
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7564 - 7578

May 22-27, 2022 c©2022 Association for Computational Linguistics

Memorisation versus Generalisation in Pre-trained Language Models

Michael Tänzer
Imperial College London
m.tanzer@imperial.ac.uk

Sebastian Ruder∗
Google Research
ruder@google.com

Marek Rei
Imperial College London
marek.rei@imperial.ac.uk

Abstract

State-of-the-art pre-trained language models
have been shown to memorise facts and per-
form well with limited amounts of training
data. To gain a better understanding of how
these models learn, we study their generali-
sation and memorisation capabilities in noisy
and low-resource scenarios. We find that the
training of these models is almost unaffected
by label noise and that it is possible to reach
near-optimal results even on extremely noisy
datasets. However, our experiments also show
that they mainly learn from high-frequency
patterns and largely fail when tested on low-
resource tasks such as few-shot learning and
rare entity recognition. To mitigate such lim-
itations, we propose an extension based on
prototypical networks that improves perfor-
mance in low-resource named entity recogni-
tion tasks.

1 Introduction

With recent advances in pre-trained language mod-
els (Peters et al., 2018; Devlin et al., 2019; Liu
et al., 2019; He et al., 2020), the field of natural lan-
guage processing has seen improvements in a wide
range of tasks and applications. Having acquired
general-purpose knowledge from large amounts of
unlabelled data, such methods have been shown
to learn effectively with limited labelled data for
downstream tasks (Howard and Ruder, 2018) and
to generalise well to out-of-distribution examples
(Hendrycks et al., 2020).

Previous work has extensively studied what such
models learn, e.g. the types of relational or linguis-
tic knowledge (Tenney et al., 2019; Jawahar et al.,
2019; Rogers et al., 2020). However, the process
of how these models learn from downstream data
and the qualitative nature of their learning dynam-
ics remain unclear. Better understanding of the
learning processes in these widely-used models is

∗Work done prior to joining Google.

needed in order to know in which scenarios they
will fail and how to improve them towards more
robust language representations.

The fine-tuning process in pre-trained language
models such as BERT (Devlin et al., 2019) aims to
strike a balance between generalisation and memo-
risation. For many applications it is important for
the model to generalise—to learn the common pat-
terns in the task while discarding irrelevant noise
and outliers. However, rejecting everything that oc-
curs infrequently is not a reliable learning strategy
and in many low-resource scenarios memorisation
can be crucial to performing well on a task (Tu
et al., 2020). By constructing experiments that
allow for full control over these parameters, we
are able to study the learning dynamics of mod-
els in conditions of high label noise or low label
frequency. To our knowledge, this is the first quali-
tative study of the learning behaviour of pre-trained
transformer-based language models in conditions
of extreme label scarcity and label noise.

We find that models such as BERT are particu-
larly good at learning general-purpose patterns as
generalisation and memorisation become separated
into distinct phases during their fine-tuning. We
also observe that the main learning phase is fol-
lowed by a distinct performance plateau for several
epochs before the model starts to memorise the
noise. This makes the models more robust with
regard to the number of training epochs and allows
for noisy examples in the data to be identified based
only on their training loss.

However, we find that these excellent generali-
sation properties come at the cost of poor perfor-
mance in few-shot scenarios with extreme class
imbalances. Our experiments show that BERT is
not able to learn from individual examples and may
never predict a particular label until the number of
training instances passes a critical threshold. For
example, on the CoNLL03 (Sang and De Meulder,
2003) dataset it requires 25 instances of a class to
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learn to predict it at all and 100 examples to predict
it with some accuracy. To address this limitation,
we propose a method based on prototypical net-
works (Snell et al., 2017) that augments BERT with
a layer that classifies test examples by finding their
closest class centroid. The method considerably
outperforms BERT in challenging training condi-
tions with label imbalances, such as the WNUT17
(Derczynski et al., 2017) rare entities dataset.

Our contributions are the following: 1) We iden-
tify a second phase of learning where BERT does
not overfit to noisy datasets. 2) We present experi-
mental evidence that BERT is particularly robust to
label noise and can reach near-optimal performance
even with extremely strong label noise. 3) We study
forgetting in BERT and verify that it is dramatically
less forgetful than some alternative methods. 4) We
empirically observe that BERT completely fails to
recognise minority classes when the number of ex-
amples is limited and we propose a new model,
ProtoBERT, which outperforms BERT on few-shot
versions of CoNLL03 and JNLPBA, as well as on
the WNUT17 dataset.

