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Abstract
Early stopping, which is widely used to pre-
vent overfitting, is generally based on a sep-
arate validation set. However, in low re-
source settings, validation-based stopping can
be risky because a small validation set may
not be sufficiently representative, and the re-
duction in the number of samples by valida-
tion split may result in insufficient samples for
training. In this study, we propose an early
stopping method that uses unlabeled samples.
The proposed method is based on confidence
and class distribution similarities. To further
improve the performance, we present a cali-
bration method to better estimate the class dis-
tribution of the unlabeled samples. The pro-
posed method is advantageous because it does
not require a separate validation set and pro-
vides a better stopping point by using a large
unlabeled set. Extensive experiments are con-
ducted on five text classification datasets and
several stop-methods are compared. Our re-
sults show that the proposed model even per-
forms better than using an additional valida-
tion set as well as the existing stop-methods,
in both balanced and imbalanced data settings.
Our code is available at https://github.
com/DMCB-GIST/BUS-stop.

1 Introduction

Early stopping, a form of regularization, is a widely
used technique to prevent a model from over-fitting
(Yao et al., 2007; Zhang et al., 2017). It is gener-
ally based on a separate validation set (Goodfel-
low et al., 2016). While monitoring the validation
performance during training, the training process
stops when the validation error starts to increase.
Validation-based early stopping is advantageous be-
cause it is easy to implement and can be interpreted
directly (Prechelt, 1998).

In a scenario where sufficient labeled data are
available, the use of a validation set is generally pre-
ferred (Goodfellow et al., 2016). However, when
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only a few labeled data exist, a tradeoff problem
is encountered (Kann et al., 2019; Choi and Lee,
2021). For example, although the usage of a rel-
atively large validation set enables more reliable
estimation, the number of samples for training be-
comes insufficient. Conversely, if small fractions
of the samples are assigned to the validation set,
the stopping point becomes ambiguous because the
small validation set is not representative enough.

Early stopping is more important in a low re-
source setting because the prediction accuracy fluc-
tuates highly during training. Such high fluctua-
tions render it challenging when to stop the model.
One way to mitigate these fluctuations is to use suf-
ficient training data. In this context, training all the
available samples would be more effective, and for
this purpose, an appropriate stopping point should
be determined without validation split. However,
this has not been extensively studied. Duvenaud
et al. (2016) and Mahsereci et al. (2017) proposed
gradient-based stop-methods and applied statisti-
cal inference on the training samples. Lee and
Chung (2021) suggested the usage of local intrinsic
dimensionality (LID) for early stopping. In addi-
tion, some studies treat the stopping epoch as a
hyperparameter: the stopping epoch is obtained by
grid-search or averaging in cross validation (Choi
and Lee, 2021). These methods allow the train-
ing of all the labeled samples. However, they do
not consider the task-related performance metrics
(e.g., accuracy) during training, and the LID and
gradient-based stop criteria have not been com-
monly used in natural language processing (NLP).
Furthermore, gradient-based stop-criteria depend
on the training samples, the size of which may still
be small to be representative.

In this study, we propose an early stopping
method based on unlabeled samples (BUS-stop).
We are motivated by the following two considera-
tions: (i) The probabilities of the predicted class
label (i.e., the prediction confidences) can serve as
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an indicator for over-fitting or under-fitting. (ii) In
a better model, the output class distribution is more
likely to be closer to the class distribution of the
true labels. To incorporate these two assumptions,
two stop criteria are proposed, and combined in the
BUS-stop method. Our method monitors the pre-
diction results of unlabeled samples during training
and utilizes them for determining the stop-criteria.
The first proposed stop-criterion is based on confi-
dence similarity (conf-sim). The model stops when
the prediction confidences for the unlabeled sam-
ples are most similar to the reference confidences,
which are precalculated on the labeled set with
cross-validation. Conf-sim is observed to reflect
the long-term trend of the loss curve, and thereby
assist in preventing over-training. The second stop
criterion is based on the class distribution similarity
(class-sim). This criterion stops the model when
the predicted class distribution on the unlabeled
set is most similar to the pre-estimated distribu-
tion. To this end, we present a novel estimation
method for the true class distribution, which cali-
brates the predicted distribution by extrapolation
such that it is closer to the true distribution. Class-
sim is observed to reflect the short-term trend of the
accuracy. Our method requires several retraining
steps to obtain the reference confidences for conf-
sim and the estimated class distribution for class-
sim. The BUS-stop method that combines class-
sim and conf-sim includes the advantages of both,
and thereby performs with better accuracy and loss
compared to each (class-sim and conf-sim).

