as MAML (Finn et al., 2017), in-context tuning
adapts to new tasks through in-context learning
where model parameters are frozen, thus it avoids
the challenging nested optimization problem in
MAML (Figure 1).

We benchmark our algorithm on LAMA (Petroni
et al., 2019), a dataset for testing models’ factual
knowledge, and BinaryClfs (Zhong et al., 2021),
a wide range of binary classification tasks each
annotated with a few language descriptions of the
task. Compared to prompting raw LMs, in-context
tuning improves performance by 7.6 Precision@ 1
points on LAMA and 10.6% AUC-ROC score on
BinaryClfs. In addition, in-context tuning mitigates
the over-sensitivity of raw LM prompting, signifi-
cantly reducing the variance of the performance
with respect to example ordering (by 68% on
LAMA and 83% on BinaryClfs), example choices
(by 56% on LAMA and 40% on BinaryClfs), and
instruction wording (by 19% on LAMA).

Our approach also out-performs MAML, which
adapts the model by gradient descent on a few ex-
amples and learns an initialization that can adapt
to a new task through a few gradient steps (Finn
et al., 2017; Nichol et al., 2018). Since our ap-
proach better takes advantage of the inductive bias
of LMs to extrapolate from in-context examples,
our approach out-performs first-order MAML by
2.8 points on LAMA and 5.1 points on BinaryClfs,

with increasing advantage as models become larger.
Given the empirical effectiveness of in-context
tuning (Section 4.1), we conjecture that the few-
shot learning potential of large LMs (e.g., GPT-3)
may be broadly underestimated if prompted with-
out any direct optimization for FSL. We also con-
jecture that in-context tuning can mitigate vari-
ous undesirable properties of LM prompting, such
as over-sensitivity to example ordering, example
choices, and instruction wording (Section 4.2).

2 Approach

We introduce the problem setup (Section 2.1), de-
scribe our in-context tuning algorithm (Section 2.2),
compare our algorithm to gradient-based adapta-
tion methods (Section 2.3) and other baselines (Sec-
tion 2.4).

2.1 Problem Setup

We focus on the few-shot classification problem,
where the model first learns from a set of training
tasks T' € Tinin, €ach associated with its natural
language instructions I7 and a large amount of
task input-output examples Dy = {(2%, y4)} (see
Figure 1 left for examples). At test time, we ask the
model to learn a new task 7' given its instruction
and only a few (K) labeled examples, i.e. S C
Dj,|S7| = K. We denote the task input to be
predicted at test time as J:t;rget.

Note that “task input” is different from “model
input”’. For example, on the left panel of Figure 1,
the task input is “Good movie!” while the model
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input can be a concatenation of the instruction, task
inputs and task outputs.

2.2 In-context Tuning Algorithm

In-context tuning directly optimizes pre-trained
LMs with the few-shot in-context learning objec-
tive (Brown et al., 2020): task-agnostic LMs are
meta-trained to perform few-shot in-context learn-
ing on a wide variety of training tasks. Similar to
in-context learning, LMs trained with in-context
tuning adapt to a new task by using few-shot train-
ing examples as the input prefix.

Formally, during meta-training, we build the
model input by concatenating the task instruction
I, task input-output pairs ST C D7, and the task
input x?fgetl to be classified. We then fine-tune a
pre-trained LM to predict y?rget and hope that the
model learns to use the in-context examples St.
Here is the few-shot in-context tuning objective L:

Lr(0):= >

(wf y7)eDr

[~ log po (v |5, St, Ir))]

(1)
LO):= > Lr(9) @)

TETtrain

To adapt to a new task 7T at test time, we di-
rectly concatenate the few-shot examples S with
the instruction /7 and the target task input x;irgm
to be classified to form the model input, and ask
the model to predict its corresponding output. No

gradient update is performed during adaptation.

2.3 Gradient-based Task Adaptation

We compare in-context tuning with two classical
few-shot learning methods: multi-task fine-tuning
(instruction tuning + fine-tuning) and MAML. Both
methods adapt the model parameters to new tasks
by gradient descent on few-shot examples.

