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Abstract
Although transformers are remarkably effec-
tive for many tasks, there are some surprisingly
easy-looking regular languages that they strug-
gle with. Hahn shows that for languages where
acceptance depends on a single input symbol, a
transformer’s classification decisions become
less and less confident (that is, with cross-
entropy approaching 1 bit per string) as in-
put strings get longer and longer. We exam-
ine this limitation using two languages: PAR-
ITY, the language of bit strings with an odd
number of 1s, and FIRST, the language of bit
strings starting with a 1. We demonstrate three
ways of overcoming the limitation suggested by
Hahn’s lemma. First, we settle an open ques-
tion by constructing a transformer that recog-
nizes PARITY with perfect accuracy, and sim-
ilarly for FIRST. Second, we use layer nor-
malization to bring the cross-entropy of both
models arbitrarily close to zero. Third, when
transformers need to focus on a single posi-
tion, as for FIRST, we find that they can fail
to generalize to longer strings; we offer a sim-
ple remedy to this problem that also improves
length generalization in machine translation.

1 Introduction

Although transformers (Vaswani et al., 2017) are
remarkably effective for many tasks, there are some
surprisingly easy-looking formal languages that
they struggle with. Hahn (2020) tries to explain
some of these by showing (his Lemma 5) that
changing a single input symbol only changes the
output of a transformer encoder by 𝑂 (1/𝑛), where
𝑛 is the input string length. Thus, for a language
where acceptance depends on a single input sym-
bol, a transformer might accept or reject strings
with perfect accuracy, but for large 𝑛, it must do
so with low confidence, giving accepted strings
a probability just above ½ and rejected strings a
probability just below ½. More precisely, as 𝑛

increases, the cross-entropy approaches its worst
possible value of 1 bit per string.

Here, we examine this limitation using two sim-
ple regular languages:

PARITY = {𝑤 ∈ Σ∗ | 𝑤 has an odd number of 1s}
FIRST = {𝑤 ∈ Σ∗ | 𝑤1 = 1}

where (here and throughout the paper) Σ = {0, 1}.
Hahn’s lemma applies to PARITY because the net-
work must attend to all the symbols of the string,
and a change in any one of them changes the correct
answer. We have chosen FIRST as one of the sim-
plest examples of a language that the lemma applies
to. It only requires attention on the first symbol,
but the lemma still applies because a change in this
symbol changes the correct answer.

Although the lemma might be interpreted as lim-
iting the ability of transformers to recognize these
languages, we show three ways that this limitation
can be overcome.

First, we show by explicit constructions that
transformers do in fact exist that can recognize
both languages with perfect accuracy for arbitrary
lengths. We have implemented these constructions
and verified them experimentally (§3).

As predicted by Hahn’s lemma, our constructed
transformers have cross-entropy that approaches
1 bit (that is, just barely better than random guess-
ing) as input length increases. But we show that by
adding layer normalization, the cross-entropy can
be made arbitrarily close to zero, independent of
string length (§4).

In practice, we find, like Bhattamishra et al.
(2020a), that transformers cannot learn PARITY.
Perhaps more surprisingly, when learning FIRST,
transformers can have difficulty generalizing from
shorter strings to longer strings. Although this is
not a logical consequence of Hahn’s lemma, it is
a consequence of the behavior that Hahn’s lemma
predicts. Fortunately, this problem can be fixed
with a simple modification, multiplying attention
logits by log 𝑛. This modification also improves
length generalization in machine translation (§5).
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2 Background

2.1 Notation

If 𝜙 is a true-or-false statement, we write

I[𝜙] =
{

1 if 𝜙 is true
0 otherwise.

For any 𝑚, 𝑛 > 0, we write 0𝑚×𝑛 for the 𝑚 × 𝑛

zero matrix and I𝑛×𝑛 for the 𝑛 × 𝑛 identity matrix.

2.2 Transformers

Following Hahn (2020), we consider transformer
encoders with a sigmoid output layer on a single
position. Differently from Hahn (2020), but in
line with common practice (Devlin et al., 2019),
we prepend a token CLS (for “classification”) and
use the encoder output at this token’s position for
classifying the string.

We use the original definition of transformers
(Vaswani et al., 2017), except for positional encod-
ings.

2.2.1 Input layer

The input to the network is a string 𝑤 ∈ Σ∗. Let
𝑛 = |𝑤 | + 1, let 𝑤0 = CLS, and let 𝑤𝑖 be the 𝑖-th
symbol of 𝑤.

The input layer has a word embedding and posi-
tional encodings,

WE : Σ → R𝑑

PE : N→ R𝑑

which are used to compute input vectors for 𝑖 =

0, . . . 𝑛:

a0,𝑖 = WE(𝑤𝑖) + PE(𝑖).

