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Abstract

Cross-lingual transfer learning with large mul-
tilingual pre-trained models can be an effective
approach for low-resource languages with no
labeled training data. Existing evaluations of
zero-shot cross-lingual generalisability of large
pre-trained models use datasets with English
training data, and test data in a selection of
target languages. We explore a more exten-
sive transfer learning setup with 65 different
source languages and 105 target languages for
part-of-speech tagging. Through our analysis,
we show that pre-training of both source and
target language, as well as matching language
families, writing systems, word order systems,
and lexical-phonetic distance significantly im-
pact cross-lingual performance. The findings
described in this paper can be used as indica-
tors of which factors are important for effective
zero-shot cross-lingual transfer to zero- and
low-resource languages.

1 Introduction

At present, for a large majority of natural language
processing tasks, the most successful approach is
fine-tuning pre-trained models with task-specific
labelled data. Unfortunately, for many languages,
and especially low-resource languages, such task-
specific labelled data is often not available. A po-
tential solution is cross-lingual fine-tuning of mul-
tilingual pre-trained language models (Conneau
et al., 2020; Devlin et al., 2018), using available
data from some source language to model the phe-
nomenon in a different target language for which
labelled data does not exist.

Cross-lingual generalisability of large pre-
trained language models is often evaluated by fine-
tuning multilingual models on English data and
testing them on unseen languages (Conneau et al.,
2018; Artetxe et al., 2020; Lewis et al., 2020; Hu
et al., 2020). Of course, this approach is influenced
by the availability of English training data for given

tasks, but also then comes with the implicit as-
sumption that English is a representative source
language. This, however, may not be true in prac-
tice. Specifically, depending on the task, aspects of
similarity between source and target language may
be relevant for cross-lingual transfer performance
(de Vries et al., 2021). If similarity between source
and target language impacts performance, cross-
lingual transfer should not be assessed using only a
single predetermined source language, especially
if training sets in multiple languages are available.

Furthermore, target test languages are generally
selected based on data availability for the evaluated
tasks, but availability may not result in a representa-
tive subset of the world’s languages. The XTreme
benchmark collection (Hu et al., 2020), for exam-
ple, attempts to alleviate this problem by including
a varied selection of languages from different lan-
guage families. This collection contains token clas-
sification, text classification, question answering
and retrieval tasks in 40 languages. The language
selection does, however, obfuscate the fact that for
most non-Indo-European languages no data is avail-
able for semantically rich tasks such as question
answering. This imbalance regarding tasks in this
type of collections may consequently inflate the
perceived performance for these languages.

In this work, we aim to shed light on what factors
make a language a good source and/or target lan-
guage for cross-lingual transfer when fine-tuning a
large multilingual model. We evaluate this via part-
of-speech (POS) tagging data, as this is the only
task for which high-quality data is available in a
large number of languages, including low-resource
languages from different language families. Also,
high cross-lingual POS tagging performance may
be seen as a precondition for more semantically
complex tasks, as a base understanding of syntactic
structure in both the source and target language
is necessary for any meaningful natural language
processing task.

7676



Contributions This paper is a case-study of
cross-lingual transfer learning with part-of-speech
tagging. We explore the limits and contributing
factors to successful cross-lingual transfer and part-
of-speech tagging in particular. Among others, we
evaluate the effects of (matching) language fami-
lies, (matching) writing systems, and pre-training
on cross-lingual training. Moreover, we provide in-
sights that can help to estimate performance when
one tries to transfer to a low-resource language with
little or no annotated data. Source code is released
on Github,1 and 65 fine-tuned models are shared
via the Hugging Face Hub.2

2 Approach

We fine-tune a pre-trained model for the task of
part-of-speech tagging using different languages in
training and testing. Every combination of source
and target language yields an accuracy score, with
a large matrix of accuracies as a result. Monolin-
gual, or within-language performance is the accu-
racy where the source and target language are the
same. Overall cross-lingual source or target accu-
racies can be calculated per column or row in the
accuracy matrix, excluding the monolingual accu-
racy. Such accuracies give an overall indication
of (i) how suitable a given language is as source
for cross-lingual POS tagging, and (ii) how easy
or difficult it is to POS-tag a given target language
when monolingual training data is not available.

