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Abstract

In real-world scenarios, a text classification
task often begins with a cold start, when la-
beled data is scarce. In such cases, the com-
mon practice of fine-tuning pre-trained mod-
els, such as BERT, for a target classification
task, is prone to produce poor performance.
We suggest a method to boost the performance
of such models by adding an intermediate un-
supervised classification task, between the pre-
training and fine-tuning phases. As such an
intermediate task, we perform clustering and
train the pre-trained model on predicting the
cluster labels. We test this hypothesis on var-
ious data sets, and show that this additional
classification phase can significantly improve
performance, mainly for topical classification
tasks, when the number of labeled instances
available for fine-tuning is only a couple of
dozen to a few hundred.

1 Introduction

The standard paradigm for text classification relies
on supervised learning, where it is well known that
the size and quality of the labeled data strongly im-
pact the performance (Raffel et al., 2019). Hence,
developing a text classifier in practice typically re-
quires making the most of a relatively small set of
annotated examples.

The emergence of transformer-based pre-trained
language models such as BERT (Devlin et al.,
2018) has reshaped the NLP landscape, leading
to significant advances in the performance of
most NLP tasks, text classification included (e.g.,
Nogueira and Cho, 2019; Ein-Dor et al., 2020).
These models typically rely on pretraining with
massive and heterogeneous corpora on a general
Masked Language Modeling (MLM) task, i.e., pre-
dicting a word that is masked in the original text.
Later on, the obtained model is fine-tuned to the
actual task of interest, termed here the target task,

*These authors contributed equally to this work.

using the labeled data available for this task. Thus,
pretrained models serve as general sentence en-
coders which can be adapted to a variety of target
tasks (Lacroix et al., 2019; Wang et al., 2020a).

Our work focuses on a challenging yet common
scenario, where unlabeled data is available but la-
beled data is scarce. In many real-world scenar-
ios, obtaining even a couple of hundred of labeled
examples per class is challenging. Commonly, a
target class has a relatively low prior in the exam-
ined data, making it a formidable goal to collect
enough positive examples for it (Japkowicz and
Stephen, 2002). Moreover, sometimes data cannot
be labeled via crowd-annotation platforms due to
its confidentiality (be it for data privacy reasons
or for protecting intellectual property) or since the
labeling task requires special expertise. On top of
this, often the number of categories to be consid-
ered is relatively large, e.g., 50, thus making even a
modest demand of 200 labeled examples per class
a task of labeling 10K instances, which is inap-
plicable in many practical cases (for an extreme
example, cf. Partalas et al., 2015).

In such limited real-world settings, fine-tuning a
large pretrained model often yields far from opti-
mal performance. To overcome this, one may take
a gradual approach composed of various phases.
One possibility is to further pretrain the model with
the self-supervised MLLM task over unlabeled data
taken from the target task domain (Whang et al.,
2019). Alternatively, one can train the pretrained
model using a supervised intermediate task which
is different in nature from the target-task, and for
which labeled data is more readily available (Pruk-
sachatkun et al., 2020; Wang et al., 2019a; Phang
et al., 2018). Each of these steps is expected to
provide a better starting point for the final fine-
tuning phase, performed over the scarce labeled
data available for the target task, aiming to end up
with improved performance.

Following these lines, here we propose a strat-
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egy that exploits unsupervised text clustering as the
intermediate task towards fine-tuning a pretrained
model for text classification. Our work is inspired
by the use of clustering to obtain labels in computer
vision (Gidaris et al., 2018; Kolesnikov et al., 2019).
Specifically, we use an efficient clustering tech-
nique, that relies on simple Bag Of Words (BOW)
representations, to partition the unlabeled training
data into relatively homogeneous clusters of text
instances. Next, we treat these clusters as labeled
data for an intermediate text classification task, and
train the pre-trained model — with or without ad-
ditional MLM pretraining — with respect to this
multi-class problem, prior to the final fine-tuning
over the actual target-task labels. Extensive exper-
imental results demonstrate the practical value of
this strategy on a variety of benchmark data. We
further analyze the results to gain insights as to
why and when this approach would be most valu-
able, and conclude that it is most prominently when
the training data available for the target task is rela-
tively small and the classification task is of a topical
nature. Finally, we propose future directions.
We release code for reproducing our method.'