2 Previous work

Several studies have been conducted on neural mod-
els’ ability to memorise and recall facts seen during
their training. Petroni et al. (2019) showed that
pre-trained language models are surprisingly effec-
tive at recalling facts while Carlini et al. (2019)
demonstrated that LSTM language models are able
to consistently memorise single out-of-distribution
(OOD) examples during the very first phase of train-
ing and that it is possible to retrieve such examples
at test time. Liu et al. (2020) found that regular-
ising early phases of training is crucial to prevent
the studied CNN residual models from memoris-
ing noisy examples later on. They also propose a
regularisation procedure useful in this setting. Sim-
ilarly, Li et al. (2020) analyse how early stopping
and gradient descent affect model robustness to
label noise.

Toneva et al. (2019), on the other hand, study
forgetting in visual models. They find that mod-
els consistently forget a significant portion of the
training data and that this fraction of forgettable ex-
amples is mainly dependent on intrinsic properties
of the training data rather than the specific model.
In contrast, we show that a pretrained BERT forgets
examples at a dramatically lower rate compared to
a BiLSTM and a non-pretrained variant.

Memorisation is closely related to generalisation:
neural networks have been observed to learn simple
patterns before noise (Arpit et al., 2017) and gen-
eralise despite being able to completely memorise
random examples (Zhang et al., 2017). Zhang et al.
(2021) also show that our current understanding of
statistical learning theory cannot explain the super-
human generalisation performance of large neural
models across many areas of study.

Hendrycks et al. (2020) show that pre-trained
models generalise better on out-of-distribution data
and are better able to detect such data compared
to non-pretrained methods but that they still do
not cleanly separate in- and out-of-distribution ex-
amples. Kumar et al. (2020) find that pre-trained
methods such as BERT are sensitive to spelling
noise and typos. In contrast to noise in the input,
we focus on the models’ learning dynamics in the
presence of label noise and find that pre-trained
methods are remarkably resilient to such cases.

3 Experimental setting

We investigate the performance of pre-trained lan-
guage models in specific adverse conditions. In
order to evaluate generalisation abilities, we first
create datasets with varying levels of label noise
by randomly permuting some of the labels in the
training data. This procedure allows us to pinpoint
noisy examples and evaluate the performance on
clean and noisy datapoints separately. Then, in
order to investigate memorisation we train the mod-
els on datasets that contain only a small number of
examples for a particular class. This allows us to
evaluate how well the models are able to learn from
individual datapoints as opposed to high-frequency
patterns. We make the code for the experiments
available online.1

Datasets We focus on the task of named en-
tity recognition (NER) and employ the CoNLL03
(Sang and De Meulder, 2003), the JNLPBA (Col-
lier and Kim, 2004), and the WNUT17 (Derczynski
et al., 2017) datasets. NER is commonly used for
evaluating pre-trained language models on struc-
tured prediction and its natural class imbalance is
well suited for our probing experiments. CoNLL03
and JNLPBA are standard datasets for NER and
Bio-NER respectively. The WNUT17 dataset is
motivated by the observation that state-of-the-art
methods tend to memorise entities during training

1https://github.com/Michael-Tanzer/
BERT-mem-lowres
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(Augenstein et al., 2017). The dataset focuses on
identifying unusual or rare entities at test time that
cannot be simply memorised by the model. We
evaluate based on entity-level F1 unless stated oth-
erwise.

Language models We use BERT-base (Devlin
et al., 2019) as the main language model for our
experiments, as BERT is widely used in practice
and other variations of pre-trained language mod-
els build on a similar architecture. The model is
augmented with a classification feed-forward layer
and fine-tuned using the cross-entropy loss with a
learning rate of 10−4. AdamW (Loshchilov and
Hutter, 2019) is used during training with weight
decay of 0.01 and a linear warm-up rate of 10%.
The test results are recorded using the model that
produced the highest validation metrics.

We compare BERT’s behaviour with that of
other pre-trained transformers such as RoBERTa
(Liu et al., 2019) and DeBERTa (He et al., 2020)
fine-tuned with the same optimiser and hyper-
parameters as above. In order to also compare
against non-transformer models, we report perfor-
mance for a bi-LSTM-CRF (Lample et al., 2016)
model with combined character-level and word-
level representations. The model is comprised of
10 layers, with 300-dimensional word representa-
tions and 50-dimensional character representations,
for a total of approximately 30 million trainable pa-
rameters. In our experiments, the model is trained
with the Adam optimiser (Kingma and Ba, 2014)
and a learning rate of 10−4 for 100 epochs using a
CRF loss (Lafferty et al., 2001).