The word embeddings are typically learned, while
the positional encodings vary somewhat. Origi-
nally (Vaswani et al., 2017), they were fixed and
defined in terms of sine and cosine waves, but they
can also be learned (Gehring et al., 2017), in which
case they are defined only up to some maximum
position. Here, we allow ourselves to define PE
as an arbitrary function on all positions. It would
seem that to remain in the spirit of the original pa-
per, PE should be easy to compute, independent of
𝑤, and parallelizable over positions.

2.2.2 Encoder layers
The body of the encoder is a stack of 𝐿 layers,
each of which has a self-attention sublayer followed
by a position-wise feedforward sublayer. For ℓ =

1, . . . , 𝐿, layer ℓ is defined as follows, where ℎ =

1, . . . , 𝐻, and 𝑖 = 0, . . . , 𝑛:

qℓ,ℎ,𝑖 = WQ,ℓ,ℎaℓ−1,𝑖

Kℓ,ℎ =
[
WK,ℓ,ℎaℓ−1,0 · · · WK,ℓ,ℎaℓ−1,𝑛]>

Vℓ,ℎ =
[
WV,ℓ,ℎaℓ−1,0 · · · WV,ℓ,ℎaℓ−1,𝑛]>

cℓ,𝑖 = LN

(
𝐻∑︁
ℎ=1

Att(qℓ,ℎ,𝑖 ,Kℓ,ℎ,Vℓ,ℎ) + aℓ−1,𝑖

)
hℓ,𝑖 = max

(
0,WF,ℓ,1cℓ,𝑖 + bF,ℓ,1

)
aℓ,𝑖 = LN

(
WF,ℓ,2hℓ,𝑖 + bF,ℓ,2 + cℓ,𝑖

)
where boldface lowercase letters stand for vectors
in R𝑑 and boldface uppercase letters stand for ma-
trices in R𝑑×𝑑 . The learned parameters of the
model are the W’s and b’s. The function Att is
scaled dot-product attention, defined as

Att : R𝑑 × R(𝑛+1)×𝑑 × R(𝑛+1)×𝑑 → R𝑑

Att(q,K,V) = V> softmax
Kq
√
𝑑

where the result of the softmax, sometimes written
as 𝛼, is a vector of attention weights. The function
LN is layer normalization, whose definition we
defer to §4.

2.2.3 Output layer
Finally, the network linearly projects the encoding
of CLS to a scalar and applies a sigmoid function:

𝑦 = 𝜎(W𝐿+1a𝐿,0 + b𝐿+1)

where W𝐿+1 ∈ R1×𝑑 and b𝐿+1 ∈ R1×1. The net-
work accepts 𝑤 iff the output probability is greater
than 1

2 .

3 Exact Solutions

The first way to overcome the limitation suggested
by Hahn’s lemma is to show by explicit construc-
tion that our two languages can in fact be recog-
nized with perfect accuracy by transformers.

3.1 FFNN for PARITY
Rumelhart et al. (1986) showed that for any 𝑛, there
is a feedforward neural network (FFNN) that com-
putes PARITY for strings of length exactly 𝑛. They
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also showed that a randomly initialized FFNN can
learn to do this automatically.

Since our construction is partially based on
theirs, it may be helpful to review their construc-
tion in detail. Let 𝑤 be the input string, |𝑤 | = 𝑛,
and 𝑘 be the number of 1s in 𝑤. The input is a
vector x such that x𝑖 = I[𝑤𝑖 = 1]. The first layer
computes 𝑘 and compares it against 1, 2, . . . , 𝑛:

W1 =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1


b1 =


−0.5
−1.5
...

−𝑛 + 0.5


so that

h1 = 𝐻 (W1x + b1) =


I[𝑘 ≥ 1]
I[𝑘 ≥ 2]

...

I[𝑘 ≥ 𝑛]


where 𝐻 is the step function (𝐻 (𝑥) = I[𝑥 > 0]),
applied elementwise.

The second layer adds up the odd elements and
subtracts the even elements:

W2 =
[
1 −1 · · · (−1)𝑛+1] b2 = −0.5

𝑦 = 𝐻 (W2h1 + b2)
which is 1 if 𝑘 is odd and 0 is 𝑘 is even.

3.2 Transformer for PARITY
Proposition 1. There is a transformer encoder
with sigmoid output layer that recognizes (in the
above sense) the language PARITY for strings of
arbitrary length.

Initially, we will construct a transformer encoder
without layer normalization (that is, LN(x) = x);
then we will show how to add layer normaliza-
tion (§4). Let 𝑘 be the number of occurrences of
1 in 𝑤. All vectors computed by the network have
𝑑 = 9 dimensions; if we show fewer dimensions,
assume the remaining dimensions to be zero.

The word and position embeddings are:

WE(0) =


1
0
0
0
0


WE(1) =


0
1
0
0
0


WE(CLS) =


0
0
1
0
0


PE(𝑖) =


0
0
0
𝑖
𝑛

cos 𝑖𝜋


.