2 Intermediate Training using
Unsupervised Clustering

A pre-trained model is typically developed in con-
secutive phases. Henceforth, we will refer to BERT
as the canonical example of such models. First,
the model is pretrained over massive general cor-
pora with the MLM task.> We denote the obtained
model simply as BERT. Second, BERT is finetuned
in a supervised manner with the available labeled
examples for the target task at hand. This standard
flow is represented via Path-1 in Fig. 1.

An additional phase can be added between these
two, referred to next as intermediate training, or
inter-training in short. In this phase, the model
is exposed to the corpus of the target task, or a
corpus of the same domain, but still has no access
to labeled examples for this task.

A common example of such an intermediate
phase is to continue to intertrain BERT using the
self-supervised MLM task over the corpus or the
domain of interest, sometimes referred to as further

lhttps ://github.com/IBM/
intermediate-training-using-clustering

*BERT was originally also pretrained over "next sentence
prediction"; however, later works (Yang et al., 2019; Liu et al.,
2019b) have questioned the contribution of this additional task
and focused on MLM.

or adaptive pre-training (e.g., Gururangan et al.,
2020). This flow is represented via Path-2 in Fig.
1, and the resulting model is denoted BERT 7 p1.0,
standing for Intermediate Task: MLM.

A key contribution of this paper is to propose a
new type of intermediate task, which is designed
to be aligned with a text classification target task,
and is straightforward to use in practice. The un-
derlying intuition is that inter-training the model
over a related text classification task would be more
beneficial compared to MLM inter-training, which
focuses on different textual entities, namely pre-
dicting the identity of a single token.

Specifically, we suggest unsupervised clustering
for generating pseudo-labels for inter-training. As
the clustering partition presumably captures infor-
mation about salient features in the corpus, feeding
this information into the model could lead to rep-
resentations that are better geared to perform the
target task. These pseudo-labels can be viewed as
weak labels, but importantly they are not tailored
nor require a specific design per target task. Instead,
we suggest generating pseudo-labels in a way in-
dependent of the target classification task. The
respective flow is represented via Path-3 in Fig. 1.
In this flow, we first cluster to partition the training
data into n. clusters. Next, we use the obtained par-
tition as ‘labeled’ data in a text classification task,
where the classes are defined via the n. clusters,
and intertrain BERT to predict the cluster label. In
line with MLM, inter-training includes a classifier
layer on top of BERT, which is discarded before
the fine-tuning stage. The resulting inter-trained
model is denoted BERT1-crysT-

Finally, Path-4 in Fig. 1 represents a sequential
composition of Paths 2 and 3. In this flow, we first
intertrain BERT with the MLM task. Next, the ob-
tained model is further intertrained to predict the n.
clusters, as in Path-3. The model resulting from this
hybl'ld approach is denoted BERT - pim+CLUST-

Importantly, following Path-3 or Path-4 requires
no additional labeled data, and involves an a-priori
clustering of training instances that naturally gives
rise to an alternative or an additional inter-training
task. As we show in the following sections, despite
its simplicity, this strategy provides a significant
boost in performance, especially when labeled data
for the final fine-tuning is in short supply.
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Figure 1: Phases of a pre-trained model (BERT in this figure) - circles are training steps which produce models,
represented as rectangles. In the pre-training phase, only general corpora are available. The inter-training phase is
exposed to target domain data, but not to its labeled instances. Those are only available at the fine-tuning phase.