4 Generalisation in noisy settings

We first investigate how BERT learns general pat-
terns from datasets that contain label noise. Fig-
ure 1 shows how the model performance on the
CoNLL03 training and validation sets changes
when faced with varying levels of noise, from 0%
to 50%. Based on the progression of performance
scores, we can divide BERT’s learning process into
roughly three distinct phases:

1. Fitting: The model uses the training data to
learn how to generalise, effectively learning sim-
ple patterns that can explain as much of the train-
ing data as possible (Arpit et al., 2017). Both
the training and validation performance rapidly
increase as the model learns these patterns.
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Figure 1: BERT performance (F1) throughout the train-
ing process on the CoNLL03 train and validation sets.
Darker colours correspond to higher levels of noise (0%
to 50%).
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Figure 2: Classification accuracy of noisy examples
in the training set for the CoNLL03 dataset. Darker
colours correspond to higher levels of noise (0% to
50%).

2. Settling: The increase in performance plateaus
and neither the validation nor the training per-
formance change considerably. The duration of
this phase seems to be inversely proportional to
the amount of noise present in the dataset.

3. Memorisation: The model rapidly starts to
memorise the noisy examples, quickly improv-
ing the performance on training data while de-
grading the validation performance, effectively
over-fitting to the noise in the dataset.

A second phase of learning We find BERT to
exhibit a distinct second settling phase during
which it does not over-fit. A resilience to label
noise has been observed in other neural networks
trained with gradient descent (Li et al., 2020). How-
ever, we find this phase to be much more prolonged
in BERT compared to models pre-trained on other
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modalities such as a pre-trained ResNet fine-tuned
on CIFAR10, which immediately starts memoris-
ing noisy examples (see Appendix A for a compar-
ison). These results indicate that the precise point
of early stopping is not as important when it comes
to fine-tuning pre-trained language models. Similar
optimal performance is retained for a substantial
period, therefore training for a fixed number of
epochs can be sufficient.

We illustrate BERT’s behaviour by evaluating
the token-level classification accuracy of noisy ex-
amples in Figure 2. During the second phase,
BERT completely ignores the noisy tokens and cor-
rectly misclassifies them, performing “worse” than
a random classifier. The step-like improvements
during the third stage show that the model is unable
to learn any patterns from the noise and improves
by repeatedly optimising on the same examples,
gradually memorising them.

Robustness to noise We also observe in Figure
1 that BERT is extremely robust to noise and over-
fitting in general. In the absence of noise, the model
does not over-fit and maintains its development set
performance, regardless of the length of training.
Even with a large proportion of noise, model perfor-
mance comparable to training on the clean dataset
can be achieved by stopping the training process
somewhere in the second phase.2

We also hypothesise that due to the robustness
to noise shown in the second phase of training,
a noise detector can be constructed based only on
BERT’s training losses, without requiring any other
information. We find that a simple detector that
clusters the losses using k-means reliably achieves
over 90% noise-detection F1 score in all our ex-
periments, further showing how the model is able
to actively detect and reject single noisy examples
(see Appendix E for details about the noise detec-
tion process).

Impact of pre-training The above properties
can mostly be attributed to BERT’s pre-training
process—after large-scale optimisation as a lan-
guage model, the network is primed for learning
general patterns and better able to ignore individual
noisy examples. We find that a randomly initialised
model with the same architecture does not only
achieve lower overall performance but crucially
does not exhibit’s BERT’s distinct second phase of

2Adding 30% noise to the CoNLL03 dataset causes only a
0.9% decrease of validation performance in the second phase.

learning and robustness to noise (see Appendix C).

Other pre-trained transformers We also anal-
yse the behaviour of other pre-trained transformers
for comparison. Specifically, studying RoBERTa
and DeBERTa, we find the same training pattern
that was observed in BERT—all models show a
clear division into the three phases described above.
These models are also all very robust to label noise
during the settling phase of training. Notably,
RoBERTa is even more resilient to label noise com-
pared to the other two analysed models, despite
DeBERTa outperforming it on public benchmarks
(He et al., 2020). Training and validation perfor-
mance visualisations, such as those in Figure 1, can
be found for both models in Appendix I.

5 Forgetting of learned information

Evaluating only the final model does not always
provide the full picture regarding datapoint mem-
orisation, as individual datapoints can be learned
and forgotten multiple times during the training
process. Following Toneva et al. (2019), we record
a forgetting event for an example at epoch t if the
model was able to classify it correctly at epoch
t − 1, but not at epoch t. Similarly, we identify
a learning event for an example at epoch t if the
model was not able to classify it correctly at epoch
t − 1, but it is able to do so at epoch t. A first
learning event thus happens at the first epoch when
a model is able to classify an example correctly.
We furthermore refer to examples with zero and
more than zero forgetting events as unforgettable
and forgettable examples, respectively, while the
set of learned examples includes all examples with
one or more learning events.