Instruction Tuning + Fine-tuning (InsT + FT)
We extend the recent work on zero-shot instruc-
tion tuning (Wei et al., 2021) to the FSL setting
as a multi-task fine-tuning baseline. During meta-
training, the model is optimized to predict the task
output given the task instruction and the task in-
put on a wide range of tasks (Zhong et al., 2021).
Formally, we train the model parameter 6 to pre-
dict y- given I o x%, where 6 is shared across all
tasks and o represents the concatenation operation.

"'We sometimes abbreviate “target” as “tgt” to save space.

During the few-shot adaptation phase, the model is
presented with a new task 7', its natural language
instruction I and a small set of (K) task input-
output examples Sy = {(27%, y)[i € [K]}. We
then fine-tune the model to predict the task output
y%- from the new task given I o 2= and update ¢
with a few gradient steps to get 67. Finally, we use
the updated model 6 to predict the output from

t: t . .
A8 and the instruction IT~ under

the task input T

the test task 7.

MAML The few-shot adaptation stage of
MAML is the same as instruction tuning + fine-
tuning, where we update the model parameters (ini-
tialized with #) by gradient descent on K examples
ST C Dj. However, during meta-training, MAML
aims to learn a task-agnostic model initialization
0 such that, O, which is to be found by initializ-
ing with # and performing gradient descent on S,
would lead to good performance (Finn et al., 2017).

Therefore, MAML involves two levels of opti-
mization, an inner optimization to learn 67 given 6
and St C Dy, and an outer optimization to learn
0 given O7. Due to the bi-level structure in this op-
timization problem, MAML has been found to be
empirically unstable, sensitive to hyperparameters,
and computationally expensive (Finn et al., 2017;
Nikolaev et al., 2020). Even worse, few-shot task
adaptation is known to be highly sensitive to opti-
mization hyperparameters (Antoniou et al., 2019),
while a large labeled validation set for hyperpa-
rameter tuning may not be available under a FSL
setting (Perez et al., 2021).

In comparison, in-context tuning simplifies the
two-stage process of (1) few-shot task adaptation
and (2) task-specific prediction as one sequence
prediction problem, where task-specific examples
are concatenated to the model input to provide in-
formation about the task. Hence, in-context tun-
ing removes the bi-level optimization during meta-
training, which can be empirically unstable and
expensive. Additionally, since model weights are
frozen during task adaptation, it is not sensitive to
adaptation hyperparameters.

2.4 Other Baselines

Raw In-context Learning (Raw IC-L) We di-
rectly evaluate a raw LM on a new task using the
same evaluation set-up for in-context tuning, with-
out fine-tuning the LM on any labeled data.
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Method Adaptation Meta-train

In-context Tuning In-context  Few-shot
MAML Gradient Few-shot
InsT None Zero-shot
InsT + FT Gradient  Zero-shot
Raw IC-L In-context LM

Table 1: We categorize our approach and the baselines
according to 1) how the few-shot examples (if any) are
used for adaptation, and 2) the meta-training objective.
Ins-T refers to instruction tuning.

Instruction Tuning (InsT) The model learns to
predict the target output only based on the instruc-
tion and the target input. Only the instruction
is available during the adaptation phase, and this
setup is also known as zero-shot learning.

We categorize all approaches in our paper based
on their meta-training objective and how they use
task-specific examples in Table 1. In-context tuning
is the only method that directly optimizes the FSL
objective without gradient-based adaptation.

3 Experimental Setup

3.1 Datasets and Metrics

We experiment with two meta-datasets that contain
a wide range of tasks, LAMA and BinaryClfs. Each
task is associated with several different natural lan-
guage descriptions, and we call them instructions
for convenience, even though some of them are
realized as questions.

LAMA LAnguage Model Analysis (Petroni
et al., 2019) is a dataset that tests the factual and
commonsense knowledge learned by LMs. In our
experiments, we use the TREx-UHN portion of
LAMA (Poerner et al., 2020), which consists of
(subject, relation, object) triples from Wikidata.
LAMA is an entity prediction task, where a model
is asked to predict the object entity given the sub-
ject entity and the relation. In our experiments, we
treat one relation as a task as in Perez et al. (2021).