3 Experiments

3.1 Tasks and Datasets

We evaluate over 6 topical datasets and 3 non-
topical ones (see Table 1), which cover a variety of
classification tasks and domains: Yahoo! Answers
(Zhang et al., 2015), which separates answers and
questions to types; DBpedia (Zhang et al., 2015,
CC-BY-SA) which differentiates entity types by
their Wikipedia articles; AG’s News (Zhang et al.,
2015) which categorize news articles; CFPB, which
classifies consumer complaints; 20 newsgroups
(Lang, 1995), which classifies 20 Usenet discus-
sion groups; ISEAR (Shao et al., 2015, CC BY-
NC-SA 3.0), which considers personal reports for
emotion; SMS spam (Almeida et al., 2011), which
identifies spam messages; Polarity (Pang and Lee,
2005), which includes sentiment analysis on movie
reviews, and Subjectivity (Pang and Lee, 2004),
which categorizes movie snippets as subjective or
objective.

A topical dataset splits sentences by a high-level
distinction related to what the sentence is about
(e.g., sports vs. economics). Non-topical datasets
look for finer stylistic distinctions that may depend
on the way the sentence is written or on fine details
rather than on the central meaning it discusses. It
may also separate almost identical sentences; for

example, "no" could distinguish between sentences
with negative and positive sentiment.

When no split is provided we apply a
70%,/10%/20% train-dev-test split, respectively.®
To reduce the computational cost over the larger
datasets (DBpedia, AG’s News, Yahoo! Answers
and CFPB) we trim the train/test sets of these
datasets to 15K /3K instances respectively, by ran-
domly sampling from each set.* All runs and all
methods use only the trimmed versions.

3.2 Experimental Setup

In our main set of experiments, we compare the
performance of fine-tuning BERT-based models
over a target task, for different settings of inter-
mediate training. We consider four BERT-based
settings, as described in Section 2 and in Figure
1. Two baselines — (i) BERT, without intermedi-
ate training, and (ii) BERTTppM intertrained on
MLM; and two settings that rely on clustering — (1)
BERT r.cLusT, Where predicting cluster labels is
used for inter-training, and (ii) BERTT-MLM+cLUST,
which combines the two intermediate tasks.

3The dev set is not being used by any method.

*We verified that relying on the full dataset provides no
significant performance improvements to BERTirmim and
BERTr.cLust. The results are omitted for brevity.
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Training samples: For each setting, the final
fine-tuning for the target task is performed, per
dataset, for training budgets varying between 64
and 1024 labeled examples. For each data size x,
the experiment is repeated 5 times; each repetition
representing a different sampling of z labeled ex-
amples from the train set. The samplings of training
examples are shared between all settings. That is,
for a given dataset and train size the final training
for all settings is done with respect to the same 5
samples of labeled examples.

Inter-training: Intermediate training, when
done, was performed over the unlabeled train set
for each dataset (ignoring instances’ labels). We
studied two implementations for the clustering
task: K-means (Lloyd, 1982) and sequential
Information Bottleneck (sIB) which is known to
obtain better results in practice (Slonim et al.,
2002) and in theory (Slonim et al., 2013). Based
on initial experiments, and previous insights from
works in the computer vision domain (Yan et al.,
2020) we opted for a relatively large number of
clusters, and rather than optimizing the number
of clusters per dataset, set it to 50 for all cases.’
K-means was run over GloVe (Pennington et al.,
2014) representations following word stemming.
We used a publicly available implementation of
sIB® with its default configuration (i.e., 10 restarts
and a maximum of 15 iterations for every single
run). For sIB clustering, we used Bag of Words
(BOW) representations on a stemmed text with
the default vocabulary size (which is defined as
the 10K most frequent words in the dataset). Our
results indicate that inter-training with respect to
sIB clusters consistently led to better results in the
final performance on the target task, compared to
inter-training with respect to the clusters obtained
with K-means (see Section 5.1 for details). We also
considered inter-training only on representative
examples of clustering results — filtering a given
amount of outlier examples — but obtained no
significant gain (data not shown).

Note that the run time of the clustering algo-
rithms is only a few seconds. The run time of the
fine-tuning step of the inter-training task takes five
and a half minutes for the largest train set (15K
instances) on a Tesla V100-PCIE-16GB GPU.