Since we are numbering positions starting from 0,
dimension 4 ranges from 0 to 𝑛−1

𝑛
, and dimension 5

is +1 for even positions and −1 for odd positions.
We argue that dimension 5, being a cosine wave,

is a fairly standard choice, although its period (2)
is shorter than the shortest period in standard sinu-
soidal encodings (2𝜋). Dimension 4 is admittedly
not standard; however, we argue that it is a reason-
able encoding, and extremely easy to compute.

Thus, the encoding of word 𝑤𝑖 is:

a0,𝑖 =


I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]

𝑖
𝑛

cos 𝑖𝜋


.

The network has 𝐿 = 2 layers and 𝐻 = 2 heads.
The first self-attention layer has one head which
finds 𝑘 , the number of 1s. More precisely, be-
cause attention always averages, it must compute
the “average” number of 1s, that is, 𝑘

𝑛
, and stores

it in dimension 6. It also stores 1
𝑛

in dimension 7,
which we will need later.

WQ,1,1 = 0
WK,1,1 = 0

WV,1,1 =


05×5

0 1 0 0 0
0 0 1 0 0


The second head doesn’t do anything (WV,1,2 = 0;
the queries and keys can be anything). After the
residual connection, we have:

c1,𝑖 =



I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]

𝑖
𝑛

cos 𝑖𝜋
𝑘
𝑛
1
𝑛


.

In the construction of Rumelhart et al. (1986),
the next step is to compute I[𝑖 ≤ 𝑘] for each 𝑖,
using step activation functions. There are two dif-
ferences in our construction. First, we have ReLU
activation functions, not step activation functions.
Second, because attention must sum to one, if 𝑛 is
odd then the even and odd positions will get dif-
ferent attention weights, so the trick of subtracting
even positions from odd positions will not work.
Instead, we want to compute I[𝑖 = 𝑘] (Fig. 1).
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𝑘 − 2 𝑘 − 1 𝑘 𝑘 + 1 𝑘 + 2
0

1

Figure 1: Piecewise linear function equivalent on the
integers to I[𝑖 = 𝑘].

The first FFNN has two layers. The first is:

WF,1,1 =


0 0 0 −1 0 1 −1
0 0 0 −1 0 1 0
0 0 0 −1 0 1 1


bF,1,1 =


0
0
0

 .
This gives:

h1,𝑖 =
1
𝑛


max(0, 𝑘 − 𝑖 − 1)

max(0, 𝑘 − 𝑖)
max(0, 𝑘 − 𝑖 + 1)

 .
The second layer linearly combines these three val-
ues to get I[𝑖 = 𝑘] as desired.

WF,1,2 =

[
07×3

1 −2 1

]
bF,1,2 = 0.

After the residual connection, we have:

a1,𝑖 =



I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]

𝑖
𝑛

cos 𝑖𝜋
𝑘
𝑛
1
𝑛

I[𝑖=𝑘 ]
𝑛


.

The second self-attention layer tests whether po-
sition 𝑘 is even or odd. It does this using two heads,
one which attends more strongly to the odd posi-
tions, and one which attends more strongly to the
even positions; both average dimension 8:

WQ,2,1 =
[
0 0 𝑐

√
𝑑 0 0 0 0 0

]
WK,2,1 =

[
0 0 0 0 −1 0 0 0

]
WV,2,1 =

[
08×8

0 0 0 0 0 0 0 1

]
WQ,2,2 =

[
0 0 𝑐

√
𝑑 0 0 0 0 0

]
WK,2,2 =

[
0 0 0 0 1 0 0 0

]
WV,2,2 =

[
08×8

0 0 0 0 0 0 0 −1

]

where 𝑐 > 0 can be any constant. The second
FFNN doesn’t do anything (WF,2,1 = bF,2,1 =

WF,2,2 = bF,2,2 = 0). The vector at CLS (posi-
tion 0) is then

a2,0 =



0
0
1
0
1
𝑘
𝑛
1
𝑛

I[𝑘=0]
𝑛

𝑠


where 𝑠 has a somewhat complicated value. If 𝑛 is
even, it turns out to be

𝑠 = (−1)𝑘+1 2 tanh 𝑐
𝑛2

which is positive if 𝑘 is odd and negative if 𝑘 is
even. As predicted by Hahn, it is in 𝑂 (1/𝑛). If
𝑛 is odd, the expression for 𝑠 is more complicated
(see Appendix A), but it is still positive iff 𝑘 is odd,
and it is still in 𝑂 (1/𝑛).

Finally, the output layer is a sigmoid layer that
just looks at dimension 9:

W3 =
[
0 0 0 0 0 0 0 0 1

]
b3 = 0

𝑦 =
1

1 + exp(−𝑠) .

So the output is greater than 1
2 iff 𝑘 is odd.