Initial experiments on LAMA showed that LMs
take significant advantage of “majority label bias”
(Zhao et al., 2021), where they assign higher prob-
ability to object entities that have appeared in the
in-context examples, thus inflating the accuracy. To
reflect the improvement due to few-shot learning
rather than this simple heuristic to copy answers,
for all tasks we prune the LAMA dataset so that all
object entities appear less than 2.5% of times. Our

final filtered LAMA dataset consists of 29 relations
(tasks) and 12k (subject, relation, object) examples.

We use task instructions from two datasets:
LAMA and LPAQA (Jiang et al., 2020). LAMA
contains one task instruction for each task, and the
auxiliary LPAQA dataset contains on average 10
additional instructions for each LAMA task.

We use the same evaluation protocol as in
Petroni et al. (2019): 1) the object entity is pre-
dicted from a pre-defined vocabulary set of 21k
words (each LAMA task is 21k-way classifica-
tion); 2) we compute mean precision at one (P@1)
for each task, and report the average across tasks.
Because LAMA does not have an official train-
validation-test split, we use 8-fold cross-validation
in our experiments. We randomly partition the
29 tasks into 8 groups of similar sizes. For each
cross-validation split, we use six groups for train-
ing, one group for validation, and one group for
testing. The test sets of the eight folds are disjoint
and their union is the set of all tasks.

BinaryClfs This dataset contains a wide range
of binary classification tasks, and each task can be
described by 1-4 “yes/no" questions, which we con-
catenate to the input context as instructions. There
are in total 204 different tasks, and 73 of them are
used for testing, which include sentiment classi-
fication, topic classification, definition detection,
stance classification, etc. We use the same eval-
uation protocol as in Zhong et al. (2021): 1) we
group the tasks by similarity and do not allow train-
ing tasks to be similar to testing tasks; 2) we treat
“Yes” answer as the positive class and calculate the
AUC-ROC score for each instruction of each task.
To fit model inputs (concatenation of in-context
examples and task input to classify) within the max-
imum context length (1024) of our LMs, we leave
out five evaluation tasks where the maximum task
input length exceeds 230 BPE tokens. We also
leave out the spam classification task due to its
small test set. BinaryClfs does not come with an
official validation set. To perform hyperparameter
tuning, for each testing group, we randomly sample
another testing group as its validation group.

3.2 Implementation Details

Architecture We use BERT models for LAMA
(BERT-Base [110M parameters], BERT-Large
[340M] and DeBERTa-XLarge-V2 [900M]) and
GPT2 models for BinaryClfs (GPT2-Medium
[345M] and GPT2-Large [774M]). We use the Hug-

722



LAMA BinaryClfs
BERT-Base BERT-Large DeBERTa-xlarge GPT2-M  GPT2-L
0-S 1-S 2SS 5S 0S 1S 5 0S 1S 2-S 58S 0SS 5S 0SS 5-S

Raw IC-L 103 85 108 14.1 127 121 154 18.6 11.2 12.6 206 23.7 505 57.8 51.0 583
InsT + FT /175 186 200 / 21.6 226 239 / 247 256 270 / 670 / 694
ICT 146 163 17.6 19.6 18.0 21.6 234 243 219 26.0 27.5 288 629 674 66.3 69.8
RawIC-Lw/oIns 15 49 87 123 14 35 125 27 130 195 226 / / / /
ICT w/o Ins 7.1 146 17.0 182 93 194 199 229 106 235 260 276 / / / /

Table 2: Few-shot learning accuracy of our in-context tuning approach (ICT) compared to in-context learning
with raw LMs (Raw IC-L) and instruction tuning + fine-tuning (InsT + FT). K-S: K-shot learning. GPT2-M:
GPT2-Medium. GPT2-L: GPT2-Large. Task instructions are used except the last two rows labeled with “w/o Ins”.
By definition, InsT + FT is the same as ICT for 0-S. We only experiment with the no-instruction setting on the
LAMA dataset. Since we modify the LAMA dataset and BinaryClfs dataset (Section 3.1), the numbers reported

in our work are not directly comparable to other work.

LAMA BinaryClfs
BB BL GPTI2-M GPT2-L
MAML 169 214 63.3 63.9
ICT 19.6 243 67.4 69.8

Table 3: In-context tuning consistently out-performs
MAML on both datasets and all model sizes under
the 5-shot setting. BB: BERT-Base. BL: BERT-Large.
GPT2-M: GPT2-Medium. GPT2-L: GPT2-Large.

gingface implementation (Wolf et al., 2020).