SSetting the number of clusters to be equal to the number
of classes resulted in inferior accuracy. In addition, one may
not know how many classes truly exist in the data, so this
parameter is not necessarily known in real-world applications.

*https://github.com/IBM/sib

Train  Test # classes
Yahoo! answers 15K 3K 10
DBpedia 15K 3K 14
CFPB 15K 3K 15
20 newsgroups 102K 75K 20
AG’s news 15K 3K 4
ISEAR 54K 15K 7
SMS spam 39K 1.1K 2
Subjectivity 7K 2K 2
Polarity 7.5K 2.1K 2

Table 1: Dataset details. Topical datasets are at the top.

BERT hyper-parameters: The starting point of
all settings is the BERTgasg model (110M pa-
rameters). BERT inter-training and fine-tuning
runs were all performed using the Adam optimizer
(Kingma and Ba, 2015) with a standard setting con-
sisting of a learning rate of 3 x 10~°, batch size 64,
and maximal sequence length 128.

In a practical setting with a limited annotations
budget one cannot assume that a labeled dev set is
available, thus in all settings we did not use the dev
set, and fine-tuning was arbitrarily set to be over 10
epochs, always selecting the last epoch. For inter-
training over the clustering results we used a single
epoch, for two reasons. First, loosely speaking,
additional training over the clusters may drift the
model too far towards learning the partition into
clusters, which is an auxiliary task in our context,
and not the real target task. Second, from the per-
spective of a practitioner, single epoch training is
preferred since it is the least demanding in terms of
run time. For BERT v m we used 30 epochs with
a replication rate of 5, and followed the masking
strategy from Devlin et al. (2018).”

Computational budget: Overall we report the
results of 1440 BERT fine-tuning runs (4 experi-
mental settings x 9 datasets x 8 labeling budgets x
5 repetitions). In addition, we performed 288 inter-
training epochs over the full datasets (9 datasets x
(30 BERT MM epochs +1 BERTIT:CLUST epoch +
1 BERTiT-MLM+cLUsT €poch)). In total, this would
equate to about 60 hours on a single Tesla V100-
PCIE-16GB GPU.

4 Results

Table 2 depicts the results over all datasets, fo-
cusing on the practical use case of a budget of 64

"In preliminary experiments we found this to be the best
configuration for this baseline.
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Figure 2: Classification accuracy (SEM, standard error of the mean) on all datasets vs. the number of labeled
samples used for fine-tuning (log scale). Each point is the average of 5 repetitions (for 20 newsgroups and a budget
of 64, all 5 repetitions did not cover all classes and hence this data point is not presented).

samples for fine-tuning (128 for 20 newsgroup, see
explanation in Fig. 2). As shown in the table, the
performance gains of BERTt.cLyst are mainly re-
flected in the 6 topical datasets. For these datasets,
BERTr.cLusT confers a significant benefit in accu-
racy (110% accuracy gain, 33% error reduction).

Figure 2 depicts the classification accuracy for
the different settings for varying labeling bud-
gets, using sIB for clustering-based inter-training.
Over the topical datasets, BERTr.cLust and
BERTT-mLMm+cLusT clearly outperform BERT and
BERTirMiMm in the small labeled data regime,
where the gain is most prominent for the small-
est labeled data examined — when only 64 labeled
examples are available — and gradually diminishes
as more labeled samples are added.

We performed paired t-tests to compare
BERT t.cLysT With BERT and BERTTppMm, pool-
ing together all datasets and repetitions for a given

Dataset BERT  BERTir.cLust Gain Erro.r
accuracy accuracy reduction
Yahoo! Answers 21.2 45.9 117% 31%
DBpedia 31.2 67.0 115% 52%
CFPB 15.0 27.5 83% 15%
20 newsgroup 13.0 47.2 263% 39%
AG’s News 61.9 80.7 30% 49%
ISEAR 19.0 29.0 53% 12%
avg. topical 26.9 49.6 110% 33%
SMS spam 91.0 98.2 8% 80%
Subjectivity 90.1 91.0 1% 9%
Polarity 66.8 67.0 0% 1%
avg. non-topical 82.6 85.4 3% 30%