3.3 Transformer for FIRST

Next, we construct a transformer for FIRST. In line
with the common practice of learning per-position
word embeddings (Gehring et al., 2017), we use
position embeddings that test whether a word is at
position 1:

a0,𝑖 =


I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]
I[𝑖 = 1]

 .
The first self-attention layer does nothing
(WV,1,1 = 0), so after the residual connection,
c1,𝑖 = a0,𝑖 .

The first FFNN computes a new component (5)
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that tests whether 𝑖 = 1 and 𝑤1 = 1:

WF,1,1 =
[
−1 0 −1 1

]
bF,1,1 = 0

WF,1,2 =


0
0
0
0
1


bF,1,2 = 0

a1,𝑖 =


I[𝑤𝑖 = 0]
I[𝑤𝑖 = 1]
I[𝑤𝑖 = CLS]
I[𝑖 = 1]

I[𝑤𝑖 = 1 ∧ 𝑖 = 1]


.

(We have chosen WF,1,1 in a slightly unusual way
to avoid using the bias term bF,1,1, in anticipation
of §4 when we will add layer normalization.)

The second self-attention layer has a single head,
which makes CLS focus on position 1.

WQ,2,1 =
[
0 0 𝑐

√
𝑑 0 0

]
WK,2,1 =

[
0 0 0 1 0

]
WV,2,1 =

[
05×5

0 0 0 − 1
2 1

]
where 𝑐 > 0 is a constant. The second FFNN
doesn’t do anything (WF,2,1 = bF,2,1 = WF,2,2 =

bF,2,2 = 0). So at CLS (position 0),

a2,0 =



0
0
1
0
0
𝑠


𝑠 =

exp 𝑐
exp 𝑐 + 𝑛 − 1

(
I[𝑤1 = 1] − 1

2

)
. (1)

The final output layer just selects component 6:

W3 =
[
0 0 0 0 0 1

]
b3 = 0.

So the output probability, 𝑦 = 𝜎(𝑠), is greater than
1
2 iff 𝑤1 = 1. However, it will get closer to 1

2 as 𝑛
increases.

3.4 Experiments
We implemented both of the above constructions
using modified versions of PyTorch’s built-in im-
plementation of transformers (Paszke et al., 2019).1

1The code for this and other experiments in this paper are
available at https://github.com/ndnlp/parity.
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Figure 2: Cross-entropy of exact solutions for PAR-
ITY and FIRST computed over 1000 random strings of
length 𝑛. Without layer norm, the cross-entropy quickly
approaches its upper bound of one. With layer norm and
𝜖 > 0, the cross-entropy is better but still grows with 𝑛.
With 𝜖 = 0, cross-entropy is independent of 𝑛.

These constructions achieve perfect accuracy for
strings with lengths sampled from [1, 1000].

However, in Fig. 2, the red curves (“no layer
norm”) show that, as strings grow longer, the cross-
entropy approaches its worst possible value of 1 bit
per string. We discuss this problem next.

4 Layer Normalization

The second way to mitigate or eliminate the limi-
tation of Hahn’s lemma is layer normalization (Ba
et al., 2016), which is defined, for any vector x, as

LN(x; 𝛾, 𝛽) = x − mean(x)√︁
var(x) + 𝜖

◦ 𝛾 + 𝛽

where the functions mean and var compute the
mean and variance, respectively, of the elements of
x, and ◦ is the elementwise (Hadamard) product.
We fix 𝛽 = 0 and 𝛾 = 1, so that the result has
approximately zero mean and unit variance. The
constant 𝜖 was not present in the original definition
(Ba et al., 2016) but is added in all implementations
that we are aware of, for numerical stability.

The original transformer definition performs
layer normalization immediately after every resid-
ual connection.2 In this section, we modify our

2It is also common to place layer normalization before
residual connections (Wang et al., 2019; Nguyen and Salazar,
2019), but we follow the original transformer definition here.
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two constructions above to use layer normaliza-
tion. This modification has two steps.

4.1 Removing centering
The first is to nullify the centering effect of layer
normalization by making the network compute
each value 𝑥 as well as its negation −𝑥. The new
word encodings are defined in terms of those in the
original construction:

ā0,𝑖 =

[
a0,𝑖

−a0,𝑖

]
.

Likewise for the self-attention parameters:

W̄Q,ℓ,ℎ =
[
WQ,ℓ,ℎ 0

]
W̄K,ℓ,ℎ =

[
WK,ℓ,ℎ 0

]
W̄V,ℓ,ℎ =

[
WV,ℓ,ℎ 0
−WV,ℓ,ℎ 0

]
.

Likewise for the position-wise FFNN parameters:

W̄F,ℓ,1 =
[
WF,ℓ,1 0

]
b̄F,ℓ,1 = bF,ℓ,1

W̄F,ℓ,2 =

[
WF,ℓ,2

−WF,ℓ,2

]
b̄F,ℓ,2 =

[
bF,ℓ,2

−bF,ℓ,2

]
.

