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Abstract

Table fact verification aims to check the cor-
rectness of textual statements based on given
semi-structured data. Most existing methods
are devoted to better comprehending logical op-
erations and tables, but they hardly study gen-
erating latent programs from statements, with
which we can not only retrieve evidences ef-
ficiently but also explain reasons behind veri-
fications naturally. However, it is challenging
to get correct programs with existing weakly
supervised semantic parsers due to the huge
search space with lots of spurious programs. In
this paper, we address the challenge by leverag-
ing both lexical features and structure features
for program generation. Through analyzing the
connection between the program tree and the
dependency tree, we define a unified concept,
operation-oriented tree, to mine structure fea-
tures, and introduce Structure-Aware Seman-
tic Parsing to integrate structure features into
program generation. Moreover, we design a
refined objective function with lexical features
and violation punishments to further avoid spu-
rious programs. Experimental results show that
our proposed method generates programs more
accurately than existing semantic parsers, and
achieves comparable performance to the SOTA
on the large-scale benchmark TABFACT.

1 Introduction

With the rise of misleading information on the Inter-
net, such as fake news, rumors and political deceit,
fact-checking has been developed as a means of
detecting and filtering false information. Table fact
verification (TFV) is a specific fact-checking task
that requires performing logical operations such as
comparison, superlative and aggregation over given
tables to verify textual statements.

Programs play an important role in TFV. On one
hand, correct programs can provide rationales for
model decisions, which make reasoning analysis
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Season Podiums …

1980 9 …

1981 8 …

1981 0 …

… … ...

Table

Statement
In 1981 season, the highest number of 
podiums was 8 and the lowest was 0.

and

v2:eq         v4:eq

v1:max   8     v3:min   0

v0:filter_eq         podiums

all_rows season       1981

Program  

Program 
generation

V0    The table where column season equal to 1981 
is [row1, row2].

V1    The max value of podiums in [row1, row2] is 8.

V2    8 is equal to 8.

V3    The min value of podiums in [row1, row2] is 0.

V4    0 is equal to 0.

Verbalized Evidence

Evidence Accumulation

Final Prediction

ENTAILED

REFUTED

and(eq(max(filter_eq(all_rows,season,1981),podiums),8),
eq(min(filter_eq(all_rows,season,1981),podiums),0))

Figure 1: The pipeline of ProgVGAT (Yang et al., 2020)
on TFV. Here the task is, given a table and a statement,
to predict whether the table entails the statement or
refutes it. Verbalized evidences are verbal descriptions
of the program execution procedure.

and failure diagnosis feasible (Zhou et al., 2018).
On the other hand, they can be used to fetch the key
evidences for verification. Figure 1 gives an exam-
ple of mainstream methods (Zhong et al., 2020a;
Shi et al., 2020b; Yang et al., 2020; Shi et al.,
2021) for TFV. It first generates latent programs
from statements, then collects evidences from ta-
bles by executing the programs over the tables, and
finally leverages all information for final predic-
tions. Compared with naive methods(Chen et al.,
2020; Zhang et al., 2020a) which simply put state-
ments and linearized tables into language models
for verification, the mainstream methods addition-
ally introduce programs to reveal the evidences
(e.g., verbalized evidence V1) covered by logical
operations (e.g., max([row1, row2]], podiums)) and
to fetch the key information from the table (e.g.,
8). But an incorrect or spurious program may intro-
duce irrelevant or even contradictory evidences. So
it is crucial to get correct programs that properly ex-
tract evidences from tables, especially when tables
are too large to be encoded by neural networks.

Despite being important, program generation re-
mains underexplored for TFV. To the best of our
knowledge, only LPA (Chen et al., 2020) works
on program generation. It first searches programs
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with human-designed features, then ranks them
with a neural network, and finally uses the exe-
cution result of the top program as the prediction.
However, it exhibits an unacceptable performance
which means it generates incorrect programs. The
remaining approaches just predict the correctness
of statements but never concern about generating
correct programs. In TFV, there is still a need to
find better solutions for program generation.

Intuitively, we can resort to weakly supervised
semantic parsing (Liang et al., 2011) for the pro-
gram generation, but existing semantic parsers may
fail in TFV for the amplified spurious program
problem caused by the binary label. Due to the lack
of program labels, existing methods will sample la-
bel consistent programs for model training. In TFV,
any sampled program that outputs a Boolean value
has a 50% chance of hitting the correct label; hence
there are many label consistent programs, while
only a small part of label consistent programs are
correct, implying that the rest are all spurious.

In this paper, we carefully examine the syntax
structures of statements and find that task-related
structure features are the key to address the issue
mentioned above. We propose a unified operation-
oriented tree constructed in three steps. Firstly, we
link entities between the table, trigger dictionary
and statement. Secondly, we obtain the original
tree using a dependency parser with the linked state-
ment as input. Thirdly, the original tree is pruned
and merged to a simplified tree that contains only
information related to operations. Such a unified
tree can provide distant supervision, assisting our
model in generating single operations correctly and
generating all operations in the correct order. As
a result, we have a higher probability of getting
correct programs and evading spurious ones. Then
we introduce Structure-Aware Semantic Parsing
(SASP) by designing a scoring function based on
the proposed tree and fusing the sample distribu-
tions computed by the scoring function and neural
network. At last, we design a refined objective
function with lexical features and violation punish-
ments to avoid spurious programs further.

Experimental results on Tabfact and Logic2Text
show that SASP improves the performance of the
baseline model significantly, and achieves compa-
rable performance to the State-Of-The-Art method.
Our contributions are as follows:

• We propose an operation-oriented tree to pro-
vide distant supervision for semantic parsing.