Table 2: BERTr.cLust outperforms BERT in topical
datasets. Comparing 64 samples, the smallest amount
for fine-tuning. The accuracy gain and the error reduc-
tion (1-accuracy) are relative to BERT’s accuracy/error.
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Train size 64 128 192 256 384 512 >512
vs. BERT 1x107% 1x107% 6x1077 2x107° 2x1073 9x10~3
vs. BERTrvim 8x107°  3x1073 4x1072 - - -

Table 3: Paired t-test p-values (after Bonferroni correction) of classification accuracy for BERTt.cpysT compared
to BERT and to BERT v (insignificant results, p > 0.05, are denoted by —).

labeling budget. As can be seen in Tab. 3, the per-
formance gain, over all datasets, of BERTt.cLusT
over BERT is statistically significant for a budget
up to 512.

BERT1.cLusT 1s not as successful in the 3 non-
topical datasets (cf. Tab. 2 and Fig. 2). A possible
reason for the lack of success of inter-training in
these three datasets is that their classification task
is different in nature than the tasks in the other
six datasets. Identifying spam messages, determin-
ing whether a text is subjective or objective, or
analyzing the sentiment (polarity) of texts, can be
based on stylistic distinctions that may depend on
the way the sentence is written rather than on the
central topic it discusses. Inter-training over BOW
clustering seems to be less beneficial when such
considerations are needed. We further analyze this
in Section 5.4. Nevertheless, it is safe to apply
BERT T.cLusT even in these datasets, as results are
typically comparable to the baseline algorithms,
neither better nor worse.

Both BERTravrm and BERTr.cLusT expose
the model to the target corpus. The performance
gains of BERTt.cLyst over BERT v M suggest
that inter-training on top of the clustering carries
an additional benefit. In addition, these inter-
training approaches are complementary - as seen
in Fig. 2, BERTrMmiMm+cLusT outperforms both
BERT1.cLust and BERTr-mim (at the cost of
some added runtime).

Taken together, our results suggest that in topical
datasets, where labeled data is scarce, the pseudo-
labels generated via clustering can be leveraged
to provide a better starting point for a pre-trained
model towards its fine-tuning for the target task.

5 Analysis
5.1 Additional Clustering Techniques

In the literature (Slonim et al., 2002) and on our
initial trials, sIB showed better clustering perfor-
mance, and therefore was chosen over other clus-
tering methods. Next, we analyze whether sIB is
also the best fit for inter-training.

We compare (see App. C) sIB over BOW repre-
sentation to two other clustering configurations; K-
means over GloVe representations and Hartigan’s
K-means (Slonim et al., 2013) over GloVe. For
most datasets, inter-training over the results of sIB
over BOW representations achieved the best re-
sults.

5.2 Comparison to BOW-based methods

Our inter-training method relies on BOW-based
clustering. Since knowledge of the input words is
potentially quite powerful for some text classifica-
tion tasks, we examine the performance of several
BOW-based methods. We used the same training
samples to train multinomial Naive Bayes (NB) and
Support Vector Machine (SVM) classifiers, using
either Bag of Words (BOW) or GloVe (Penning-
ton et al., 2014) representations. For GloVe, a text
is represented as the average GloVe embeddings
of its tokens. This yielded four reference settings:
NBBOW, NBGloVe, SVMBOW and SVMGloVe- Over-
all, all four methods were inferior to BERT1.crusT,
as shown in App. B. Thus, the success of our
method cannot simply be attributed to the infor-
mation in the BOW representations.

Next, we inspect the contribution of inter-
training to BERT’s sentence representations.

5.3 Effect on Sentence Embeddings

The embeddings after BERTr.cLust show poten-
tial as a better starting point for fine-tuning. Figure
3 depicts t-SNE (van der Maaten and Hinton, 2008)
2D visualizations of the output embeddings over
the full train set of several datasets, comparing the
[CLS] embeddings before and after inter-training.