Hyperparameters We select hyperparameters
based on few-shot classification accuracy on vali-
dation tasks. Our validation tasks and testing tasks
are disjoint, so hyperparameter tuning on validation
tasks does not use extra labeled examples on the
testing tasks (Perez et al., 2021). See Appendix A
for the hyperparameters we tuned.

Sampling Different instructions and few-shot ex-
ample choices can lead to different predictions
(Section 2.2). At training time, we expose the
model to diverse task instructions and few-shot
choices by randomly sampling task instructions
and few-shot examples for each target example.

At test time, we report the average accuracy
across task instructions and few-shot choices.
Since computing the average across all few-shot
choices is intractable (there are combinatorically
many distinct few-shot choices), we thus calculate
the average accuracy of multiple random samplings
of few-shot choices as approximation.

4 Results

In-context tuning out-performs MAML and vari-
ous baselines on the two text classification meta-
datasets (Section 4.1). It also significantly reduces
model sensitivity to instruction wording, example
choices, and example ordering compared to prompt-
ing raw LMs (Section 4.2).

4.1 Few-shot Learning Performance

In-context tuning improves in-context learning
accuracy over raw LMs. We compare ICT with
Raw IC-L in Table 2. In-context tuning consistently
out-performs raw LM prompting by 7.6 points on
LAMA and 10.6 points on BinaryClfs (averaged
across model size and number of few-shots). As ex-
pected, directly optimizing the few-shot in-context
learning objective (Section 2.2) improves the few-
shot in-context learning accuracy.

Few-shot examples lead to more effective task
adaptation. We compare few-shot in-context
tuning with instruction tuning (equivalent to O-
shot ICT) in Table 2. Few-shot in-context tun-
ing consistently out-performs instruction tuning
on both LAMA and BinaryClfs, with increasing
performance gains as number of shots increases.
Specifically, we observe that 5-shot in-context tun-
ing out-performs instruction tuning by 6.1 points
on LAMA and 4.0 points on BinaryClfs. Results
show that demonstration examples besides task in-
structions facilitate more effective task adaptation.

In-context tuning better leverages the induc-
tive bias for pattern matching. By comparing
MAML (the first row of Table 3) to instruction
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tuning (equivalent to O-shot ICT) of Table 2, we
see that MAML out-performs instruction tuning
in most evaluation settings, which indicates that
MAML is indeed able to take advantage of the
few-shot task examples for task adaptation. How-
ever, Table 3 shows that our approach of 5-shot
in-context tuning out-performs 5-shot MAML con-
sistently on both datasets with an accuracy gain
of 2.8 points on LAMA and 5.1 points on Bina-
ryClfs (averaged across model size). We argue that
in-context tuning out-performs MAML because
in-context tuning better leverages the existing in-
ductive bias of pre-trained LMs to perform pattern
matching with in-context examples.

We also compare in-context tuning to the
pipeline of instruction tuning + task-specific fine-
tuning (Table 2). Surprisingly, fine-tuning an
instruction-tuned model on as few as one task-
specific example significantly improves task accu-
racy, without over-fitting to the few labeled exam-
ples. We observe that instruction tuning + 1-shot
fine-tuning out-performs instruction tuning (equiv-
alent to 0-shot ICT) by 3.1 points on LAMA (Ta-
ble 2). Our in-context tuning approach performs
comparable or better than instruction tuning + fine-
tuning, with increasing accuracy gains as models
get bigger (Table 2). For DeBERTa-XLarge-v2
(the largest models we use in this work), in-context
tuning out-performs InsT + FT across all numbers
of shots, achieving an accuracy gain of 1.7 points
on LAMA (averaged across all numbers of shots).
We conjecture that in-context tuning will be in-
creasingly effective for bigger models that have a
stronger inductive bias of pattern matching.