In Table 1, we show the number of forgettable,
unforgettable, and learned examples on the training
data of the CoNLL03 and JNLPBA datasets for
BERT, a non-pre-trained BERT, and a bi-LSTM
model. We also show the ratio between forgettable
and learned examples, which indicates how easily a
model forgets learned information. We can observe
that BERT forgets less than other models and that
pre-training is crucial for retaining important infor-
mation. We show the most forgettable examples in
Appendix D, which tend to be atypical examples
of the corresponding class.

Toneva et al. (2019) found that the number of
forgetting events remains comparable across dif-
ferent architectures for the vision modality, given
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Dataset Model Forgettable Nf Unforgettable Nu Learned Nl Nf/Nl (%)

CoNNL03
bi-LSTM 71.06% 29.94% 90.90% 78.17%

non-pre-trained BERT 9.89% 90.11% 99.87% 9.90%
pre-trained BERT 2.97% 97.03% 99.80% 2.98%

JNLPBA
bi-LSTM 97.16% 5.14% 98.33% 98.81%

non-pre-trained BERT 25.50% 74.50% 98.24% 25.96%
pre-trained BERT 16.62% 83.38% 98.18% 16.93%

Table 1: Number of forgettable, unforgettable, and learned examples during BERT training on the CoNLL03
dataset and JNLPBA dataset.
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Figure 3: First learning events distribution during the
training for various levels of noise on the CoNLL03
dataset. Darker colours correspond to higher levels of
noise (0% to 50%).

a particular dataset.3 However, our experiments
show that the same does not necessarily hold for
pre-trained language models. Specifically, there
is a large discrepancy in the ratio between forget-
table and learned examples for BERT (∼3%) and a
bi-LSTM model (∼80%) on the CoNLL03 dataset.

We additionally analyse the distribution of first
learning events throughout BERT’s training on
CoNLL03 with label noise between 0% and 50%
(Figure 3) and notice how BERT learns the majority
of learned examples during the first epochs of train-
ing. As the training progresses, we see that BERT
stops learning new examples entirely, regardless of
the level of noise for the third and fourth epochs.
Finally, in the last epochs BERT mostly memorises
the noise in the data.4

3They report proportions of forgettable examples for
MNIST, PermutedMNIST, CIFAR10, and CIFAR100 as 8.3%,
24.7%, 68.7%, and 92.38% respectively.

4We conducted additional experiments on other datasets
(see Appendix F for results on the JNLPBA dataset). In all
cases we observe the same distribution of first learning events
throughout training.
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Figure 4: BERT performance (F1) throughout the train-
ing process on the CoNLL03 dataset with varying num-
ber of sentences containing the LOC class. Darker
colours correspond to fewer examples of the LOC class
available (5 to 95 in steps of 20).

6 BERT in low-resource scenarios

In the previous sections, we have observed that
BERT learns examples and generalises very early
in training. We will now examine if the same be-
haviour applies in low-resource scenarios where
a minority class is only observed very few times.
To this end, we remove from the CoNLL03 train-
ing set all sentences containing tokens with the
minority labels MISC and LOC except for a prede-
termined number of such sentences. We repeat the
process for the JNLPBA dataset with the DNA and
Protein labels.

We conduct similar experiments to the previous
sections by studying how different numbers of sen-
tences containing the target class affect BERT’s
ability to learn and generalise. We report in Figure
4 the training and validation classification F1 score
for the CoNLL03 datasets from which all but few
(5 to 95) sentences containing the LOC label were
removed. Note that the reported performance in
this experiment refers to the LOC class only. In Fig-
ure 5 we also report the distribution of first learning
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Figure 5: First learning events distribution during the
training on the CoNLL03 dataset with varying number
of sentences containing the LOC class. Darker colours
correspond to fewer examples of the LOC class avail-
able (5 to 95 in steps of 20).

events for the LOC class in the same setting. Two
phenomena can be observed: 1) reducing the num-
ber of sentences greatly reduces the model’s ability
to generalise (validation performance decreases yet
training performance remains comparable); and 2)
when fewer sentences are available, they tend to
be learned in earlier epochs for the first time. Cor-
responding experiments on the MISC label can be
found in Appendix J.