• We propose SASP which leverages both lexi-
cal features and structure features for the se-
rious spurious problem in weakly supervised
semantic parsing for TFV.

• With the proposed method, we can generate
more accurate programs which can not only
boost existing mainstream methods for TFV,
but also provide explanation for verification.

2 Related Work

Fact Verification Fact verification aims at identi-
fying the truthfulness of online textual statements
given different sources of evidences, including doc-
ument sets (Thorne et al., 2018; Nie et al., 2019;
Zhong et al., 2020b; Wan et al., 2021), images
(Suhr et al., 2019; Li et al., 2020) and structured
tables (Chen et al., 2020; Zhong et al., 2020a; Shi
et al., 2020b; Zhang et al., 2020a; Yang et al., 2020;
Shi et al., 2021). Despite the sources of evidences
used to support the verification vary, the methods
for different tasks appear to have the same idea.
They first locate the key evidences that will aid in
their verification, then fuse the collected key ev-
idences with the original statement to make the
final prediction. In this paper, we focus on gener-
ating better programs that allow existing methods
to get key evidences from tables efficiently, hence
benefiting existing methods for TFV.

There are also many explainable fact verification
works(Kotonya and Toni, 2020a). Attention based
methods(Popat et al., 2018; Lu and Li, 2020; Wu
et al., 2020) highlight key evidences according to
attention weights. Atanasova et al. (2020); Kotonya
and Toni (2020b) generate explanations in natural
language with text summarization technology. Gad-
Elrab et al. (2019); Ahmadi et al. (2020) use horn
rules and knowledge graphs to mine explanations.
Our work is similar to the third line of works from
the perspective of explainability.

Semantic Parsing Due to the expensive cost of
annotated programs, weakly supervised semantic
parsing (Liang et al., 2011; Berant et al., 2013;
Artzi and Zettlemoyer, 2013) has been proposed to
learn program generation from sentence-label pairs.
Compared with full supervision, weak supervision
brings spurious problems: there may be spurious
programs that accidentally reach the right answer
for the wrong reason, and they will provide wrong
supervision for model training. Previous work (Pa-
supat and Liang, 2016) uses crowd-sourced deno-
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tations to prune spurious programs. Liang et al.
(2018) use both programs inside and outside the
memory buffer to compute the expected return ob-
jective in case the neural model is misled by spuri-
ous programs inside memory. Dasigi et al. (2019);
Misra et al. (2018); Agarwal et al. (2019) rely on
lexical features to differentiate between spurious
and correct programs. Most recently, Cao et al.
(2019); Ye et al. (2019); Shao et al. (2021) exploit
the semantic correlations between sentences and
programs to rule out spurious programs via jointly
learning semantic parser and sentence generator. In
this paper, we focus on a more complex problem,
learning program generation with (sentence, binary
label) pairs, in this field, and take the above ap-
proaches a step further by leveraging both lexical
features and structure features.

There already exist many works utilizing the
structural correlations between a sentence and its
programs. Previous works(Reddy et al., 2016; Hu
et al., 2018) directly transform the dependency
structure of a sentence into a program, which is
not satisfactory on complex sentences. In recent
years, some works(Wang et al., 2019; Herzig and
Berant, 2021; Li et al., 2021) treat structural con-
straints as latent variables, then parse a sentence
into a program under the constraints. However, it is
difficult to learn latent variables in a noisy environ-
ment. Simultaneously, modeling structural corre-
lations explicitly requres human annotations.(Sun
et al., 2020; Shi et al., 2020a). In this paper, we
propose a concise and robust method to integrate
the structural correlations into semantic parsing.

3 Model

Structure-Aware Semantic Parsing (SASP) centers
around the operation-oriented tree to deconstruct
some compositionality of statement and generate
program correctly. Figure 3 gives an overview of
our proposed SASP. In this section, we will first
introduce the task formulation, then describe how
to construct the operation-oriented tree, and give
the way to generate programs following the well-
designed tree at last.

3.1 Problem Formulation and Notations

Given a table T = {celli,j |i ≤ R, j ≤ C} with
the table header H = {colj |j ≤ C} as evidence,
a statement S = {wi|i ≤ W} with W words and
a true label y ∈ Y = {True, False} where True
means T entails S and False means T refutes S,

Correct

filter_eq(all_rows, season, 1981); max(v0, podiums); eq(v1, 0); min(v0, 
podiums); eq(v3, 8); and(v2, v4)

filter_eq(all_rows, podiums, 8); max(v0, season); eq(v1, 1981); 
filter_eq(all_rows, podiums, 0); min(v0, season); eq(v4, v1); and(v2, v5)

filter_eq(all_rows, season, 1981); max(v0, podiums); eq(v1, 8); min(v0, 
podiums); eq(v3, 0); and(v2, v4)

Incorrect

Spurious

Figure 2: Different types of programs for the statement
in figure 1. Both spurious and correct programs are
label consistent as they can be executed to correct label,
while only correct programs are semantic consistent as
they reflect the underlying meaning of statements.

we aim to train a model to do explainable veri-
fication. More specifically, we train a model to
translate S into an executable program z, then pre-
dict a label ŷz ∈ Y by accessing the table T with
program z such that ŷz = y. Different from most
existing methods, which just pay attention to pre-
dicting a label ŷ ∈ Y such that ŷ = y, our model
also generates a program as accurate as possible to
explain and support the verification.