Then each layer of activations is

c̄ℓ,𝑖 = LN
( [

cℓ,𝑖
−cℓ,𝑖

] )
āℓ,𝑖 = LN

( [
aℓ,𝑖
−aℓ,𝑖

] )
.

The argument to LN always has zero mean, so
that layer normalization does not add or subtract
anything. It does scale the activations, but in the
case of the two transformers constructed above,
any activation layer can be scaled by any positive
number without changing the final decisions (see
Appendix B).

4.2 Reducing cross-entropy
Furthermore, in any transformer, we can use layer
normalization to shrink the cross-entropy as small
as we like, contrary to Hahn’s Lemma 5. In Hahn’s
formulation, position-wise functions like layer nor-
malization can be subsumed into his 𝑓 act, but the
lemma assumes that 𝑓 act is Lipschitz-continuous,
and layer normalization with 𝜖 = 0 is not.
Proposition 2. For any transformer 𝑇 with layer
normalization (𝜖 = 0) that recognizes a language
L, and for any 𝜂 > 0, there is a transformer with
layer normalization that recognizes L with cross-
entropy at most 𝜂.

Proof. Let 𝑑 be the number of dimensions in the
original vectors of activations, and let 𝐿 be the
number of layers. Then we add a new layer whose
self-attention doesn’t do anything (WV,𝐿+1,ℎ = 0)
and whose FFNN is defined in terms of the original
output layer:

W̄F,𝐿+1,1 =

[
I𝑑
−I𝑑

]
b̄F,𝐿+1,1 =

[
0𝑑
0𝑑

]
W̄F,𝐿+1,2 =

[
−I𝑑 I𝑑

]
+


W𝐿+1 −W𝐿+1

−W𝐿+1 W𝐿+1

0(𝑑−2)×𝑑 0(𝑑−2)×𝑑


b̄F,𝐿+1,2 =


b𝐿+1

−b𝐿+1

0𝑑−2

 .
This causes the residual connection to zero out all
dimensions except two, so that if 𝑠 was the original
output logit, the output of this new layer (before
layer normalization) is

ā𝐿+1,𝑖 = LN ©­«


𝑠

−𝑠
0𝑑−2

ª®¬ .
Now, if 𝜖 = 0, layer normalization scales this vector
to have unit variance exactly, so it becomes

ā𝐿+1,𝑖 =


±
√︁
𝑑/2

∓
√︁
𝑑/2

0𝑑−2

 .
The new output layer simply selects the first di-

mension, scaling it by 𝑐:

W̄𝐿+2 =
[
𝑐 0 0𝑑−2] b̄𝐿+2 = 0.

Finally, set 𝑐 = − 1√
𝑑/2

log(exp 𝜂 − 1). If the
input string is in L, then the cross-entropy is
log𝜎(𝑐

√︁
𝑑/2) = 𝜂. Similarly, if the input string

is not in L, then the cross-entropy is log(1 −
𝜎(−𝑐

√︁
𝑑/2)) = 𝜂. �

However, in practice, 𝜖 is always set to a nonzero
value, which makes layer normalization Lipschitz-
continuous, so Hahn’s Lemma 5 still applies.

4.3 Experiments
We tested our exact solutions, modified as de-
scribed above to use layer normalization. Figure 2
shows that layer normalization with 𝜖 > 0 im-
proves the cross-entropy, but it still grows with 𝑛

and approaches 1. With 𝜖 = 0, the cross-entropy
is independent of 𝑛 and, as argued above (Proposi-
tion 2), can be made as low as desired.
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Figure 3: The cross-entropy and accuracy of our solu-
tion to PARITY are both extremely sensitive to the pa-
rameter W̄V,1,1

6,2 , which is responsible for computing 𝑘
𝑛
.

The correct parameter value is 1.

5 Learnability

In this section, we turn to the question of learnabil-
ity, which will lead to a third way of overcoming
the limitation suggested by Hahn’s lemma.

5.1 Experiments: standard transformers

We tried training transformers on both PARITY
and FIRST. Each transformer had the same num-
ber of layers and heads and the same fixed posi-
tional encodings as the corresponding exact solu-
tion. We used 𝑑model = 16 for word encodings,
self-attention, and FFNN outputs, and 𝑑FFNN = 64
for FFNN hidden layers. We used layer normal-
ization (𝜖 = 10−5) after residual connections. We
used PyTorch’s default initialization and trained
using Adam (Kingma and Ba, 2015) with learning
rate 3 × 10−4 (Karpathy, 2016). We did not use
dropout, as it did not seem to help.