In-context tuning reduces the need of task in-
structions. As coming up with good task instruc-
tions can be hard (Schick and Schiitze, 2021a;
Jiang et al., 2020), we further investigate the ef-
fectiveness of in-context tuning without task in-
structions (Table 2). In-context tuning is effective
in the no-instruction setting as well, consistently
out-performing raw in-context learning with no in-
structions by an average margin of 9.5 points on
LAMA. Comparing raw in-context learning with
(Raw IC-L) and without instructions (Raw IC-L
w/o Ins) (Table 2), we observe that task instruc-
tions yield the most significant performance gains
when model size is relatively small (+2.5 points on
BERT-Base, +7.7 points on BERT-Large, only +0.6
points on DeBERTa-xlarge). We conjecture that
smaller models may be weaker at inferring patterns

LAMA BinaryClfs
BB BL GPT2-M GPT2-L
Raw IC-L 1.82 2.14 9.26 8.84
ICT 0.66 0.61 1.41 1.58

Table 4: In-context tuning is significantly less sensitive
to example ordering compared to in-context learning
with raw LMs.

from in-context examples alone compared to larger
models, which is why instructions yield larger per-
formance gains on smaller models. On BERT-Base
and BERT-Large models where task instructions
are most helpful, in-context tuning reduces the im-
provement gain from task instructions from 5.1
points (raw in-context learning) to 1.8 points (aver-
aged across BERT-Base and BERT-Large), which
indicates that in-context tuning reduces the need
of task instructions compared to raw in-context
learning. However, we note that instructions still
yield performance improvement even if in-context
tuning is applied.

4.2 Sensitivity Analysis

We analyze the sensitivity of in-context tuning ac-
curacy with respect to example ordering, example
choices, and instruction wording, and compare it
with prompting raw LMs. Let I denote a random se-
lection of task instruction, S a random unordered
set of few-shot training examples with size K, o a
random permutation of K examples. The accuracy
w is a function of these three random variables, i.e.
w: (Sr,0,1)— [0, 1]. We can decompose the to-
tal variance of y into its variance w.r.t. each of the
three random variables, since they are independent
(order variance is independent to choice variance
because St is unordered):

VarSTﬁJ[U] = Vary [EST,U[/”IH
O

instruction wording variance
+ Er[Varg, [Eq |1, S7]]]

example choice variance
+ Erg,[Varg[ul|1, S7]]

example order variance

We analyze each type of variance below.

In-context tuning is significantly less sensitive
to example ordering. We compare the variance
with respect to example ordering for in-context
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LAMA BinaryClfs
BB BL GPT2-M GPT2-L
Raw IC-L  3.74 6.30 18.52 20.33
ICT 1.78 2.57 11.46 11.62

Table 5: In-context tuning is significantly less sensi-
tive to example choices compared to in-context learn-
ing with raw LMs.

BERT-Base BERT-Large
RawIC-L ICT RawlIC-L ICT
1-shot 35.38 26.31 34.03 28.78
2-shot 33.79 25.40 17.71 19.35
5-shot 24.90 15.64 6.36 5.16

Table 6: In-context tuning is much less sensitive to
task instruction wording compared to in-context learn-
ing with raw LMs.

tuning and in-context prompting with raw LMs in
Table 4. Results show that in-context tuning is sig-
nificantly less sensitive to ordering of in-context ex-
amples compared to in-context prompting with raw
LMs, reducing the sensitivity by 68% on LAMA
and 83% on BinaryClfs.

In-context tuning is significantly less sensitive
to example choices. We compare the variance
with respect to example choices for in-context tun-
ing and in-context prompting with raw LMs in
Table 5. Results show that in-context tuning is sig-
nificantly less sensitive to selection of in-context
examples compared to in-context prompting with
raw LMs across both datasets and all model sizes,
reducing the sensitivity by 56% on LAMA and 40%
on BinaryClfs (averaged across model sizes). We
conjecture that in-context tuning is significantly
less sensitive to example ordering and selection
because the model is exposed to various example
orderings and selections during in-context tuning.

In-context tuning is less sensitive to instruction
wording. We report the variance with respect to
instruction wording for in-context tuning and in-
context prompting with raw LMs in Table 6. Re-
sults show that in-context tuning is less sensitive to
instruction wording compared to in-context prompt-
ing with raw LMs in five out of six evaluation set-
tings, reducing the variance by 19% on LAMA
(averaged across model size and number of shots).