Program A program z can be seen as a set of
executable operations† {opi|i ≤ M}. Consider-
ing the program example in figure 1, there are
six operations in total, and each operation opi =
{opi.func, ..., opi.argj , ..., opi.out} has one oper-
ator opi.func (e.g., filter_eq in the figure), mul-
tiple operands opi.argj , 0 < j ≤ ν relevant to
the table T (e.g., all_rows, season and 1981) and
one output vi = opi.out which may be selected
as an operand by subsequent operations. When
the whole program is executed by an interpreter,
it will be parsed into a tree as shown in figure 1
and executed from bottom to up. According to the
execution correctness and the semantic consistency,
we divide programs from the executable program
set Z into three categories, as shown in figure 2.

3.2 Operation-Oriented Dependency Tree
In this part, we first reveal the connection between
the program tree and the dependency tree. Then,
we design a unified operation-oriented dependency
tree for making full use of the connection.

Syntactic structures, the organization of tokens
in a sentence and how the contexts among them are
interrelated, can be revealed by a dependency tree
whose nodes and edges correspond to words and
grammatical relations in the sentence. We observe
that: (1) the operations related to descendants tend
to be executed before those related to ancestors in
the dependency tree; (2) the operator and operands

†The definition of specific operations are listed in Ap-
pendix A.1
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In   1981   season,   the   highest   number   of   podiums   was   8   and   the   lowest   was   0

Pruning Irrelevant Info

Merging Relevant Nodes

[;1981; season]    [highest;8;podiums]    [lowest;0;podiums/wins]

root Operation-oriented tree 

root

[1981]      [season]      [highest]     [podiums]      [8]      [lowest]      [0]

In   1981   season,   the   highest   number   of   podiums   was   8   and   the   lowest   was   0

Dependency Parsing

neural flow

symbolic flow

attention

function representation

column representation

cell representation

[CLS] Statement [SEP] Table [SEP]

BERT

+

+

+

LSTM cell

𝑓𝑖𝑙𝑡𝑒𝑟_𝑒𝑞 1981𝑠𝑒𝑎𝑠𝑜𝑛 ……
Program

Interpreter Final Prediction

𝒍𝐭𝜻𝐭

sample

Figure 3: An overview of our proposed approach. The left part illustrates how to construct the operation-oriented
tree. The right part depicts how to generate programs with the well-designed tree. The logits computed by LSTM
for tokens with function type, column type and cell type are in blue, rose red and yellow respectively. And the scores
given by the operation-oriented tree are in grey. They are combined to calculate the final sample distribution.

within one operation tend to have shorter distances
in the dependency tree; in the correct program com-
pared with the incorrect or spurious one. Use the
dependency tree in figure 3 and the program in fig-
ure 1 as an example. The operation filter_eq related
to the child node is executed before the operation
eq(v1, 8) corresponding to the father node. What’s
more, the distance of operands in the incorrect oper-
ation filter_eq(all_rows, podiums, 1981) is 6, while
that in filter_eq(all_rows, season, 1981), a correct
operation, is just 1.

The observations above suggest that there exist
some structural correlations between a statement
and its programs. We will present how to make
use of them in the next section. Before that, we
propose an operation-oriented dependency tree to
strengthen the above rules in two steps. First, we
prune the original dependency tree to focus exclu-
sively on the operation-related structure. Then, we
merge the information around every operation to
make information in a single operation more com-
pact. What’s more, it is more convenient to define
and calculate the distance in a simplified tree.

The left part of figure 3 illustrates how to con-
struct the proposed tree. First of all, we do rule-
based entity linking to find potential operators and
operands from the statement. For operators de-
tection, we match strings between the statement
and the pre-defined trigger words‡, and give the
matched entities a function type. As for operands,
we divide them into two types, cell and column, as
they are linked to table cells and the table header re-
spectively (e.g., 1981 has a cell type and season has

‡All pre-defined trigger words are listed in Appendix A.2

Algorithm 1 Operation-oriented tree construction

Input: Dependency tree τ with root ρ, where ev-
ery node has a child list children, a type list
type and a value list val.

Output: Operation-oriented tree τ̂ with root ρ̂.
1: function PRUNE(ρ)
2: ρ̂.children, ρ̂.type, ρ̂.val← {}, ρ.type, ρ.val
3: for c ∈ ρ.children do
4: ĉ← PRUNE(c)
5: if MERGE(ρ̂, ĉ) then
6: ρ̂.type← ρ̂.type ∪ ĉ.type
7: ρ̂.val← ρ̂.val ∪ ĉ.val
8: ρ̂.children← ρ̂.children ∪ ĉ.children
9: else

10: ρ̂.children← ρ̂.children ∪ {ĉ}
11: end if
12: end for
13: return ρ̂
14: end function
15:
16: function MERGE(ρ̂, ĉ)
17: for (i, j) ∈ {(i, j)|i < |ρ̂.type|, j < |ĉ.type|} do
18: if ρ̂.type[i] = ĉ.type[j] ∧ ρ̂.val[i] ̸= ĉ.val[j]

then
19: Return False
20: end if
21: end for
22: Return True

23: end function

a column type). Then we pass tokens and linked en-
tities with types into a general dependency parser to
get a dependency tree τ . Every linked entity node
n = {n.children, n.type, n.val}, n ∈ τ has a list
type with one type and a list val with one entity.
For every token node, its type list and val list are
both empty. After that, for every entity node with a
cell type value celli,j , we will add column and colj
into its type list and val list respectively. At last,
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we call PRUNE in algorithm 1 using τ as input
and get output τ̂ . The nodes left in the tree may
contain function info corresponding to the logical
operations, cell info and column info from tables.