We found, like Bhattamishra et al. (2020a), that
a transformer with the above settings was unable
to learn PARITY. We tried many other settings as
well, to no avail. To give an idea of why our con-
structed solution, in particular, is difficult to find,
Fig. 3 shows the cross-entropy and accuracy of the
model if we start with our solution (with layer nor-
malization, 𝜖 = 0) and vary the parameter W̄V,1,1

6,2 ,
which is responsible for computing 𝑘

𝑛
. At 1, it

has a cross-entropy of 0 and accuracy of 1, which
are both optimal, but the cross-entropy oscillates
so rapidly that even a small perturbation of this
parameter would make it difficult to recover the
solution by gradient descent.

FIRST is much easier to learn, but the bad news is
that the learned transformers do not generalize well
to longer sentences. Figure 4 (left column) shows
that when a transformer is trained from scratch on
shorter strings (𝑛 = 10, 30, 100, 300) and tested
on longer strings (𝑛 = 1000), the accuracy is not
perfect. Indeed, for training 𝑛 = 10, the accuracy
is hardly better than random guessing.

5.2 Flawed transformer for FIRST
In our solution above (§3.3), the second self-
attention layer attended mostly to the first position,
but not totally. It relied on the fact that in the sec-
ond self-attention layer, the values of the non-first
positions (V2,1

𝑖,4 and V2,1
𝑖,5 for 𝑖 ≠ 1) are exactly zero

and therefore do not contribute to the output.
In practice, because word embeddings are ran-

domly initialized in all dimensions, and are added
to every layer via residual connections, it’s unlikely
for any activation to be exactly zero. This explains
why our exact solution cannot be learned.

But, as a further thought experiment about what
the model might be learning instead, consider the
following transformer, which uses only a single
layer (𝐿 = 1) and does not zero out the values of
the non-first positions. As we will see, it performs
worse than the transformer of §3.3 for long strings.

WQ,1,1 =
[
0 0 𝑐

√
𝑑 0

]
WK,1,1 =

[
0 0 0 1

]
WV,1,1 =

[
04×4

− 1
2

1
2 − 1

2 0

]
.

The FFNN doesn’t do anything (WF,1,1 = bF,1,1 =

WF,1,2 = bF,1,2 = 0), and the final output layer just
selects component 5. So if 𝑘 is the total number of
1s, the final logit at CLS (position 0) would be

𝑠 =
exp 𝑐 − 1

exp 𝑐 + 𝑛 − 1

(
I[𝑤1 = 1] − 1

2

)
+ 1

exp 𝑐 + 𝑛 − 1

(
𝑘 − 𝑛

2

)
.

If 𝑐 > log(𝑛 − 1), then this is positive iff 𝑤1 = 1.
But if 𝑐 ≤ log(𝑛 − 1), the new second term can be
big enough to make the model output an incorrect
answer. This suggests that if we train a transformer
on strings with length up to 𝑁 , then the learned
parameters will be large enough to classify strings
of length up to 𝑁 correctly, but may misclassify
strings longer than 𝑁 .

This explanation is corroborated by the bottom-
left graph in Fig. 4, which shows the attention

7660



weight on the first position of the test string
(summed over layers, averaged over strings) as a
function of training epoch (starting from random
initial parameters). The training strings have vary-
ing length (𝑛) and the test strings have fixed length
(1000). We might hope that the attention weight
would converge to the same value independent of 𝑛.
But the lower 𝑛 is, the more the attention weight is
diluted, making it easier for the value in position 1
to be outweighed by values in other positions.

5.3 Log-length scaled attention
Fortunately, this problem is easy to fix by scaling
the logits of each attention layer by log 𝑛, that is,
redefining attention as

Att(q,K,V) = V> softmax
log 𝑛
√
𝑑

Kq. (2)

Then taking the model in §5.2 with 𝑐 = 1 gives

𝑠 =
𝑛 − 1
2𝑛 − 1

(
I[𝑤1 = 1] − 1

2

)
+ 1

2𝑛 − 1

(
𝑘 − 𝑛

2

)
which is positive iff 𝑤1 = 1. Moreover, scaling is
another way to make the cross-entropy low:
Proposition 3. For any 𝜂 > 0 there is a trans-
former with attention defined as in Eq. (2), and
with or without layer normalization, that recog-
nizes FIRST with cross-entropy at most 𝜂.

Proof. Without layer normalization, we can take
the model in §3.3, set 𝑐 = 1 and log-scale the
attention weights, which changes 𝑠 from Eq. (1) to

𝑠 =
𝑛

2𝑛 − 1

(
I[𝑤1 = 1] − 1

2

)
1
4
< |𝑠 | ≤ 1

2
.

With layer normalization (and 𝜖 > 0), we can
apply the modification of §4 to nullify the center-
ing effect of layer normalization. Then since the
variance of a2,0 is 1

6 (1 + 𝑠2), the layer-normalized
final logit is

𝑠 = 𝑠

(
1
6
(1 + 𝑠2) + 𝜖

)− 1
2

and since |𝑠 | > 1
4 ,

|𝑠 | > 1
4

(
5
24

+ 𝜖

)− 1
2

.