Manifestly, for topical datasets, the
BERTr.cLust embeddings, obtained after
inter-training with respect to sIB clusters, induce a
much clearer separation between the target classes,
even though no labeled data was used to obtain this
model. Moreover, and perhaps not surprisingly,
the apparent visual separation resulting from
inter-training is aligned with the performance
gain obtained later on in the fine-tuning phase
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Figure 3: t-SNE visualizations of model embeddings over the train set, using BERT (top) vs. BERTir.cLusT
(bottom). The colors represent the gold labels for the target task (e.g., four classes in AG’s News data set).

over the target task (as seen, for instance, in the
visualizations of Polarity versus DBpedia data).

In addition to the qualitative results of the visu-
alization, we pursue a more quantitative path. We
assess whether examples of the same class are more
closely represented after inter-training. Formally,
given a set of instances’ embeddings ey, ..., e,
and their corresponding class labels {1, ...,l, € L
we compute for each class [ € L a centroid ¢
which is the average embedding of this class. We
then compute the average Euclidean Embeddings’
Distance (ED) from the corresponding centroids:®

ED(l,e) = E' ylle; — cill2

As a sanity check, we apply a significance test to
the ED statistic, confirming that representations of
same-class examples are close to each other. Specif-
ically, we apply a permutation test (Fisher, 1971),
with 1000 repetitions, comparing the class labels
to random labels. We find that EDs for both BERT
and BERTyr.cpust are significantly different from
random (p < 0.001). This implies that both before
and after inter-training, same-class representations
are close. Next, we compare the representations
before and after inter-training. We find that the ran-
domly permuted EDs of BERTt.cLysT are about
3 times larger than BERT’s, despite similar norm
values. This means that the post inter-training rep-
resentations are more dispersed. Hence, to properly
compare, we normalize ED by the average of the

8Macro average results were similar, we hence report only
micro average results. Results with Cosine similarity were
also similar, hence omitted.

permuted EDs:

ED(l,e)

NED(.€) = g—F D)o

Where 7 € S, is a permutation out of 5, the set of
all permutations.

Comparing the Normalized Embeddings’ Dis-
tance (NED) before and after inter-training, we
find that in all datasets the normalized distance
is smaller after inter-training. In other words,
BERT r.cLusT brings same-class representations
closer in comparison to BERT.

5.4 Are Clusters Indicative of Target Labels?

A natural explanation for the contribution of inter-
training to BERT’s performance is that the pseudo-
labels, obtained via the clustering partition, are
informative with regards to target task labels. To
quantify this intuition, in Figure 4 we depict the
Normalized Mutual Information (NMI) between
sIB labels and the target task labels, calculated
over the entire training set, versus the gain of using
BERTT.cLusT, reflected as the reduction in classifi-
cation error rate between BERT and BERT t.cLusT,
at the extreme case of 64 fine-tuning samples. Evi-
dently, in datasets where the NMI is around zero,
BERT T.cLusT does not confer a clear benefit; con-
versely, where the NMI is relatively high, the per-
formance gains are pronounced as well. Notably,
the three datasets with the lowest NMI are those
for which inter-training was not beneficial, as dis-
cussed in Section 4.

Since the partition obtained via clustering is of-
ten informative for the target class labels, we exam-
ine whether it can be utilized directly, as opposed
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to as pseudo-labels for BERT inter-training. To
that end, we applied a simple heuristic. Given a
labeling budget x, we divide it across clusters, rel-
ative to their size, while ensuring that at least one
instance within each of the 50 clusters is labeled.
We use the budget per cluster to reveal the labels of
a random sample of examples in that cluster, and
identify each cluster with its most dominant label.
Next, given a new test example, we assign it with
the label associated with its nearest cluster. Results
(see App. B) showed that this rudimentary classi-
fier is generally not on par with BERTT-cLyusT, yet
it can be surprisingly effective where the NMI is
high and the labeling budget is small.
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Figure 4: Improvement by BERTr.cLyst vs Normal-
ized Mutual Information (NMI) per dataset. x-axis:
NMI between the cluster and class labels, over the
train set. y-axis: The error reduction (percentage) by
BERT1.cLusT, When fine-tuning over 64 samples.