Predictors Through a mixed-effects regression
analysis, with source and target language (family)
as random-effect factors, we assess which vari-
ables determine a “good” source language. The
variables we consider are whether or not the lan-
guage family is shared between source and target
language, the writing systems (and writing system
types) of both languages and whether or not these
match, the subject-object-verb (SOV) word order
of both languages and whether or not these match,
and whether or not a (source or target) language
was included in pre-training. Additionally, we add
the (lexical-phonetic) LDND measure (Wichmann
et al., 2010) on the basis of the 40-item word lists
from the ASJP database (Wichmann et al., 2010) as
a quantitative similarity measure comparing source
and target language. Finally, we also consider the
size of the training set of the source language as a

1https://github.com/wietsedv/xpos
2https://hf.co/spaces/wietsedv/xpos

predictor. We analyse results both from a quantita-
tive and a qualitative viewpoint.

Task data We use the POS tag data from Univer-
sal Dependencies 2.8 (Zeman et al., 2021). It con-
tains manually annotated data for 114 languages;
among these all have test data and 75 languages
have training data. We exclude three mixed-code
languages, one sign language, three languages with
fewer than 10 test samples and two languages that
do not have any word-level annotations. Moreover,
we exclude training data for five languages that
have fewer than 25 training samples. All other
training datasets consist of at least 125 samples. As
a result, we have 105 languages which can serve
as target languages, of which 65 can also serve as
source languages since they have training data.

Model The XLM-RoBERTa base model (Con-
neau et al., 2020) is used for our experiments.3

XLM-RoBERTa is pre-trained on web crawled data
from 100 languages (with the largest Wikipedia
sizes). For our dataset, 53 of our 65 source lan-
guages and 58 of our 105 target languages were
included in XLM-RoBERTa pre-training.

Data sampling Typical fine-tuning procedures
train for a fixed number of epochs on the training
data. However, there is a substantial amount of
variation in the size of our source language datasets
(127 to 163,106 sentences). In such a situation,
choosing a fixed number of epochs might result in
underfitting for the smaller languages and overfit-
ting for the larger languages. Figure 1 shows that
accuracies start decreasing with more than 10K
samples, so we choose this threshold for further
evaluation. Consequently, the 25 source languages
with more than 10K training samples are randomly
undersampled, whereas the other 40 languages are
oversampled (i.e. multiple epochs). The four lan-
guages with more than 50K training samples (Ger-
man, Czech, Russian and Turkish) achieve highest
overall average accuracy with 1250, 20K, 1250
and 10K samples, respectively, showing that under-
sampling can improve cross-lingual performance.
Within-language performance does keep increasing
with longer training, which indicates that longer
training can cause source language overfitting.

Training procedure All models are trained with
the same hyper-parameter settings. Specifically, the

3Preliminary experiments have shown no performance gain
with the large model variant, so out of practical and environ-
mental considerations, we limit our experiments to this model.
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models are trained for 1,000 batches of 10 samples
with a linearly decreasing learning rate starting at
5e−5. We use 10% dropout between transformer
layers and 10% self-attention dropout. These hy-
perparameters were selected based on preliminary
experiments with the English, Dutch, Armenian,
Marathi and Chinese source languages. Models for
different source languages were trained with the
same random seed.

1
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Figure 1: Accuracy distributions for different sampling
strategies. Median and mean overall POS-tagging ac-
curacy starts decreasing with more than 10K training
samples.

3 Results

Figure 2 illustrates the test accuracies for every
combination of source and target language. The
heat map shows that the model achieves relatively
high performance for cases where the source and
target language is the same (outlined in black).
While for many languages same-language train-
ing is the only way to achieve high performance
(for example Maltese), there are also many target
languages for which high performance is observed
when training on several other languages (for ex-
ample Russian). Indeed, within-language perfor-
mance tends to be high with a mean accuracy of
94.1% (σ = 4.5). However, there is a substantial
amount of variation for cross-lingual accuracies
with an overall mean of 57.4% (σ = 22.4). This
shows that cross-lingual training does not univer-
sally yield good performance.

We evaluate several predictors for inclusion (see
Section 2) by adding them to a linear mixed-effects
model with random intercepts for source language,

Predictor Coef. Std. Err.