We also show the average entity-level F1 score
on tokens belonging to the minority label and
the model performance for the full NER task (i.e.
considering all classes) for the CoNLL03 and
JNLPBA datasets in Figures 6 and 7 respectively.
For the CoNLL03 dataset, we observe that BERT
needs at least 25 examples of a minority label in
order to be able to start learning it. Performance
rapidly improves from there and plateaus at around
100 examples. For the JNLPBA dataset, the mini-
mum number of examples increases to almost 50
and the plateau occurs for a higher number of exam-
ples. On the challenging WNUT17 dataset, BERT
achieves only 44% entity-level F1. This low per-
formance is attributable to the absence of entity
overlap between training set and test set, which in-
creases the inter-class variability of the examples.

7 ProtoBERT for few-shot learning

In order to address BERT’s limitations in few-shot
learning, we propose a new model, ProtoBERT
that combines BERT’s pre-trained knowledge with
the few-shot capabilities of prototypical networks
(Snell et al., 2017) for sequence labelling problems.
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Figure 6: BERT final validation entity-level F1 score
on the few-shot class keeping varying numbers of sen-
tences containing examples of a selected class on the
CoNLL03 dataset.
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Figure 7: BERT final validation entity-level F1 score
on the few-shot class keeping varying numbers of sen-
tences containing examples of a selected class on the
JNLPBA dataset.

The method builds an embedding space where the
inputs are clustered on a per-class basis, allowing
us to classify a token by finding its closest cen-
troid and assigning it the corresponding class. The
model can be seen in Figure 8.

We first define a support set S, which we use
as context for the classification and designate with
Sk all elements of S that have label k. We refer
to the set of points that we want to classify as the
query set Q, with l(Qi) indicating the label of the
ith element in Q. We will also refer to f as the
function computed by BERT augmented with a
linear layer, which produces an M dimensional
output.

The model then classifies a given input x as
follows: for each class k, we compute the centroid
of the class in the learned feature space as the mean
of all the elements that belong to class k in the
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Figure 8: Schematic representation of the inference using a BERT model with a prototypical network layer.

support set S:

ck =
1

|Sk|
∑
xi∈Sk

f(xi) (1)

Then, we compute the distance from each input
x ∈ Q to each centroid:

distk = d(f(x), ck)

and collect them in a vector v ∈ Rk. Finally, we
compute the probability of x belonging to class k
as

p(y = k | x) = exp (−d (f(x), ck))∑
k′ exp (−d (f(x), ck′))

=

= softmax(−v)k

The model is trained by optimising the cross-
entropy loss between the above probability and the
one-hot ground-truth label of x. Crucially, S and
Q are not a fixed partition of the training set but
change at each training step. Following Snell et al.
(2017), we use Euclidean distance as a choice for
the function d.

In order to take into account the extreme under-
representation of some classes, we create the sup-
port by sampling s1 elements from each minority
class and s2 elements from each non-minority class.
A high ratio s1/s2 gives priority to the minority
classes, while a low ratio puts more emphasis on
the other classes. We then similarly construct the
query set with a fixed ratio n between the minority
classes and the non-minority classes.

For NER, rather than learning a common repre-
sentation for the negative class “O”, we only want
the model to treat it as a fallback when no other
similar class can be found. For this reason, we
define the vector of distances v as follows:

v = (dO, dist0, . . . , distk)

where dO is a scalar parameter of the network that
is trained along with the other parameters. Intu-
itively, we want to classify a point as a non-entity

(i.e. class O) when it is not close enough to any cen-
troid, where dO represents the threshold for which
we consider a point “close enough”.

If no example of a certain class is available in
the support set during the training, we assign a dis-
tance of 400, making it effectively impossible to
mistakenly classify the input as the missing class
during that particular batch. Finally, we propose
two ways to compute the class of a token at test
time. The first method employs all examples from
X to calculate the centroids needed at test time,
which produces better results but is computation-
ally expensive for larger datasets.

The second method approximates the centroid ck
using the moving average of the centroids produced
at each training step:

c
(t)
k ← α c

(t)
k · (1− α) c

(t−1)
k

where α is a weighting factor. This method results
in little overhead during training and only performs
marginally worse than the first method.

7.1 Experimental results

We first compare ProtoBERT to the standard pre-
trained BERT model with a classification layer on
the CoNLL03 and JNLPBA datasets with a smaller
number of sentences belonging to the minority
classes. We show the results on the few-shot classes
and for the full dataset for CoNLL03 in Figures 9
and 10 respectively. Similarly, we show the re-
sults for the few-shot class for JNLPBA in Figure
11.5 In all cases ProtoBERT consistently surpasses
the performance of the baseline when training on
few examples of the minority class. It particularly
excels in the extreme few-shot setting, e.g. out-
performing BERT by 40 F1 points with 15 sen-
tences containing the LOC class. As the number of
available examples of the minority class increases,

5A comparison on the full classification task can be found
in Appendix H.
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Figure 9: Model performance comparison between
the baseline model and ProtoBERT for the CoNLL03
dataset, reducing the sentences containing the MISC
and LOC classes. Results reported as F1 score on the
few-shot classes.
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Figure 10: Model performance comparison between
the baseline model and ProtoBERT for the CoNLL03
dataset, reducing the sentences containing the MISC
and LOC class. Results reported as F1 score on all
classes.