3.3 Structure-Aware Semantic Parsing
In this section, we will introduce SASP, which
unifies both structural features and lexical features
with one operation-oriented dependency tree.

As shown in the right part of figure 3, we first
employ BERT (Devlin et al., 2019) to encode the
statement S and the table T following TABERT
(Yin et al., 2020). Then we get representations
for the statement and entities with different types,
which will be fed into the decoder. During de-
coding, the logits are computed by an LSTM with
attention mechanism(Luong et al., 2015):

ht = LSTM(ht−1, xt−1)

at = MLP ([ht;Attention(ht, S)])

lt = MatMul(Xt, at)

(1)

where ht is the hidden state, xt−1 is the token gen-
erated previously, Xt is the candidate token list
selected from the vocabulary according to the to-
ken type at timestep t (e.g., the type for the second
token in the program being predicted is column),
and lt are the logits for the tth token over Xt.

However, in TFV, it is difficult to find the correct
optimization direction with only attention mecha-
nism, especially at the beginning of the training, be-
cause of the serious spurious problem. So we bias
the logits with our proposed tree additionally. As
a result, our model can give the correct program a
higher probability, therefore exploring search space
efficiently and evading spurious programs.

More specifically, we design two scoring mecha-
nisms in line with the two rules found in the previ-
ous section. As shown in algorithm 2, given λ < 1,
score = λdistance means the closer distances, the
higher scores. For operator selection, we calculate
the average distance from the candidate x ∈ X
to its leaves in the tree τ̂ , and set the distance to
be +∞ if it is not in the tree. For example, the
candidate operator max (triggered by highest) has a
score of λ1. In this way, we give operators closer to
leaves higher scores, which leads to operations re-
lated to descendants being generated before those
related to ancestors. For operand selection, we
compute the average distance from the candidate
x ∈ X to tokens in the operation op. Use the op-
eration in figure 3 as an example, the score of the

Algorithm 2 Scoring function with candidate to-
ken list X , operation-oriented tree τ̂ and operation
being predicted op as input, where λ < 1 is a
hyper-parameter.

1: function SCORE(X, τ̂ , op)
2: Score← {}
3: ▷ operator selection
4: if op = {} then
5: for x ∈ X do
6: d← Distance_to_leaf(x, τ̂)
7: Score← Score ∪ {λd}
8: end for
9: Return Score

10: end if
11: ▷ operand selection
12: for x ∈ X do
13: d← 0
14: for o ∈ op do
15: d← d + Distance_in_tree(x, o, τ̂)
16: end for
17: Score← Score ∪ {λd/|op|}
18: end for
19: Return Score

20: end function

candidate 1981 is λ0 when the timestep t = 3. In
this way, we prioritize the tokens closed to existing
information in the operation being generated, so
that the distances inside one operation tend to be
shorter in the dependency tree. At last, we combine
the scores ζt given by algorithm 2 and the logits
lt computed by Equation 1 to get the final sample
distribution:

ζt = Score(Xt, τ̂ , op)

P (Xt|S, T, x<t) = Softmax(lt + αζt)
(2)

where α is a hyper-parameter, τ̂ is the operation-
oriented tree and op is the operation being pre-
dicted. After we sample xt ∼ P (Xt|S, T, x<t), it
will be used to update ht, τ̂ and op. We give more
details in Appendix A.3.

Previous works(Agarwal et al., 2019; Dasigi
et al., 2019) measure the relevance between a sen-
tence and a program by their coverage, and use that
lexical coverage to augment the reward function.
In a similar spirit, we design the reward based on
our proposed tree. Our intuition is that different
types of tokens play different roles in the operation-
oriented tree, and therefore should be treated under
varying degrees. And our reward is defined below.

R(z) =


∑

κ∈Type

σκrκ, ŷz = y

0, otherwise

(3)

where Type = {“function”, “cell”, “column”},
{rκ|κ ∈ Type} are relevances, {σκ|κ ∈ Type}
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are hyper-parameters, and ŷz is the label predicted
by accessing the table T with the program z. Since
all operation-related tokens of a statement are re-
served in the operation-oriented tree, we can cal-
culate the relevance between a statement and a
program by

rκ =

∑
n∈τ̂ 1{∃i, n.type[i] = κ ∧ n.val[i] ∈ z}∑

n∈τ̂ 1{∃i, n.type[i] = κ}
(4)

where {n|n ∈ τ̂} are nodes of our proposed tree.
For further improvement, we modify the general-
ized update equation in PolicyShaping (Misra et al.,
2018) to get Maximum Likelihood Most Violation
Reward. The final objective function is:

Jθ =
∑

(S,T )∈D

( ∑
z∈Zset

R(z)π(z|S, T )

−γ max
z′∈Zerr

(π(z′|S, T ))
) (5)

where D contains all S-T pairs, Zset is the set of
sampled executable programs, Zerr ⊆ Zset is the
set of incorrect programs, π is the sample policy, γ
is a hyper-parameter and θ contains all the trainable
parameters. We think such an update equation more
robust than REINFORCE helps the model learn
better with many spurious programs in Zset.

4 Experiments

4.1 Experimental Settings
Dataset and Evaluation Metrics We conduct
experiments on the large-scale dataset TABFACT
(Chen et al., 2020), which aims to study fact ver-
ification given semi-structured data as evidence.
TABFACT contains 16,573 tables and 118,275
statements which are divided into training (80%),
validation (10%) and testing (10%) sets. The test-
ing set is further partitioned into simple and com-
plex sets. The statements in the complex set are
more complicated in semantic compositionality
than those in the simple set. Because there is no
program ground-truth provided in TABFACT, we
just use the label accuracy as metric for comparison,
which is also called execution accuracy (Ex.Acc).