(Intercept) 42.2 3.3
Target pre-trained 19.2 2.5
LDND distance −12.7 1.0
Both pre-trained 7.4 7.4
Same family 6.8 6.8
Source pre-trained 5.6 2.0
Same writing system type 3.6 0.4
Same writing system 1.4 0.3
Same SOV word order 1.3 0.2

Table 1: Coefficients and standard errors of predictors
in the final mixed-effects regression model with Ac-
curacy as the dependent variable. All predictors were
significant at the p < 0.01 level. LDND distances were
scaled between 0 (minimum) and 1 (maximum). The
predictors are sorted in order of decreasing importance.

target language, and target language family. No
other random intercepts were found to improve the
model (via model comparison). We ascertained that
the predictors of the final model remained signifi-
cant when the corresponding random slopes were
included. These are not further reported, however.
Fixed-effect predictors were included if they signif-
icantly (p < 0.05) improved the model fit as deter-
mined via (maximum likelihood) model compari-
son. Table 1 shows the predictors included in the
final model. This mixed-effects regression model
yields a conditional R2 of 91.1% and a marginal
R2 of 47.1%. In other words, the included fixed
effects explain 47.1% of variance, whereas an ad-
ditional 44% is captured by the random effects
(i.e. other language-related factors). Regarding the
random-effects, the variance explained by the tar-
get language was more than three times as high
as the variance explained by the source language,
reflecting the fact that the POS accuracy is much
stronger linked to the target language than to the
source language. This is also visible in Figure 2,
where the rows are much more variable than the
columns.

4 Quantitative discussion

4.1 Pre-training

Table 1 shows that the best predictor for accuracy
differences is whether or not the target language is
included in pre-training, with an estimated 19.2%
higher accuracy for target languages that were in-
cluded. Similarly, performance is higher when the
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Figure 2: Universal Dependencies part-of-speech tagging accuracies for every combination of source (column)
and target (row) languages by fine-tuning XLM-RoBERTa base on the source language. Language names printed
in green were included in XLM-RoBERTa pre-training, whereas language names printed in red were not. Group
colours in the dendrograms indicate different language families. The white group consists of unrelated singleton
languages. Dendrograms are based on hierarchical clusters using unweighted average linkage clustering (UPGMA)
with the Euclidean distance metric. Within-language performance is identified by a black outline.
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source language is included in pre-training, but
with a much smaller effect (5.6%) as the target lan-
guage. There is an additional increase of 7.4% in
accuracy if both the source language and target lan-
guage are included in pre-training. Consequently,
inclusion in pre-training, especially the target lan-
guage, is highly important for achieving high cross-
lingual performance. This is unfortunate for many
low-resource languages that are not included in pre-
training, as the benefit from cross-lingual transfer
will be limited. Specific examples of underperform-
ing languages that were not included in pre-training
are discussed in Section 5.1.

4.2 LDND distance
The ASJP-based LDND measure has the strongest
effect on predicted accuracy after target language
inclusion in pre-training with a coefficient of
−12.70 (for the predictor which was scaled be-
tween 0 and 1). Figure 3 shows that low LDND
distances between source and target language
(i.e. when two languages share cognates) are in-
deed associated with high accuracy, whereas high
LDND distances (very dissimilar languages) seem
less informative.
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Figure 3: Relation between LDND lexical-phonetic
distances and accuracy.

This significant effect might be surprising as the
measure is based on (broad) phonetic transcriptions
of single words, but measures of linguistic distance
at different linguistic levels are correlated (Spruit
et al., 2009).

4.3 Language family
Whether source and target languages are part of the
same language family has a considerable effect on
accuracy (see Table 1).4 Therefore, when choosing

4Preliminary experiments have shown that splitting the
large Indo-European language family into the major branches
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Figure 4: Average accuracies per source and target lan-
guage family combination based on target languages
that were included in pre-training. Numbers between
parentheses indicate the number of languages in each
family. High performance can be observed within lan-
guage families (black outlines). Dendrograms are based
on hierarchical clusters using unweighted average link-
age clustering (UPGMA) with the Euclidean distance
metric.

a source language, the best option would be a lan-
guage from the same family. Figure 4 shows the
average accuracies per language family combina-
tion. This figure is solely based on target languages
that were included in pre-training, since absence
from pre-training has a large negative effect on per-
formance as previously discussed (see Section 4.1).