We also observe that in-context tuning is espe-
cially effective on task instructions with low accu-

racy under raw in-context learning. For each task,
we compute the Pearson correlation between the
raw in-context learning accuracy and the accuracy
gain from in-context tuning (over raw in-context
learning) on all instructions. On the LAMA dataset,
we see a strong negative correlation of -0.563 (aver-
aged across all tasks), with p-value < 0.05 on 63%
of the tasks. We conjecture that in-context tuning is
much less sensitive to instruction wording because
the model is exposed to a wide variety of different
task instructions during in-context tuning.

In-context examples are complementary to in-
structions. We observe that in-context tuning is
especially effective on task instructions with low
accuracy under instruction tuning. For each task,
we compute the Pearson correlation between the
instruction tuning accuracy and the accuracy gain
from in-context tuning (over instruction tuning) on
all instructions. On the LAMA dataset, we see
a strong negative correlation of -0.910 (averaged
across all tasks), with p-value < 0.01 on 91% of
the tasks. We conjecture that in-context tuning is
much less sensitive to instruction wording because
few-shot in-context examples provide additional
task information besides the task instructions.

5 Related Work

LM Prompting for FSL.  Pre-trained LMs can be
used to perform various FSL tasks when prompted
with a natural language task instruction and several
task examples (Radford et al., 2019; Brown et al.,
2020; Schick and Schiitze, 2021b; Li and Liang,
2021; Lester et al., 2021; Qin and Eisner, 2021).
However, prompting pre-trained LMs directly for
FSL is known to be sensitive to various artifacts,
such as the wording of the task instruction and the
selection and ordering of few-shot training exam-
ples (Schick and Schiitze, 2021a; Jiang et al., 2020;
Zhao et al., 2021; Gao et al., 2021; Liu et al., 2021).
Our work is the first to show that meta-learning
with an explicit FSL objective significantly reduces
the sensitivity of LM prompting with respect to the
in-context examples and instruction wording.

Meta-learning for FSL Meta-learning is a
widely used technique in NLP to improve cross-
domain transfer (Yu et al., 2018; Geng et al., 2019;
Holla et al., 2020; Deng et al., 2020) and cross-
task transfer (Gu et al., 2018; Bansal et al., 2020;
Dou et al., 2019). Existing optimization-based
meta-learning methods mostly perform task adap-
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tation by fine-tuning a task-agnostic model on task-
specific examples using gradient descent (Finn
et al., 2017; Jiang et al., 2019; Nichol et al., 2018).
However, fine-tuning on few-shot task examples is
sensitive to hyperparameters (Antoniou et al., 2019)
and nested optimization during meta-training is of-
ten unstable (Nichol et al., 2018; Antoniou et al.,
2019; Rajeswaran et al., 2019). In contrast, our ap-
proach performs few-shot task adaptation by using
task-specific examples as part of the model input
while keeping the model parameters frozen and
task-agnostic during the adaptation stage.

Multi-task Learning In multi-task learning, a
single model is trained on the union of training sets
of multiple tasks to learn a shared representation
(Liu et al., 2019). The multi-task model is then
fine-tuned on task-specific examples to adapt to
new tasks. Multi-task learning is shown to improve
performance on various downstream tasks, espe-
cially tasks with small training sets (Khashabi et al.,
2020; Ye et al., 2021; Aghajanyan et al., 2021).
Compared to meta-learning, multi-task learning
does not optimize task adaptation directly.

Fine-tuned LMs for Instruction Learning Re-
cent work shows that fine-tuning LMs to learn task
instructions on a wide variety of tasks can further
leverage the inductive bias of LMs to perform in-
struction learning (Zhong et al., 2021; Mishra et al.,
2021; Wei et al., 2021). Our work is partially in-
spired by this line of work, but we work under the
more generic few-shot meta-learning setting, and
show that our approach out-performs both instruc-
tion tuning and existing few-shot meta-learning
methods (e.g., MAML). While previous work fo-
cuses on the accuracy improvement gained from
instruction fine-tuning, our work also looks into
the well-known over-sensitivity issue of FSL and
shows that in-context tuning effectively reduces the
sensitivity of FSL with respect to various factors.

Concurrent to our work, Min et al. (2021) also
explores in-context tuning under more general
Seq2Seq tasks. In comparison, our work com-
pares in-context tuning to a meta-learning baseline
MAML, and shows that in-context tuning mitigates
the well-known oversensitivity issue of LM prompt-
ing. Contrary to our paper, Min et al. (2021) finds
that in-context tuning under-performs InsT + FT.
This might be because they use many more shots
(16-shot), which could give gradient-based meth-
ods more advantage.