We also conduct experiments on WikiTableQues-
tion (WTQ) (Pasupat and Liang, 2015), a com-
monly used weakly supervised semantic parsing
dataset, for further evaluation. And we use the
same setting as previous works.

To test our performance on program generation,
we use Logic2Text, a dataset that contains around

10,000 correct statement-table-program tuples, to
evaluate parse tree matching accuracy (PT.Match)
(Kim et al., 2020) for programs generated by our
method and other methods that also provide pro-
grams. Because there are only "ENTAILED" state-
ments in Logic2Text, we use the model trained on
TABFACT to predict programs without tuning.

Implementation Details We use CRF2o (Zhang
et al., 2020b) for dependency parsing. For semantic
parsing, we use pytorch neural symbolic machine
(Liang et al., 2017, 2018; Yin et al., 2020) as our
baseline and improve it with the operation-oriented
tree. Further, to bootstrap SASP, we use ζt in Equa-
tion 2 to sample around 10 label consistent pro-
grams per example, and load them into memory
buffer before training. For BERT parameters, we
set the hidden size to 768, and use Adam optimizer
with lr 5e-5, warmup step 30k, dropout 0.2. For
LSTM parameters, we set hidden size to 200, and
use Adam optimizer with lr 3e-3, train step 150k,
dropout 0.2. As for hyper-parameters λ, α, σfunc,
σcell, σcolumn and γ, we set them to 0.7, 2, 0.2, 0.4,
0.4 and 0.2 respectively. All experiments were con-
ducted on a workstation with 128 GB of RAM and
2 RTX 3090 GPUs. Our source code is available at:
https://github.com/ousuixin/SASP.

Compared Systems We compare our model with
the following baselines, including six that focus on
label prediction and two that pay extra attention
to program generation. Among the former five
methods, Table-BERT (Chen et al., 2020) and SAT
(Zhang et al., 2020a) focus on table linearization,
so they use different ways to change 2-dimensional
tables into 1-dimensional sequences composed of
tokens, and then feed them into BERT for label
prediction. LFC (Zhong et al., 2020a), HeterTFV
(Shi et al., 2020b), ProgVGAT (Yang et al., 2020)
and LERGV(Shi et al., 2021) pay attention to com-
prehending tables and programs. They use differ-
ent ways to encode programs (generated by LPA-
ranking) and tables for verification, although the
programs they use are not precise at all. The latter
two methods will generate programs and use pro-
gram execution results as final predictions, includ-
ing LPA-ranking (Chen et al., 2020) and MAPO
(Liang et al., 2018) with BERT.

4.2 Experimental Results
Performance on TABFACT Table 1 gives the
overall performance of all eight baselines and our
proposed SASP, from which we can observe that:
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Model Val Test Test(Simple) Test(Complex)

Table-BERT 66.1 65.1 79.1 58.2
SAT 73.3 73.2 85.4 67.2
Tapas∗ 78.6 78.5 90.5 72.5

LFC 71.8 71.7 85.4 65.1
HeterTFV 72.5 72.3 85.9 65.7
ProgVGAT 74.9 74.4 88.3 67.6
LERGV 75.6 75.5 87.9 69.5

MAPO w/ BERT refined-reward 56.6 57.2 60.2 55.8
LPA-Ranking 65.2 65.0 78.4 58.5

SASP 75.0 74.9 87.6 68.8

Table 1: Overall performance (label accuracy) of different methods on TABFACT dataset. We don’t compare our
model with Tapas(Eisenschlos et al., 2020) directly. Because they focus on the design of pre-trained model and use
extra data besides the TABFACT training data.

(1) As a semantic parsing method, our method
achieves performance comparable to the State-Of-
The-Art method LERGV while maintaining ex-
plainability. This is what previous semantic parsers
can not do, and shows our superiority in TFV.

(2) Our proposed method works better than
Table-BERT and SAT, demonstrating the power of
the content snapshot proposed by Tabert in catch-
ing key information from a table.

(3) SASP has a lead of 1.2% on the the complex
set compared with ProgVGAT, but falls behind on
the simple set. There are two reasons for that. On
one hand, mainstream methods like ProgVGAT
can fix some errors caused by the symbolic inter-
preter (e.g., executing eq("USA", "America") to
False). While SASP uses the execution result of
the generated program as prediction. Due to the
limited expression ability, our interpreter can not
cover every statement with a correct program, lead-
ing to a lower probability of predicting a correct
answer. On the other hand, ProgVGAT can not
deal with structural mistakes (e.g., replacing max
with min operation) in programs generated by LPA.
As a result, ProgVGAT performs worse in com-
plicated semantic environment where LPA has a
higher probability of making a structural mistake.

(4) Our method outperforms MAPO and LPA
by significant margins, suggesting that SASP can
generate programs more accurately.

Performance on WTQ Table 2 shows the ex-
perimental results on WTQ. Our model just has
comparable performance with our baseline, MAPO
w/ BERT. We give two possible reasons below:

Model Dev Test

Pasupat and Liang (2015) 37.0 37.1
Dasigi et al. (2019) 43.1 44.3
Agarwal et al. (2019) 43.2 44.1
Wang et al. (2019) 43.7 44.5

MAPO w/ BERT (Yin et al., 2020) 49.6 49.4
SASP 49.3 49.5

Table 2: Performance (execution accuracy) of different
methods on WikiTableQuestion. The first four are all
previous works.