The Japanese and Sino-Tibetan (Chinese, Classi-
cal Chinese and Cantonese) target languages only
reach reasonable accuracies with Japanese, Sino-
Tibetan or Korean source languages. These target
languages reach a lower than 50% macro-averaged
accuracy across language families. This could be
a reflection of the type of writing system in those
languages (see Section 4.4 for a dedicated discus-
sion on this), but this is not certain. Tai-Kadai
(Thai), Korean, and Austro-Asiatic (Vietnamese)
languages also reach relatively low cross-family
macro-average accuracies (up to 60%), whereas
the remaining target language families generally
reach a higher performance.

In Section 3, we found that accuracy is higher
if the source and target language are the same, but
transfer can work between different families. Fig-

does not contribute to the explainability of the model.
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ure 4 shows that some family combinations might
not be suitable for transfer, but since the lower-
performing families contain small numbers of lan-
guages, it is difficult to reach definitive conclusions.

4.4 Writing systems
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Figure 5: Average accuracies per source and target writ-
ing system combination based on target languages that
were included in pre-training. Numbers between paren-
theses indicate the number of languages that use each
writing system. Dendrograms are based on hierarchical
clusters using unweighted average linkage clustering
(UPGMA) with the Euclidean distance metric. Den-
drogram colours represent writing system types (blue:
alphabetic, orange: logosyllabic, red: abiguda, green:
abjad).

Regarding writing systems, we distinguish writ-
ing system types (i.e. alphabetic, logosyllabic, ab-
jad, and abiguda5) from the more fine-grained
writing systems (e.g., Armenian, Greek, Cyrillic,
and Latin are all alphabetic). Cross-lingual POS-
tagging accuracy is higher if the source and target
writing system types are similar. If the two lan-
guages share the same writing system, performance
is even better (see Table 1).

Languages that share a writing system, such as
Latin, can benefit from a shared vocabulary if those
languages have some lexical overlap (Pires et al.,

5Characters in logosyllabic writing systems represent full
words (logograms) or syllables. In abugida writing systems,
consonants and vowels are combined as single units. This
can make abugida writing systems similar to syllabic writing
systems for character-based NLP systems. Abjad writing
systems only use characters for consonants, whereas vowels
are implied.

2019). However, a shared vocabulary also intro-
duces cross-lingual homography problems, where
the same token has different meanings, and thus
possibly different grammatical functions, in differ-
ent languages. Both aspects are not present for
languages that use different writing systems, even
if the vocabulary is technically shared within a mul-
tilingual model.

Figure 5 shows average cross-writing-system ac-
curacies. Some singleton writing systems reach
very low accuracies. These are the logosyllabic
Chinese characters, Kana (Japanese) and Hangul
(Korean) writing systems and Thai, which is an
abugida writing system. There are several other
writing systems that are used by a single target
language and achieve high performance regardless
of source writing system, i.e. Hebrew, Tamil and
Telugu. This might indicate that the data or the lan-
guage itself is easier than other target languages.

Cross-script transfer seems to work well for a
subset of writing systems. Languages with logosyl-
labic or the Thai writing system, tend to perform
poorly with source languages that use different writ-
ing systems. However, these writing systems are
not used across language families, so it is difficult
to attribute these findings specifically to the writing
systems themselves.

5 Qualitative discussion

Having discussed significant predictors in detail,
we now take a closer look at “bad" source lan-
guages, thereby providing a better understanding
of how to choose a “good" source language (Sec-
tion 5.1). We also identify some optimal source-
target language pairs (Section 5.2), and “optimal"
source languages for our task (Section 5.3).

5.1 Underperforming source languages

Figure 2 shows that many source languages
(columns) achieve high performance for at least
a subset of the target languages, and also that some
source languages never achieve high cross-lingual
accuracies. While overall contributing factors have
been discussed in Section 4, here we unpack why
some source languages yield low accuracy.