6 Future Directions

Scaling Up and Broader Applications Our
work only considers simple binary classification
and knowledge retrieval tasks, at most 5 in-context
examples, and models with fewer than 1 billion
parameters. Nevertheless, it is straightforward to
scale up our framework to a wider and more di-
verse range of general sequence-to-sequence tasks
(Ye et al., 2021), more few-shot examples (which
requires a longer context size (Dai et al., 2019;
Wang et al., 2020)), and larger models (Brown et al.,
2020; Kaplan et al., 2020). It is also straightfor-
ward to apply in-context tuning to a broader range
of scenarios that require adapting to a new setup,
e.g., adapting to a new label in classification tasks
(Xia et al., 2021), an unseen database in semantic
parsing tasks (Suhr et al., 2020; Lee et al., 2021),
or a new language pair in machine translation (Gu
et al., 2018; Aharoni et al., 2019), etc.

Meta-learning for Robustness Our work as-
sumed that the few-shot training examples come
from the same distribution as the test examples, but
this assumption does not necessarily hold in prac-
tice. For example, the test distribution might con-
stitute new input compositions (Lake and Baroni,
2018), rare subgroups (Sagawa et al., 2019), other
types of distribution shifts (Hendrycks and Diet-
terich, 2019), or even adversarial examples (Kang
et al., 2019). More effective meta-learning meth-
ods might learn a more robust learning mechanism
and combat these generalization challenges.

Understanding In-context Learning Many
properties of in-context learning are still unknown.
Is in-context learning more robust to distribution
shift (Lester et al., 2021)? Can we combine
in-context learning and gradient learning to get the
benefit of both worlds (Wortsman et al., 2021)?

7 Conclusion

In this work, we propose meta-learning via in-
context tuning, which recasts the few-shot learn-
ing process of task adaptation and task-specific
prediction as a simple sequence prediction prob-
lem, where few-shot labeled examples are concate-
nated with the target example to form the model
input. In-context tuning out-performs a wide va-
riety of baselines in terms of accuracy, including
raw LM prompting, MAML and instruction tun-
ing. Meanwhile, sensitivity study shows that our
FSL approach of in-context tuning is significantly
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less sensitive to few-shot examples and instruction
wording compared to raw LM prompting.

Given the empirical effectiveness of in-context
tuning, we conjecture that the few-shot learning po-
tential of large LMs (e.g., GPT-3) might be broadly
underestimated, and that in-context tuning can elim-
inate well-known artifacts of few-shot LM prompt-
ing such as over-sensitivity to example ordering,
example selection and instruction wording.
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A Hyperparameters

In this section, we report the hyperparameters we
tuned for our approach and each baseline.

In-Context Tuning (ours) We tune number of
training epochs ([10, 15, 30] for LAMA and [le-7,
3e-7, 1e-6, 3e-6] for BinaryClfs) and learning rate
([1e-7, 3e-7, 1e-6, 3e-6] for LAMA and [3e-6, le-5,
3e-5, 1e-4] for BinaryClfs).

MAML We assume that inner optimization and
outer optimization use the same learning rate. We
tuned number of adapt steps ([1, 2, 4] for both
datasets) and learning rate ([3e-7, le-6, 3e-6, le-5,
3e-5, le-4, 3e-4, 1e-3] for LAMA and [3e-6, le-5,
3e-5, le-4, 3e-4, 1e-3] for BinaryClfs).

Instruction-Tuning + Fine-tuning For instruc-
tion tuning we tuned the same set of hyperparame-
ters as in in-context tuning. The instruction tuning
model with the highest validation performance are
used for downstream task fine-tuning. For task fine-
tuning, we tuned number of training epochs ([5,
10, 15, 30, 40] for LAMA and [5, 10, 15, 30, 40]
for BinaryClfs) and learning rate ([1e-7, 3e-7, 1e-6,
3e-6, le-5, 3e-5] for LAMA and [3e-6, le-5, 3e-5,
le-4, 3e-4, 1e-3] for BinaryClfs).
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