6 Related Work

In our work, we transfer a pretrained model to a
new domain with little data. Transfer learning stud-
ies how to transfer models across domains. It sug-
gests methods such as pivoting (Ziser and Reichart,
2018), weak supervision (Shnarch et al., 2018),
data augmentation (Anaby-Tavor et al., 2020) and
adversarial transfer (Cao et al., 2018).

In Computer Vision, pretrained models are often
learnt by image clustering (Caron et al., 2018). In
NLP, however, clustering was mainly used for non-
transfer scenarios. Ball (2019) relies on pretrained
embeddings to cluster labeled and unlabeled data.
Then, they fill the missing labels to augment the
training data. Clustering itself was improved by
combining small amounts of data (Torres and Vaca,
2019; Wang et al., 2016).

Pretrained models improved state-of-the-art in
many downstream tasks (Nogueira and Cho, 2019;
Ein-Dor et al., 2020) and they are especially needed
and useful in low resource and limited labeled data
settings (Lacroix et al., 2019; Wang et al., 2020a;
Chau et al., 2020). There are many suggestions to
improve such models, including larger models (Raf-
fel et al., 2019), changes in the pretraining tasks and
architecture (Yang et al., 2019), augmenting pre-
training (Geva et al., 2020), or improving the trans-
fer itself (Valipour et al., 2019; Wang et al., 2019b;
Sun et al., 2019; Xu et al., 2020). Two findings
on pretraining support our hypothesis on the inter-
mediate task, namely that classification surpasses
MLM. Some pretraining tasks are better than others
(Lan et al., 2020; Raffel et al., 2019) and supervised
classification as additional pre-training improves
performance (Lv et al., 2020; Wang et al., 2019a;
Pruksachatkun et al., 2020). All these works aim
to improve the performance upon transfer, making
it more suitable for any new domain. In contrast,
we focus on improvement given the domain.

With a transferred model, one can further im-
prove performance with domain-specific informa-
tion. For example, utilizing metadata (Melamud
et al., 2019), training on weakly-supervised data
(Raisi and Huang, 2018; Meng et al., 2020) or mul-
titasking on related tasks concurrently (Liu et al.,
2019a). Given no domain-specific information, it
was suggested to further pretrain on unlabeled data
from the domain (Whang et al., 2019; Xu et al.,
2019; Sung et al., 2019; Rietzler et al., 2020; Lee
et al., 2020; Gururangan et al., 2020). This, how-
ever, is sometimes unhelpful or even hurts results
(Pan, 2019).

Transferring a model and retraining with paucity
of labels is often termed few-shot learning. Few
shot learning is used for many language-related
tasks such as named entity recognition (Wang et al.,
2020b), relation classification (Hui et al., 2020),
and parsing (Schuster et al., 2019). There have also
been suggestions other than fine-tuning the model.
Koch (2015) suggests ranking examples’ similarity
with Siamese networks. Vinyals et al. (2016) rely
on memory and attention to find neighboring exam-
ples and Snell et al. (2017) search for prototypes
to compare to. Ravi and Larochelle (2017) don’t
define in advance how to compare the examples.
Instead, they meta-learn how to train the few shot
learner. These works addressed the image classi-
fication domain, but they supply general methods
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which are used, improved and adapted on language
domains (Geng et al., 2019; Yu et al., 2018).

In conclusion, separate successful practices
foreshadow our findings: Clustering drives pre-
training on images; supervised classification aids
pre-training; and training on unlabeled domain ex-
amples is helpful with MLM.

7 Conclusions

We presented a simple approach for improving pre-
trained models for text classification. Specifically,
we show that inter-training BERT over pseudo-
labels generated via unsupervised clustering creates
a better starting point for the final fine-tuning over
the target task. Our analyses suggest that BERT
can leverage these pseudo-labels, namely that there
exists a beneficial interplay between the proposed
inter-training and the later fine-tuning stage. Our
results show that this approach yields a significant
boost in accuracy, mainly over topical data and
when labeled data is scarce. Note that the method
does require the existence of an unlabeled corpus,
in the order of several thousand examples.