Source languages should achieve highest perfor-
mance on themselves as target languages. This
is not the case for Arabic (higher accuracy on
Ukrainian), Korean (higher accuracy on Hebrew)
and Spanish (higher accuracy on Catalan). Exclud-
ing those languages, the lowest within-language
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accuracy is Sanskrit (84.2%). We identify poorly
performing source languages as those where the
best cross-lingual accuracy is below that 84.2%
threshold. Based on this threshold, we identify 19
source languages that perform sub-optimally on
every target language except themselves.

The full set of source languages contains 12 lan-
guages that were not included in XLM-RoBERTa
pre-training (see red column labels in Figure 2).
Out of these 12 languages, nine are in the bottom
25% of source languages ranked by overall accu-
racy: Ancient Greek, Classical Chinese, Gothic,
Maltese, Naija, North Sami, Old Church Slavonic,
Old French and Wolof. The remaining three source
languages that were not included in pre-training are
Faroese, Old East Slavic and Western Armenian.
The written forms of these three languages are con-
sidered mutually intelligible with at least one lan-
guage that was included in pre-training.6 Specifi-
cally, mutually intelligible are written Faroese with
Icelandic (Barbour and Carmichael, 2000), Old
East Slavic with Russian, Belarusian and Ukrainian
(Andersen, 2003) and West Armenian with (East-
ern) Armenian (Adalian, 2010). No similar mutual
intelligibility pairs were found for the nine poorly
performing non-pre-trained source languages. This
indicates that while inclusion in pre-training is op-
timal for both the source and target language, in-
clusion of a mutually intelligible language variant
can be sufficient for source languages.

Other source languages that never achieve high
transfer performance but that were present in pre-
training are Sanskrit, Arabic, Chinese, Japanese,
Vietnamese, Uyghur, Irish, Marathi, Hebrew, Tamil.
For Uyghur and Irish, no clear cause could be found
for their low performance. This is not the case for
the other languages, however.

Sanskrit is effectively not present in pre-training,
since the Universal Dependencies data mainly con-
tains romanised Sanskrit, whereas the data in the
XLM-RoBERTa pre-training uses the Devanagari
writing system. Serbian is the only other evalu-
ated source language where the writing system in
Universal Dependencies is not used in pre-training.
However, the Latin script that is used in Univer-
sal Dependencies is used with the Croatian pre-
training data, and Croatian is structurally and in
written form effectively the same language as Ser-
bian (Kordić, 2010).

6If we consider these languages as pre-trained in the mixed
effects model of Section 3, the marginal R2 would increase
from 47.1% to 54.6%.

For Arabic, the problem seems a poor model
fit in general, since the trained model for Arabic
also achieves only 75.9% accuracy on Arabic test
data. We did not identify a clear external factor
for why Arabic performance is so low, since other
genetically related languages and other languages
that use the Arabic writing system perform better.

Problems with Chinese, Japanese and Viet-
namese might originate from issues with logosyl-
labic writing systems (see Section 4.4). Japanese
uses its own unique syllabic writing system, and
the Vietnamese language uses a romanised version
of (logographic) Chinese characters. Logosyllabic
writing systems therefore seem to transfer poorly
to other languages. The languages in our set of
source languages with logosyllabic writing systems
are Japanese, Chinese, Classical Chinese and Can-
tonese. These four languages are in the bottom 20%
lowest performing source languages for average
cross-lingual accuracy. While the source writing
system type was not identified as a significant pre-
dictor in the mixed-effects regression model, this
could be because logosyllabic writing systems are
not used across multiple language families.

The three remaining poorly performing lan-
guages are Marathi, Hebrew and Tamil. Those
three languages are the only evaluated source lan-
guages with fewer than 200 training sentences.
Therefore, the reason for the low performance of
these source languages could be the lack of suffi-
cient training data.