BERT starts to match ProtoBERT’s performance
and outperforms it on the full dataset in some cases.

While the main strength of ProtoBERT is on
few-shot learning, we evaluate it also on the full
CoNLL03, JNLPBA and WNUT17 datasets (with-
out removing any sentences) in Table 2. In this
setting, the proposed architecture achieves results
mostly similar to the baseline while considerably
outperforming it on the WNUT17 dataset of rare
entities.

The results in this section show that ProtoBERT,
while designed for few-shot learning, performs at
least on par with its base model in all tasks. This
allows the proposed model to be applied to a much
wider range of tasks and datasets without negatively
affecting the performance if no label imbalance is
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Figure 11: Model performance comparison between
the baseline model and ProtoBERT for the JNLPBA
dataset, reducing the sentences containing the DNA and
Protein classes. Results reported as F1 score on the
few-shot classes.

present, while bringing a substantial improvement
in few-shot scenarios.

We conduct an ablation study to verify the ef-
fect of our improved centroid computation method.
From the results in Table 2 we can affirm that, while
a difference in performance does exist, it is quite
modest (0.1–0.4%). On the other hand, this method
reduces the training time and therefore energy con-
sumption (Strubell et al., 2019) to one third of the
original method on CoNLL03 and we expect the
reduction to be even greater for larger datasets.

8 Conclusion

In this study, we investigated the learning process
during fine-tuning of pre-trained language models,
focusing on generalisation and memorisation. By
formulating experiments that allow for full control
over the label distribution in the training data, we
study the learning dynamics of the models in con-
ditions of high label noise and low label frequency.
The experiments show that BERT is capable of
reaching near-optimal performance even when a
large proportion of the training set labels has been
corrupted. We find that this ability is due to the
model’s tendency to separate the training into three
distinct phases: fitting, settling, and memorisation,
which allows the model to ignore noisy examples
in the earlier epochs. The pretrained models expe-
rience a prolonged settling phase when fine-tuned,
during which their performance remains optimal,
indicating that the precise area of early stopping is
less crucial.

Furthermore, we show that the number of avail-
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Model CoNLL03 JNLPBA WNUT17

State of the art 93.50 77.59 50.03
BERT + classification layer (baseline) 89.35 75.36 44.09

ProtoBERT 89.87 73.91 48.62
ProtoBERT + running centroids 89.46 73.54 48.56

Table 2: Comparison between the baseline model, the current state-of-the-art6and the proposed architecture on the
CoNLL03, JNLPBA and WNUT17 datasets evaluated using entity-level F1 score. The state of the art is Baevski
et al. (2019), Lee et al. (2019), and Wang et al. (2019) respectively.

able examples greatly affects the learning process,
influencing both when the examples are memorised
and the quality of the generalisation. We show
that BERT fails to learn from examples in extreme
few-shot settings, completely ignoring the minority
class at test time. To overcome this limitation, we
augment BERT with a prototypical network. This
approach partially solves the model’s limitations
by enabling it to perform well in extremely low-
resource scenarios and also achieves comparable
performance in higher-resource settings.
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A Comparison of learning phases in a
BiLSTM and ResNet on CIFAR-10

For comparison, we show the training progress
of a ResNet (He et al., 2015) trained on CIFAR10
(Krizhevsky, 2009) in Figure 12. Following Toneva
et al. (2019), we use a ResNeXt model (Xie et al.,
2017) with 101 blocks pre-trained on the ImageNet
dataset (Deng et al., 2009). The model has been
fine-tuned with a cross-entropy loss with the same
optimiser and hyper-parameters as BERT. We eval-
uate it using F1 score. As can be seen, the train-
ing performance continues to increase while the
validation performs plateaus or decreases, with
no clearly delineated second phase as in the pre-
trained BERT’s training.
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Figure 12: Performance (F1) of a ResNet model
throughout the training process on the CIFAR10
dataset. Darker colours correspond to higher levels of
noise (0% to 50%).