We opted here for a practically oriented ap-
proach, which we do not claim to be optimal.
Rather, the success of this approach suggests var-
ious directions for future work. In particular,
several theoretical questions arise, such as what
else determines the success of the approach in a
given dataset; understanding the potential syner-
gistic effect of BOW-based clustering for inter-
training; could more suitable partitions be acquired
by exploiting additional embedding space and/or
more clustering techniques; co-training (Blum and
Mitchell, 1998) methods, and more.

On the practical side, while in this work we fixed
the inter-training to be over 50 clusters and for a
single epoch, future work can improve performance
by tuning such hyper-parameters. In addition, one
may consider using the labeled data available for
fine-tuning as anchors for the intermediate cluster-
ing step, which we have not explored here.

Another point to consider is the nature of the
inter-training task. Here, we examined a multi-
class setup where BERT is trained to predict one
out of n. cluster labels. Alternatively, one may
consider a binary inter-training task, where BERT
is trained to determine whether two samples are
drawn from the same cluster or not.

Finally, the focus of the present work was on im-
proving BERT performance for text classification.

In principle, inter-training BERT over clustering
results may be valuable for additional downstream
target tasks, that are similar in spirit to standard text
classification. Examples include Key-Point Analy-
sis (Bar-Haim et al., 2020) and Textual Entailment
(Dagan et al., 2013). The potential value of our
approach in such cases is left for future work.

8 [Ethical considerations

Any use of a language model for classification in-
volves some risk of bias, which stems from the
pre-training and training data used to construct
the model. Here we aim to improve the language
model representations by relying on clustering of
data from the target domain. We have no reason
to believe this process would introduce bias be-
yond the potential bias that can occur whenever
fine-tuning a model, but this is a potential risk, as
we did not verify this directly.
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A Datasets

Links for downloading the datasets:

Polarity: http://www.cs.
cornell.edu/people/pabo/
movie-review—data/.

Subjectivity: http://www.cs.
cornell.edu/people/pabo/
movie-review—data/.

CFPB: https://www.consumerfinance.
gov/data-research/
consumer—complaints/.

20 newsgroups: http://gwone.com/
~jason/20Newsgroups/
We used the version provided by scikit:
https://scikit-learn.org/0.
15/datasets/twenty_newsgroups.
html.

AG’s News, DBpedia and Yahoo! answers:
We used the version from:
https://pathmind.com/wiki/
open—-datasets (look for the link Text
Classification Datasets).

SMS spam: http://www.dt.
fee.unicamp.br/~tiago/
smsspamcollection/

ISEAR: https://www.unige.
ch/cisa/research/
materials—and-online-research/
research-material/.

B Additional reference methods

The results of NBgow, NBgiove, SVMpow and
SVMgieve are shown in Figure 5.

sIB-based classifier As mentioned in §5.4, we
experimented with building a rudimentary classi-
fier that utilizes only the sIB clustering results and
the labeling budget. Results for this setting are
depicted in Fig. 5 in orange. Comparing these re-
sults to the BERT-based approaches reveals that
clustering alone is not sufficient.

C Additional clustering techniques

Fig. 6 depicts the comparison of the sIB over BOW
representation, denoted BERTT.cLysT, to two other
configurations for the clustering intermediate task:
K-means over GloVe representations and Harti-
gan’s K-means (Slonim et al., 2013) over GloVe.
The GloVe representation for each text is an av-
erage of GloVe representations for the individual
tokens. The comparison reveals that in most cases
sIB over BOW outperforms the other clustering
configurations.
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Figure 5: Comparing BOW methods and the BERTyr.cLyst setting. Each point is the average of five repetitions (£
SEM). X axis denotes the budget for training in log scale, and Y accuracy of each model.
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