(1) As can be seen in figure 1, the program has
more than three operations, which is quite common
in TFV, while they use at most three operations to
answer a question in previous works (Pasupat and
Liang, 2015; Zhong et al., 2017; Liang et al., 2018).
Because the compositionality of WTQ is lower than
TABFACT, our proposed operation-oriented tree
can only provide very limited help.

(2) The spurious program problem is further
amplified by the binary label in TABFACT. Any
program that outputs a Boolean value has a 50%
chance of hitting the correct label; hence there are
many label consistent programs. While in WTQ,
it is not that easy to hit the correct label. Suppose
that the vocabulary list has N tokens, but only one
token corresponds to the answer. Every executable
program in WTQ will output an answer with the
string type, so it only has a 1

N probability of hitting
the correct label. WTQ has much fewer spurious
programs, so lexical features are enough to rule out
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Model PT.Match Ex.Acc

MAPO w/ BERT 13.4 70.1
LPA 15.6 56.7
SASP 47.9 75.9

Table 3: Performance (matching accuracy and execution
accuracy) of different methods on Logic2Text dataset.

spurious programs in WTQ in many cases.

Performance on Logic2Text Results of differ-
ent semantic parsing methods are shown in table 3.
Our model outperforms other methods with a con-
siderable margin on PT.Match metric. This means
SASP can generate more correct programs, which
makes it behave well in table fact verification.

In program generation for TFV, the search space
is too large to be explored completely. To tackle
this problem, MAPO w/ refined reward performs
systematic search space exploration guided by
lexical features in the advanced reward function.
It only obtains PT.Match accuracy of 13.4% on
Logic2Text. The high Ex.Acc score shows that it
just predicts spurious programs executed to "True".
For LPA, it first collects all programs under the
search space restricted by a lexical feature based
algorithm, then ranks these programs with a neural
network (BERT). And LPA also has poor behavior
in program generation here.

The big gaps (more than 40% in MAPO and
LPA) between PT.Match and Ex.Acc accuracy sug-
gest that with only lexical features, there are still
many spurious programs being explored. Use the
spurious program in figure 2 as an example, it con-
forms to lexical features by making full use of
sentence tokens, and would be a promising candi-
date in MAPO and LPA. However, such kind of
programs will differ from the correct ones in the
order of operators or the position of operands, so
they can be distinguished from correct programs by
structure features. Our method captures both lexi-
cal and structure features, therefore evading such
spurious programs and biasing generated programs
from label consistent towards semantic consistent.
The smaller gap (28% in SASP) between PT.Match
and Ex.Acc accuracy confirms our analysis above.

4.3 Ablation Study

Effect of Structural Info We further conduct an
ablation study to evaluate the necessity of leverag-
ing structure information through rules (1) and (2).

Model Val Test

SASP w/o proposed tree 56.6 57.2
SASP w/o function type 59.3 60.1
SASP w/o column type 60.5 61.5
SASP w/o cell type 70.2 71.1
SASP 75.0 74.9

Table 4: Results (label accuracy) of ablation study that
shows the effectiveness of our proposed tree.

Model Val Test

SASP w/ binary-reward 60.1 60.2
SASP w/o violation 73.5 73.1
SASP 75.0 74.9

Table 5: Results (label accuracy) of ablation study that
shows well defined reward function and violation pun-
ishiment contribute a lot to our method.

For rule (1), which defines the operator selection
mechanism, we just drop types and values related
to function in our proposed tree to see how it in-
fluence. For rule (2), which defines the operand
selection mechanism, we drop types and values re-
lated to cell or column. If we drop all types from
the tree, the algorithm degenerates into MAPO w/
BERT refined-reward violation. The experimental
results are given in Table 4. We can see that func-
tion is the most important type, then is column type,
followed by cell type. And all of the types make
significant contributions to the final performance.
The results above show that both mechanisms asso-
ciated with the rule (1) and the rule (2) are crucial
for our model because both operator and operand
selections are crucial for program generation.

Effect of Objective Function To evaluate the im-
pact of the refined objective function in Equation 5,
we conduct another ablation study, and the results
are shown in table 5.

We change the reward function in Equation 3
with a binary reward function for comparison. The
result shows that refined feedback taking lexical
features into account plays an essential role in our
model. Without the refined reward, some opera-
tions may be omitted because the partial programs
are already executed to the right label, resulting in
a much worse performance.

We also remove the violation punishment to in-
vestigate the necessity of a conservative update pol-
icy. The result shows that the robust update policy

7631



Statement LPA SASP

In the 1993 - 94 belarusian

premier league , the venue

with the highest capacity

was minsk at 41040.

The January 8 game

against milwaukee was the

only time devin harris did

not have the high assist

performance for the new

jersey net .

and

only    hop_eq

filter_not_eq   date   01-08

all_rows   assist   devin   

not_within

filter_eq    date   01-08

filter_not_eq   assist   devin

all_rows team   milwaukee

and

eq            eq

41040    hop    hop    minsk

capacity    argmax    venue

all_rows    capacity

eq

max   41040

argmax    capacity 

filter_eq    capacity

all_rows   location   minsk

Figure 4: Cases in Logic2Text dataset. We visualize the
programs with tree structures.

makes around 1% improvement. The reward func-
tion we designed just prioritizes programs that use
tokens related to logical operators or tables as much
as possible, leading to label inconsistent programs
that meet the condition. Giving such programs a
punishment complements the refined reward.