The following characteristics of our method con-
tribute to performance improvement. Our method
does not require a separate validation set; hence,
all the labeled samples can be trained. Training
can stop at a more generalized model, using a large
unlabeled set. The proposed stop-criteria, conf-sim
and class-sim, consider two performance metrics,
namely, the loss and accuracy.

Our contributions are summarized as follows:

• We propose BUS-stop, an early stopping
method, based on unlabeled samples. BUS-
stop can stop the training at a more general-
ized model, and the performance is better even
than using an additional validation set.

• Furthermore, we present a calibration method
to better estimate the class distribution. This
method calibrates the output class distribution
to render it closer to the true distribution, im-
proving the class-sim performance.

• Extensive experiments are conducted on five
popular text classification datasets in En-
glish. Comparison with several stop-methods
demonstrates that the proposed method out-
performs these existing stop-methods in both
balanced and imbalanced data settings.

2 Related Work

Prechelt (1998) experimented on 14 different
validation-based stop criteria. Prechelt (1998) fo-
cused on an issue that the validation error during
training may represent many local minima prior to
a global optimum.

Existing non-validation stop-criteria are gener-
ally based on statistical inference. Duvenaud et al.
(2016) interpreted stochastic gradient descent in
terms of the variational inference and proposed an
estimation method for the marginal likelihood of
the posterior, which was applied as an early stop-
ping criterion. However, this method requires con-
siderable computation for the Hessian, which is not
practical in large models. Mahsereci et al. (2017)
also proposed a gradient-related stopping method
referred to as evidence-based stopping (EB). The
EB-criterion is based on the fast-to-compute lo-
cal statistics of the computed gradients. The crite-
rion represents whether the gradients of the train-
ing samples lie within the expected range. Intrin-
sic dimensionality (ID), which refers to the mini-
mum number of parameters required to represent
a dataset, has been used for analyzing the train-
ing or redundancy of neural networks (Amsaleg
et al., 2015). LID is a version of ID that estimates
the subspace dimensions of the local regions. Lee
and Chung (2021) found that LID works well as a
stopping-criterion in several few-shot image clas-
sification datasets. Moreover, LID can be applied
to unlabeled samples. Another method involves
the pre-estimation of the the number of training
epochs by training the model multiple times, such
as cross validation (Choi and Lee, 2021); the model
can stop at the pre-estimated (PE) stop-epoch when
training all the labeled samples.

However, these methods have not been com-
monly studied for NLP tasks and do not consider
the performance metrics during training. Further-
more, comparisons among the non-validation stop-
methods have not been reported. In this study,
we compare our method with the EB, LID, PE,
and validation-based stopping methods on five text
classification datasets. The method proposed by
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Algorithm 1 Preliminary stage for BUS-stop

Input: Labeled set Dl, Unlabeled set Du

Output: Sorted output probabilities ~Pl,
Calibrated class distribution ~Cu

Let Count[1 · · ·nl] = 0
Let Pl[1 · · ·nl] = 0
for t ∈ {1, · · · , T} do

Initialize a model, M
Split Dl into Dtrain and Dval at a ratio of r
Train the M with (Dtrain, Dval)
M ← load the M that was the best on Dval

for xi ∈ Dval do
pi ←M(xi)
Pl[i] = Pl[i] + pi
Count[i] = Count[i] + 1

end for
Ĉu ←M(Du)
Ĉval, Accval ←M(Dval)
~Ct
u = Calibration(Ĉu, Ĉval, Accval)

end for
for xi ∈ Dl do

Pl[i] = Pl[i]/Count[i]
end for
~Pl ← sort Pl in ascending (or descending) order
~Cu =

∑T
t=1

~Ct
u/T

return ~Pl, ~Cu

Duvenaud et al. (2016) was not compared because
it involves considerable computational cost.