B JNLPBA noise results

As well as CoNLL03, we also report the analysis
on the JNLPBA dataset. In Figure 13, we show
the performance of BERT on increasingly noisy
versions of the training set. In Figure 14, we report
the accuracy of noisy examples.

C Effect of pre-training

BERT’s second phase of pre-training and noise re-
silience are mainly attributable to its pre-training.
We show the training progress of a non-pretrained
BERT model on CoNLL03 in Figure 15 and its
classification accuracy on noisy examples in Fig-
ure 16. As can be seen, a non-pre-trained BERT’s
training performance continuously improves and
so does its performance on noisy examples.
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Figure 13: BERT performance (F1) throughout the
training process on the JNLPBA dataset. Darker
colours correspond to higher levels of noise (0% to
50%).
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Figure 14: Classification accuracy of noisy examples in
the training set for the JNLPBA dataset. Darker colours
correspond to higher levels of noise (0% to 50%).

D Examples of forgettable examples

In Table 3, we can find the sentences containing
the most forgettable examples during a training
run of 50 epochs for the CoNLL03 dataset. The
maximum theoretical number of forgetting events
in this case is 25. It is important to notice how the
most forgotten entity presents a mismatched "The",
which the network correctly classifies as an "other"
(O) entity.

E BERT as a noise detector

We report the exact detection metrics for the model
proposed in section 4 in Table 4. Here we can
see how both for extremely noisy datasets and for
cleaner datasets, our model is able to detect the
noisy examples with about 90-91% F1 score, as
mentioned above.

Moreover, we provide the implementation used
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Sentence Number of forgetting events

the third and final test between England and Pakistan at The (I-LOC) 11
GOLF - BRITISH MASTERS THIRD ROUND SCORES . (O) 10
GOLF - GERMAN OPEN FIRST ROUND SCORES . (O) 10
English County Championship cricket matches on Saturday : (MISC) 10
English County Championship cricket matches on Friday : (MISC) 9

Table 3: Sentences containing the most forgettable examples in the CoNLL03 dataset. In bold the entity that was
most often forgotten within the given sentence and in brackets its ground-truth classification.
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Figure 15: Performance (F1) of a non-pre-trained
BERT model throughout the training process on the
CoNLL03 train and validation sets. Darker colours cor-
respond to higher levels of noise (0% to 50%).

Noise Precision Recall F1 score

10% 92.18% 95.90% 94.00%
20% 96.19% 96.33% 96.26%
30% 98.02% 96.35% 97.17%
40% 98.27% 96.95% 97.60%
50% 98.64% 97.27% 97.94%

Table 4: Noise detection performance with varying lev-
els of noise on the CoNLL03 dataset using the method
proposed.

to detect outliers used to produce the table and
figures above:

1. We first collect the losses for each training ex-
ample after a short fine-tuning process (4 epochs
in our case).

2. We then assume an unknown portion of these
examples is noisy, giving rise to a two-class
classification problem (noisy vs non-noisy). To
discriminate the two classes, we then solve the
following optimisation problem which aims to
find a loss threshold T that minimises inter-class
variance for each of the two classes:

argmin
T

∑
x < T

‖x− µc‖2 +
∑
x ≥ T

‖x− µn‖2
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Figure 16: Classification accuracy of a non-pre-trained
BERT model on noisy examples in the training set for
the CoNLL03 dataset. Darker colours correspond to
higher levels of noise (0% to 50%).

Where elements denoted as x are the losses ex-
tracted from the training set, µc is the mean of
all x < T , and µn is the mean of all x ≥ T .

3. For testing purposes, we then apply the method
to the chosen training set and measure the noise
detection F1 score.

In Figure 17, we qualitatively saw how the losses
are distributed for noisy and regular examples and
notice how they are neatly separated except for a
small subset of the noisy examples. These exam-
ples might have been already memorised by the
model, which would explain their lower loss.

F JNLPBA forgetting results

We show in Figure 18 how many data points were
learned by BERT for the first time at each epoch on
the JNLPBA dataset during training (first learning
events).

G Further ProtoBERT results

As in Table 2 we only reported F1 score for our
methods, for completeness we also report precision
and recall in table 5.
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Model CoNLL03 JNLPBA WNUT17

P R F1 P R F1 P R F1

State-of-the-art NA NA 93.50 NA NA 77.59 NA NA 50.03
BERT + classification layer (baseline) 88.97 89.75 89.35 72.99 77.90 75.36 53.65 37.42 44.09

ProtoBERT 89.26 90.49 89.87 68.66 80.03 73.91 54.38 43.96 48.62
ProtoBERT + running centroids 89.03 89.91 89.46 68.92 78.83 73.54 54.11 44.05 48.56

Table 5: Comparison between the baseline model and the proposed architecture on the CoNLL03, JNLPBA and
WNUT17 datasets evaluated using entity-level metrics.