4.4 Case Study

In figure 4, we provide two cases to demonstrate
the effectiveness of our method for program gener-
ation. In both cases, our method generates correct
programs that are semantic consistent with the state-
ment, while LPA screws them all up. In the first
case, max is the descendant compared with minsk
in the dependency tree, so our method uses max be-
fore minsk, while LPA gets the wrong order. This
confirms that our method generates programs in
the correct order with the operator selection mecha-
nism. In the second case, devin has a more close re-
lation to not in the dependency tree, so our method
chooses devin as an operand of filter_not_eq, while
LPA selects an incorrect operand milwaukee for
filter_not_eq. This confirms that our method gen-
erates single operations correctly with the operand
selection mechanism.

4.5 Error Analysis

To check the generalizability and limitations of our
proposed method, we randomly sampled 200 exam-
ples from the validation set of TABFACT, and man-
ually inspected the top one program of the beam
search using SASP. We found that SASP generated
correct programs for 99 examples, spurious pro-
grams for 57 examples and incorrect programs for
44 examples. The proportion of correct programs
(49.5%) and spurious programs (28.5%) is similar
to that in table 3 (47.9% and 28%). This shows
the generalizability of SASP and the rationality of
using Logic2Text for PT.Match evaluation. What’s
more, we classified the causes of 101 spurious or

incorrect programs into four main categories.
Unsupported operations cause 30 error examples.

For instance, in "the new york rangers beat the at-
lanta flames by 2 points", the minus operation in
a single table cell "4 - 2" is not supported by our
interpreter. The second category of errors occur
when the functions or entities can not be detected
and added to dependency tree nodes correctly. Use
"the maroon played 3 teams located in the united
states" as an example, "the united states" can not
be linked to "America" in the given table; hence
it will not be added to the operation tree. 31 er-
ror examples are caused by this reason. The first
two categories can not be handled by our proposed
method, and we leave the development of powerful
interpreter and robust entity linker for future work.

The third category is structure error, causing
13 error examples. In other words, the order of
operators or the position of operands in the pre-
dicted program differs from the correct one. The
wrong programs in figure 2 are all this kind of
error cases. Underutilized information causes 23
error examples. For the statement in figure 1, "fil-
ter_eq(all_rows, season, 1981); max(v0, podiums),
eq(v1, 8)" causes this kind of error.

5 Conclusion

In this paper, we have proposed a novel approach
to do explainable verification by structure-aware
semantic parsing. Firstly, we define a unified
operation-oriented tree by entity linking, depen-
dency parsing and tree pruning. Then, we demon-
strate how to integrate our proposed tree into se-
mantic parsing with the operator-related and the
operand-related principles. At last, we introduce
the refined objective function which could reduce
the influence of spurious programs. Experimen-
tal results confirm that our proposed method can
bias program generation from label consistent to-
wards semantic consistent and achieve acceptable
performance on the benchmark dataset TABFACT.

Future work will collect evidences that are more
precise and get better verification performance by
replacing LPA with SASP in the first stage of main-
stream methods.
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A Appendix

A.1 Pre-difined API
As shown in figure 3 and algorithm 1, when we gen-
erate an operation, we first select an operand, then
check the pre-defined API to get the type informa-
tion, and finally select operands under the specific
type (according to the type information). Here we
list detailed descriptions for the pre-defined API in
table 6.

Actually, there are seven different types, includ-
ing Function, Cell-String, Cell-Number, Bool, Sub-
Table, Column-String and Column-Number. In fig-
ure 3 and algorithm 1, we divide them into three
types for a clearer illustration:

function cell column

Function

Bool,
Sub-Table,
Cell-String,
Cell-Number

Column-String,
Column-Number

In practice, we will select operands according to
more detailed type information given by our prede-
fined API.

In addition, we will update cell values and rep-
resentations by adding the execution result of op
and the LSTM hidden state h to Cell and C, re-
spectively (Line 12). In practice, we will maintain
more detailed symbol lists and representation lists.
For example, when the last token of the operation
max(v0, podiums) is generated, the hidden state of
LSTM will be added into the C-Number list, while
the execution result of max(v0, podiums), v=8, will
be put into the Cell-Number list.

A.2 Pre-difined Trigger Words
In the first step of the operation-oriented tree con-
struction, we match strings between the statement
and the pre-defined trigger words to find underly-
ing operators. Here we give details about the pre-
defined trigger words in table 7, partly following
LPA (Chen et al., 2020).

A.3 Implement Details for Decoding Module
Algorithm 3 gives the complete process of our de-
coding module. We initialize the program as an
empty list with no operations, then enlarge it with
operations generated progressively until the neural
network outputs a "stop" token (Line 13-15). As
for operation generation, we first sample an opera-
tor from the operator list Func, then get the type
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information of its operands through the pre-defined
API , with which we can choose representations
under the correct type. After that, we will sam-
ple operands from Cell if the operand type is cell,
and sample them from Header otherwise. Once
the generation is finished, the whole expression is
added to the program (Line 3-11). All these above
are similar to what they do in NSM (Liang et al.,
2017). But we redesign the SAMPLE function
according to equation 2.

Besides, to maintain our proposed tree τ̂ , we
will update information by dropping out the used
operators and cell type operands in op. What’s
more, we will update C, the cell representation list,
by adding current hidden state into into C (Line
12). At the same time, op and Cell are updated by
adding the execution result of op (v = op.out).

Algorithm 3 Program sampling with statement
representation Vs, table cell representation list
C = {Vc|c ∈ Cell}, table column representation
list H = {Vh|h ∈ Header}, operator representa-
tion list F = {Vf |f ∈ Func}, special token list
E = {Ve|e ∈ {continue, stop}}, the pre-defined
API , neural network LSTM and the operation-
oriented tree τ̂ as input.