3 Method

In this section, we describe the proposed method
in detail. The main notations used are as follows:
Dl = {(xi, yi)}nl

i=1 and Du = {(xi)}nu
i=1 denote

the labeled and unlabeled sets, respectively. xi and
yi are the i-th sample and its true label, respec-
tively, and nl and nu are the numbers of labeled
and unlabeled samples, respectively. pij denotes
the prediction probability of the j-th class on the i-
th sample. LetC be the true class distribution of the
samples. The output probability (i.e., confidence)
pi associated with the predicted label on sample xi
and the predicted (i.e., output) class distribution Ĉ
of the samples are defined as follows:

pi =max
j

(pij)

Ĉ[j] =

ndata∑
i=1

pij/ndata

where ∀j∈{1,· · ·, nc}; nc is the number of classes.

3.1 Preliminary Stage

The pseudocode for the preliminary stage is sum-
marized in Alg. 1. In the preliminary stage, the
prediction confidences ~Pl for the labeled samples
in Dl and the estimated class distribution ~Cu of
the unlabeled set Du are calculated. Using Dl, the
model is reinitialized-and-retrained T -times using
a resampling method such as cross-validation. In
low-resource settings, such retraining enables more
reliable predictions by averaging the results. Each
sample in Pl is evaluated when the validation loss
is the lowest. Each sample should be validated at
least once; the prediction confidences are averaged
for each sample. Pl (and Pu in Alg.2 as well) is
sorted in order of size for confidence comparison
between two different sample sets, Dl and Du, in
the main stage; we denoted it as ~Pl ( ~Pu for Pu).
When retraining T -times, the output class distri-
butions of the unlabeled set Du are obtained and
calibrated (this calibration is defined in Section
3.3). Then, the T calibrated class distributions are
averaged, resulting in ~Cu. After this stage, ~Pl and
~Cu are used to calculate the similarities for the two
stop criteria, conf-sim and class-sim, respectively.

3.2 Main Stage Applying BUS-stop

After the preliminary stage, we train all the labeled
samples and refer to this stage as the main stage.
The combined BUS-stop method applied in the
main stage is summarized in Alg. 2. The unlabeled
set is predicted at every epoch during training.

Conf-sim The first proposed stop criterion conf-
sim Sconf represents the similarity of the prediction
confidences ~Pu for the unlabeled samples with the
reference confidences ~Pl. To calculate the similar-
ity between ~Pu and ~Pl, their dimensions must be
the same. We sample ~Pu at regular intervals nu

nl

such that it is the same size as ~Pl and denoted it as...
P u. We use the Euclidean distance to calculate the
similarity, resulting in Sconf . Then, the first stop
criterion is when Sconf has the lowest value, i.e.,
...
P u is most similar to ~Pl. There is a natural concern
that

...
P u is likely to produce higher (thus dissimi-

lar) confidences than ~Pl because
...
P u is obtained by

training all the labeled samples, unlike ~Pl. How-
ever, the fact that the confidence for each sample in
~Pl is obtained when the validation error is the low-
est can alleviate this concern. Thereby, Sconf can
be a rough criterion for avoiding under- and over-
fitting, and can reflect the trend of the loss, based
on comparison with the reference confidences.
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Algorithm 2 BUS-stop in main stage

Input: Dl, Du, ~Pl, ~Cu

Output: Expected best model Mbest

Let Queue[1 · · ·nque] = 0
Let Bconf = inf , and npat = 0
Initialize a model, M
for epoch ∈ {1, 2, 3, · · · } do

Train the M one epoch on Dl

Pu, Ĉu ←M(Du)
~Pu ← sortPu in ascending (or descending) order...
P u ← sampling ~Pu at regular intervals nu

nl

Sconf = Euclidian-distance(
...
P u, ~Pl)

Sclass = Cosine-similarity(Ĉu, ~Cu)
if Sconf < Bconf then

npat = 0 and Queue[1 · · ·nque] = 0
Bconf = Sconf

else
npat = npat + 1

end if
if npat < nque then

if Sclass > max(Queue) then
Mbest ← save the current M

end if
Queue

dequeue &←−−−−−−
enqueue

Sclass

else
End training

end if
end for
return Mbest

Class-sim The second proposed stop criterion
is class-sim, Sclass. The predicted class distribu-
tion Ĉu on the unlabeled set is compared with the
estimated class distribution ~Cu from the prelimi-
nary stage. The assumption is that a well-trained
model can also predict the class distribution more
accurately. Therefore, estimation of the true class
distribution is crucial. A calibration method that
facilitates better estimation of the class distribution
is presented in Section 3.3. We use the cosine sim-
ilarity to calculate the similarity between Ĉu and
~Cu, and obtain Sclass. The second stop criterion
is when Sclass has the highest value, i.e., Ĉu is
most similar to ~Cu. Thereby, Sclass can reflect the
short-term trend of the accuracy because it is more
likely that the outputs of a higher accuracy model
are closer to the true class distribution.