Noise Forgettable Unforgettable Learned Forgettable/learned (%)

CoNLL03 0% 2,669 699,381 230,716 1.1568%
CoNLL03 10% 10,352 691,698 224,968 4.6015%
CoNLL03 20% 19,667 682,383 216,780 9.0723%
CoNLL03 30% 30,041 672,009 209,191 14.3606%

JNLPBA 0% 23,263 817,087 457,485 5.0849%
JNLPBA 10% 26,667 813,683 422,264 6.3152%
JNLPBA 20% 26,369 813,981 386,562 6.8214%
JNLPBA 30% 30,183 810,167 353,058 8.5490%

CIFAR10 0% 8,328 36,672 45,000 18.5067%
CIFAR10 10% 9,566 35,434 44,976 21.2691%
CIFAR10 20% 9,663 35,337 44,922 21.5106%
CIFAR10 30% 11,207 33,793 44,922 24.9477%

Table 6: Number of forgettable, unforgettable, and learned examples during BERT training on the CoNLL03,
JNLPBA and CIFAR10 datasets.

460000

480000

0 1 2 3 4 5
0

20000

40000

60000

Training loss

N
um

be
r 

of
 e

xa
m

pl
es

Classifier cutoff
Normal
Noisy

Figure 17: Loss distribution for noisy and non-noisy
examples from the CoNLL03 training set. The grey
dashed line represent the chosen loss threshold found
by our method to discriminate between noisy and non-
noisy examples.

H ProtoBERT results on JNLPBA

We report in Figure 19 the comparison between our
baseline and ProtoBERT for all classes.
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Figure 18: First learning events distribution during
BERT training for various levels of noise on the
JNLPBA dataset. Darker colours correspond to higher
levels of noise (0% to 50%).

Examples BERT bi-LSTM

Forgettable 2,669 144,377
Unforgettable 699,381 60,190

Learned 230,716 184,716

Forgettable/learned (%) 1.1568% 78,1616%

Table 7: Comparison of the number of forgettable,
learnable and unforgettable examples between BERT
and a bi-LSTM model.
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Figure 19: Model performance comparison between
the baseline model and ProtoBERT for the JNLPBA
dataset, reducing the sentences containing the DNA and
Protein class. Results reported as F1 score on all
classes.

I Results on other pretrained
transformers

While most of the main paper focuses on BERT,
it is worthwhile to mention the results on other
pre-trained transformers and compare the results.

In Figures 20 and 21, we show the valida-
tion performances (classification F1 score) for
the CoNLL03 datasets for the RoBERTa and De-
BERTa models (similarly to Figure 1). We notice
that the three phases of training reported above
are apparent in all studied models. RoBERTa, in
particular, displays the same pattern, but shows
higher robustness to noise compared to the other
two models.

Moreover, in Figures 22 and 23, we report the
distribution of first learning events (similarly to
Figure 5) on RoBERTa and DeBERTa. As above,
we can observe the same pattern described in the
main body of the paper, with the notable exception
that RoBERTa is again more robust to learning the
noise in later phases of the training.

J Few-shot MISC memorisation

As per section 6, we also report the result of the
experiments in the few-shot setting by removing
most sentences containing the MISC class. The
experimental setting is identical to the described in
the main body of the paper. The relevant Figures
are 24 and 25.
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Figure 20: RoBERTa performance (F1) throughout the
training process on the CoNLL03 train and validation
sets. Darker colours correspond to higher levels of
noise (0% to 50%).
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Figure 21: DeBERTa performance (F1) throughout the
training process on the CoNLL03 train and validation
sets. Darker colours correspond to higher levels of
noise (0% to 50%).
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Figure 22: First learning events distribution during
RoBERTa training for various levels of noise on the
CoNLL03 dataset. Darker colours correspond to
higher levels of noise (0% to 50%).
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Figure 23: First learning events distribution during
DeBERTa training for various levels of noise on the
CoNLL03 dataset. Darker colours correspond to
higher levels of noise (0% to 50%).
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Figure 24: BERT performance (F1) throughout the
training process on the CoNLL03-XMISC train and
validation sets. Darker colours correspond to fewer ex-
amples of the MISC class available (5 to 95 in steps of
20).
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Figure 25: First learning events distribution dur-
ing the training for various levels of noise on the
CoNLL03-XMISC dataset. Darker colours correspond
to fewer examples of the MISC class available (5 to 95
in steps of 20).
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