In either case, since the final logit has a lower
bound not dependent on 𝑛, the output layer weights
can be scaled as in the proof of Proposition 2 to
make the cross-entropy at most 𝜂. �

train all train short
test all test long

train tokens 3M+3M 1M+1M
test tokens 32k+34k 24k+25k

baseline 32.6 11.4
scaled 32.5 12.4

Table 1: When training and testing on data with the
same length distribution, scaling attention logits has no
significant effect on BLEU, but when training on short
sentences (≤ 20 tokens) and testing on long sentences
(> 20 tokens), scaling helps significantly (𝑝 < 0.01).

5.4 Experiments: scaled attention

Figure 4 (right column) shows the training of trans-
formers with scaling of attention logits by log 𝑛.
For all training lengths 𝑛, the model is able to learn
with perfect test cross-entropy and accuracy.

We see a similar effect on low-resource English-
to-Vietnamese machine translation (Table 1), us-
ing Witwicky, an open-source implementation of
transformers.3 We use all default settings; in par-
ticular, residual connections come after layer nor-
malization (𝜖 = 10−5). We measure translation
accuracy using BLEU (Papineni et al., 2002) and
use bootstrap resampling with 1000 samples for
significance testing.

When train and test length distributions are the
same, scaling attention logits has no significant ef-
fect. But if we train only on sentences with median
length or shorter (≤ 20 tokens) and test only on
sentences longer than median length (> 20 tokens),
scaling attention logits by log 𝑛 improves BLEU by
+1, which is statistically significant (𝑝 < 0.01).

6 Related Work

Using very different assumptions on the form of
transformers and inputs, a number of recent theo-
retical studies of transformers show that they can
solve much more difficult problems than the ones
studied here. Transformer encoders can be shown
to be universal approximators by fixing the string
length and using a number of layers exponential
in the length (Yun et al., 2020). Transformer
encoder–decoders, where the decoder can run for
an unbounded number of steps, have been shown
to be Turing-complete (Bhattamishra et al., 2020b;
Pérez et al., 2021).

3https://github.com/tnq177/witwicky
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Figure 4: Training a transformer on FIRST. Each epoch has 100 training strings of varying length (see legend)
and 100 test strings of length 1000. All curves are averaged over 20 runs. Left: Standard transformer with layer
normalization (𝜖 = 10−5). Right: Same, with attention logits scaled by log 𝑛.

RASP (Weiss et al., 2021) is a simple program-
ming language whose programs can be compiled
into transformers. While PARITY can easily be
written in RASP, this does not imply in itself the ex-
istence of transformers that can recognize PARITY,
for two reasons. First, RASP’s aggregate operation
(which corresponds to attention) always attends
uniformly to a subset of positions, unlike softmax
attention. Second, RASP’s elementwise opera-
tions are embedded directly in the output trans-
former; they are not translated into FFNNs.

Bhattamishra et al. (2020a) carry out theoret-
ical and experimental studies of transformers for
various formal languages. The theoretical results
are for a different variant of transformers than ours
(transformer encoders with self-attention masked
so that each position attends only to previous po-
sitions), and focus on such transformers’ ability to
maintain counters that are constrained to be non-
negative. Their experimental results suggest that
transformers have difficulty learning some regular
languages, including PARITY.

7 Conclusion

We’ve seen that the questions of (a) whether a neu-
ral network can recognize a language, (b) whether
it can achieve low cross-entropy on a language, and
(c) whether it can learn to recognize a language are
three separate questions, because we have given
examples of (a) without (b) and (b) without (c).

Namely, our explicit construction for PARITY
shows that a neural network can recognize a lan-
guage with perfect accuracy (a) but poor cross-
entropy (b). Adding layer normalization (𝜖 = 0)
enables it to achieve low cross-entropy (b), but still
does not learn well (c). We observe that because
the answer to (b) can hinge on small details of the
model, (b) is not probably not very useful as a way
of measuring expressivity.

However, we did find that the limited influence of
a single input symbol, implied by Hahn’s lemma,
has a serious practical implication for learnabil-
ity (c). Namely, transformers can fail to general-
ize from shorter training strings to longer testing
strings. Our proposed fix, scaling attention logits
by log 𝑛, is easy to implement and very effective
on a real machine translation task.
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A Correctness of PARITY Construction

In §3.2, we constructed a transformer that recog-
nizes PARITY; here we fill in details of calculating
𝑠 = a2,0

9 . If 𝑛 is even, the first head computes

q2,1,0 = 𝑐
√
𝑑

K2,1,0
𝑖,1 = − cos 𝑖𝜋 = (−1)𝑖+1

𝛼
2,1,0
𝑖

=
exp(−1)𝑖+1𝑐

𝑛
2 (exp 𝑐 + exp−𝑐)

V2,1,0
𝑖,9 =

I[𝑖 = 𝑘]
𝑛

.