Overall, these findings suggest that a good
source language should:

• Be included in pre-training data with the same
writing system as the task-specific training
data. Alternatively, a mutually intelligible re-
lated language must be included;

• Achieve good within-language performance.
One cannot expect high cross-lingual perfor-
mance, if a model performs poorly on the
source language itself;

• Use the same type of writing system as the
target language. Transfer between different al-
phabetic writing systems (i.e. Latin and Cyril-
lic) can work well, but lower performance is
observed for logosyllabic writing systems (see
Section 4.4);

• Have sufficient training data available. Using
only 200 training sentences seems too little.
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5.2 Optimal language pairs
For every target language, the best source language
can be determined by taking the source language
with the highest accuracy. Some highly similar
languages are each other’s best source language. In
our set of languages, we found 11 of such pairs:

• Estonian and Finnish

• Icelandic and Faroese

• French and Italian

• Chinese and Japanese

• Irish and Scottish Gaelic

• Croatian and Serbian

• Catalan and Spanish

• Belarusian and Ukrainian

• Hindi and Urdu

• Armenian and Western Armenian

• English and Swedish

All of these pairs, except English and Swedish,
originate from either the same country, or countries
that are geographic neighbours. Moreover, most of
these pairs are closest siblings according to the Eth-
nologue genetic classification scheme (Eberhard
et al., 2021), compared to alternative languages in
our language set. The exceptions are English and
Swedish (both are Germanic languages, but for in-
stance Dutch is closer to English, and Norwegian
is closer to Swedish), Chinese and Japanese (sepa-
rate families, but Japanese has many Chinese loan
words) and Catalan and Spanish (Portuguese is
genetically closer to Spanish than Catalan).

Some of these pairs are known to have mutual
intelligibility (see Section 5.1) and share common
ancestor languages. This shows that optimal cross-
lingual performance can be achieved by pairing
highly similar languages. However, since all of
these pairs are languages that were included in pre-
training, it is unclear whether this also holds for
low-resource languages that were not included.

5.3 The best source language
Romanian and Swedish are the most common best
source language for any target language, with 10
and 7 target languages, respectively. Alternatively,
optimal cross-lingual performance can be deter-
mined by taking the average cross-lingual accuracy
per source language. According to this measure the

best source languages are still Romanian (67.2%)
and Swedish (65.9%). This criterion ranks English
as 19th out of 65 source languages, with an average
accuracy of 62.4%. All languages that perform bet-
ter than English are Indo-European except Estonian
(Uralic), and English is the fifth-best source lan-
guage from the Germanic Indo-European branch.
Romanian is also, on average, the best source lan-
guage for both the set of target languages that were
included in pre-training (81.5%) as well as the set
of non-pre-trained languages (49.8%). This shows
that even though cross-lingual tansfer commonly
takes English as a source language, English might
not be the best source language overall.

However, overall average performance might
not be a good measure of source language qual-
ity because that introduces a strong Indo-European
bias, due to the large amount of Indo-European lan-
guages in our target language set. If we determine
the best source language per target language family
(or Indo-European branch), we find that the best
source language is from a different language family
for 23 out of 30 families. Again, Romanian is the
best general source language since it is the best
source language for seven different families. All
other best source languages occur twice (Chinese,
Uyghur and Wolof) or once (17 languages).

In short, for this particular task, with this particu-
lar dataset, Romanian as source language achieves
the best cross-lingual performance.

6 Conclusion

We show that simply fine-tuning a large multilin-
gual pre-trained language model on English data
does not necessarily make full use of the cross-
lingual potential of the model. Especially when one
applies cross-lingual training for a low-resource
language with little or no evaluation data, the dif-
ferent factors that influence performance should be
kept in mind. Unfortunately, one of the most impor-
tant factors highlighted by our experiments is that
the target language, or a highly similar language
variant, should be included in pre-training for cross-
lingual training to be successful. For current lan-
guage models, this excludes many languages and
a large number of language families. For those
languages, the most important step is to collect un-
labeled data for pre-training (although the amount
of data required may be relatively modest; de Vries
et al., 2021).

Languages that are included in pre-training can
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achieve high cross-lingual performance across lan-
guage families and writing systems, at least for
languages that use alphabetic writing systems. The
English language, which is the de facto default
source language for cross-lingual training, is not
necessarily the best source language.

Due to data availability, our experiments focused
on POS tagging, but we hypothesise that the fac-
tors we identified may be predictive for other tasks
too. The significant influence of lexical-phonetic
distances and word order differences on accuracies
indicate that similar languages are encoded simi-
larly in XLM-RoBERTa, even if there is no lexi-
cal overlap due to differing writing systems. Thus,
these factors potentially also influence more syntax-
dependent tasks, such as parsing, and semantically
rich tasks, such as natural-language-inference.
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