1: z ← {}
2: while True do
3: op← {SAMPLE(F, Func, τ̂ , {})}
4: for κ ∈ API[op[0]] do
5: if κ = ”cell” then
6: op← op ∪ {SAMPLE(C,Cell, τ̂ , op)}
7: else if κ = “column” then
8: op← op ∪ {SAMPLE(H,Header, τ̂ , op)}
9: end if

10: end for
11: z ← z ∪ op
12: τ̂ ← Update_info(C,Cell, τ̂ , op)
13: if SAMPLE(E, {continue, stop}) = stop then
14: break
15: end if
16: end while
17: Return z
18:
19: function SAMPLE(V,X, τ̂ , op)
20: logits← ScoreAtt(V, Vs, h) + α SCORE(X, τ̂ , op),

where ScoreAtt means attention over context of Vs fol-
lowed by matrix multiplication and softmax over V

21: Probs =Softmax(logits)
22: x← Random_multinomial(X,Probs)
23: h← LSTM(h, x)
24: Return x
25: end function
26:
27: function SCORE(X, τ̂ , op)
28: Score← {}
29: if op = {} then
30: for x ∈ X do
31: d← Distance_to_leaf(x, τ̂)
32: Score← Score ∪ {λd}
33: end for
34: Return Score
35: end if
36: for x ∈ X do
37: d← 0
38: for o ∈ op do
39: d← d + Distance_in_tree(x, o, τ)
40: end for
41: Score← Score ∪ {λd/|op|}
42: end for
43: Return Score

44: end function
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Operator (function) Operands Output Operation description
count Sub-Table Cell-Number Return the number of rows in the given sub-table
is_none Sub-Table Bool Return whether the given sub-table is none
is_not Bool Bool Return false if the input is true, return true otherwise

avg/sum/max/min Sub-Table,
Column-Number Cell-Number Return the average/ summation/ max/ min value under

the Column-Number column of the given sub-table

argmax/argmin Sub-Table,
Column-Number Sub-Table

Return the sub-table with the maximum/minimum
value under the Column-Number column of the given
sub-table

hop
Sub-Table,
Column-Number
/Column-String

Cell-Number/
Cell-String Return the Cell value under the given header column

hop_str_contain_not_any/
hop_str_contain_any

Sub-Table,
Cell-String,
Column-String

Bool
Return whether the given Cell-String value exists
under the Column-String column of the given sub-
table

hop_eq/
hop_not_eq/hop_less/
hop_less_eq/
hop_greater/
hop_greater_eq

Sub-Table,
Cell-Number,
Column-Number

Bool

Return whether the value under the Column-Number
column of the given sub-table equal/not equal/less/
less equal/greater/greater equal to the given Cell-
Number

filter_str_contain_not_any
/filter_str_contain_any

Sub-Table,
Cell-String,
Column-String

Sub-Table
Return the sub-table of the given with the value under
the Column-String column equal/not equal to the
given Cell-String

filter_eq/filter_not_eq/
filter_less/filter_less_eq/
filter_greater/
filter_greater_eq

Sub-Table,
Cell-Number,
Column-Number

Sub-Table
Return the sub-table of the given with the value under
the Column-Number column equal/not equal/less/less
equal/greater/greater equal to the given Cell-Number

diff
Sub-Table,
Sub-Table,
Column-Number

Cell-Number
Return the difference between numbers in the Column-
Number column of the first sub-table and second sub-
table

same/row_less/
row_less_eq/row_greater/
row_greater_eq

Sub-Table,
Sub-Table,
Column-Number

Bool
Return whether the number under Column-Number
column of the first sub-table is equal/less/less equal/
greater/greater equal to that of the second sub-table

equal/less/less_eq/
greater/greater_eq

Cell-Number,
Cell-Number Bool Return whether the first number is equal/less/less equal

/greater/greater equal to the second number

mode Sub-Table,
Sub-Table Bool Return whether the first sub-table dominates the

second sub-table with more than half of rows

all Sub-Table,
Sub-Table Bool Return whether the first sub-table takes all rows of the

second sub-table

only Sub-Table Bool Return whether the given sub-table only has one row
and/or Bool, Bool Bool Return the Boolean operation results of two inputs

Table 6: Details of the pre-defined API.

7637



Operator (function) Trigger word list
filter_str_contain_not_any,
filter_not_eq

["other than", "not", "no", "never", "n’t"]

is_none ["none", "neither", "not", "no", "never", "n’t"]
is_not ["not", "no", "never", "n’t"]
filter_less_eq, row_less_eq,
less_eq,

["at most"]

filter_greater_eq,
row_greater_eq, greater

["at least"]

filter_less, less, row_less ["less", "sooner", "faster", "closer", "earlier", "lesser", "smaller",
"younger", "worse", "shorter", "fewer", "lower", "behind", "below",
"before", "under"]

filter_greater, row_greater,
greater

["longer", "taller", "older", "more", "greater", "larger", "slower", "big-
ger", "better", "higher", "faster", "later", "above", "over", "after"]

same ["same"]
diff ["difference", "gap"]
sum ["total", "sum", "summation"]
avg ["average", "avg", "mean"]
argmax, max ["greatest", "biggest", "tallest", "strongest", "highest", "longest",

"largest", "oldest", "most", "fastest", "best", "latest", "top", "first",
"max", "maximum"]

argmin, min ["fewest", "closest", "earliest", "smallest", "lowest", "shortest", "poor-
est", "youngest", "nearest", "least", "slowest", "worst", "latest", "bot-
tom", "last", "minimum"]

mode ["most", "majority", "main", "usually"]
only ["only"]
all ["always", "all", "every", "each"]

Table 7: Details of pre-defined trigger words.
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