Similarly, the second head computes

q2,2,0 = 𝑐
√
𝑑

K2,2,0
𝑖,1 = cos 𝑖𝜋 = (−1)𝑖

𝛼
2,2,0
𝑖

=
exp(−1)𝑖𝑐

𝑛
2 (exp 𝑐 + exp−𝑐)

V2,2,0
𝑖,9 = − I[𝑖 = 𝑘]

𝑛
.

Then

𝑠 = a2,0
9 =

1
𝑛
𝛼

2,1,0
𝑘

− 1
𝑛
𝛼

2,2,0
𝑘

=
exp(−1)𝑘+1𝑐 − exp(−1)𝑘𝑐

𝑛2

2 (exp 𝑐 + exp−𝑐)

= (−1)𝑘+1 exp 𝑐 − exp−𝑐
𝑛2

2 (exp 𝑐 + exp−𝑐)

= (−1)𝑘+1 2 tanh 𝑐
𝑛2

is negative if 𝑘 is even and positive if 𝑘 is odd.
If 𝑛 is odd, calculating 𝑠 is more complicated

because there are unequal numbers of more- and
less-attended positions. The attention weights are

𝛼
2,1,0
𝑖

=
exp(−1)𝑖+1𝑐

𝑛−1
2 exp 𝑐 + 𝑛+1

2 exp−𝑐︸                       ︷︷                       ︸
𝑍1

𝛼
2,2,0
𝑖

=
exp(−1)𝑖𝑐

𝑛+1
2 exp 𝑐 + 𝑛−1

2 exp−𝑐︸                       ︷︷                       ︸
𝑍2

𝑠 =
(exp(−1)𝑘+1𝑐)𝑍2 − (exp(−1)𝑘𝑐)𝑍1

𝑛𝑍1𝑍2
.

If 𝑘 is even,

𝑠 =

𝑛−1
2 exp−2𝑐 − 𝑛−1

2 exp 2𝑐
𝑛𝑍1𝑍2

= − (𝑛 − 1) sinh 2𝑐
𝑛𝑍1𝑍2

< 0

whereas if 𝑘 is odd,

𝑠 =

𝑛+1
2 exp 2𝑐 − 𝑛+1

2 exp−2𝑐
𝑛𝑍1𝑍2

=
(𝑛 + 1) cosh 2𝑐

𝑛𝑍1𝑍2
> 0.

B Scale-Invariance of PARITY and FIRST
Constructions

In §4.1, we claimed that the scaling effect of layer
normalization has no effect on the decisions of our
constructions for PARITY and FIRST. This is re-
lated to the property of approximate homogeneity
studied by Merrill et al. (2021).

In general, we rely on the fact that the FFNNs
we use all have no bias terms (bF,ℓ,1 and bF,ℓ,2),
so the FFNNs are 1-homogenous (scaling the input
scales the output by the same amount). For the self-
attentions, our WQ,ℓ,ℎ all have a constant factor 𝑐
built into them, so any scaling of the input can be
absorted into this constant.

For PARITY, suppose that layer normalization
scales cℓ by 𝐶ℓ and aℓ by 𝐴ℓ .

c̄1,𝑖 = 𝐶1

[
c1,𝑖

−c1,𝑖

]
Because the first FFNN has no bias term,

ā1,𝑖 = 𝐴1𝐶1

[
a1,𝑖

−a1,𝑖

]
In the second self-attention layer, the attention log-
its and the values are scaled by 𝐴1𝐶1. We’re only
interested in what happens to 𝑠 = c2,0

9 . If 𝑛 is even,
𝑠 becomes:

𝑠 = (−1)𝑘+1 2𝐶2𝐴1𝐶1 tanh 𝐴1𝐶1𝑐

𝑛2 .

Since the second FFNN is the identity function, its
layer normalization has no effect (𝐴2 = 1). So the
final logit is 𝑠, which is still negative if 𝑘 is even
and positive if 𝑘 is odd. Similarly if 𝑛 is odd.

For FIRST, again suppose that layer normaliza-
tion scales cℓ by 𝐶ℓ and aℓ by 𝐴ℓ . As before,

ā1,𝑖 = 𝐴1𝐶1

[
a1,𝑖

−a1,𝑖

]
In the second self-attention layer, the attention log-
its and the values are scaled by 𝐴1𝐶1. We’re only
interested in what happens to 𝑠 = c2,0

6 :

𝑠 =
exp 𝐴1𝐶1𝑐

exp 𝐴1𝐶1𝑐 + 𝑛 − 1
𝐶2𝐴1𝐶1

(
I[𝑤1 = 1] − 1

2

)
Since the second FFNN is the identity function,
𝐴2 = 1. So the final logit is 𝑠, which is still positive
if 𝑤1 = 1 and negative otherwise.
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