BUS-stop Finally, we combine the two stop-
criteria, conf-sim and class-sim, to form the BUS-
stop method, as depicted in Alg. 2. A simple

𝐶𝑢 = (𝑥, 𝑦)

𝐵 = (0.5,0.5)

𝐴𝑐𝑐𝑚𝑎𝑥 = 1.0

𝐴𝑐𝑐𝑣𝑎𝑙 = 0.8

𝐴𝑐𝑐𝑚𝑖𝑛 = 0.5

መ𝐶𝑢 = (0.65,0.35)

①

②

②
‘

①
‘

By Equation (1) and (2),

→ ①:② ≈ ①‘:②‘

→ 𝑥 ≈ 0.5 +
5

3
0.65 − 0.5 = 0.75

→ 𝑦 ≈ 0.5 +
5

3
0.35 − 0.5 = 0.25

●●

Figure 1: Calibration example in binary classification.

product of the two stop criteria can be an ineffec-
tive stop criterion because the sizes of Sconf and
Sclass are relative. Our combined stop-criterion is
to save the model with the highest Sclass among
of the epochs from the lowest Sconf to the subse-
quent (nque−1)-th epoch. This technique enables
fine-stopping by considering both Sconf and Sclass,
which reflect the long-term and short-term perfor-
mances, respectively. It is to be noted that early
stopping methods should be operated as an ongoing
process, and not as a type of post-hoc method. To
this end, we use a fixed-size queue Queue, and its
size nque as a hyperparameter, as shown in Alg. 2.

3.3 Calibration of Class Distribution
In this section, we describe the calibration of the
predicted class distribution. The calibration method
aims to better estimate the true class distribution
of the unlabeled set, thereby improving the per-
formance of class-sim, particularly for imbalanced
classification.

Trained neural networks often involve sampling
biases. For example, in binary classification, the
prediction results of a model trained with a class ra-
tio a:b tend to follow the distribution of a:b. Thus,
when the class distributions are different in the test
and training sets, the model performance can de-
teriorate. Let us suppose the following somewhat
ideal and naive situations. Let Cu be the true class
distribution of the unlabeled set. If the model is
perfectly trained with an accuracy of 1.0, the out-
put class distribution will be equal to Cu. On the
other hand, if the model fails to learn any inference
knowledge from training, the model will output the
predictions only by its sampling bias; i.e., when the
accuracy is the same as the random expectation (de-
noted as Accmin, e.g., 0.5 in binary classification),
the output class distribution will be equal to the
sampling bias B. Thus, the model accuracy can re-
flect whether the output class distribution is closer
to the sampling bias or the true distribution. In the
preliminary stage, we obtained the models’ proxy
accuracy and output class distribution as Accval
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Data Class Train Test Len
SST-2 2 6.9K 1.8K 19
IMDB 2 25K 25K 231
Elec 2 25K 25K 107
AG-news 4 120K 7.6K 38
DBpedia 14 560K 70K 49

Table 1: Statistics for datasets. Len denotes the average
number of words per sample.

and Ĉu, respectively. Assuming that there is an
approximate linear relationship, we can define a
proportional expression as follows:

(1−Accmin) : (Accval −Accmin)

≈ (Cu −B) : (Ĉu −B)
(1)

We rearrange the above expression in terms of Cu:

Cu ≈ B +
(1−Accmin)

(Accval −Accmin)
(Ĉu −B) (2)

Then, we denote the approximation of Cu as ~Cu.
Considering the class distribution as a vector, Eq.
(2) is a type of extrapolation. B can be defined
as the class distribution of Dtrain or the predicted
distribution in the validation set, Ĉval, of the pre-
liminary stage. In addition, theAcc can be replaced
with F1-score. Fig. 1 illustrates an example of our
calibration method.

4 Experimental

4.1 Datasets

We conducted extensive experiments using five
text classification datasets. The statistics are sum-
marized in Table 1. These datasets have been
extensively used in NLP research, and are pub-
licly available. The SST-2 (Socher et al., 2013),
IMDB (Maas et al., 2011), and Elec (McAuley and
Leskovec, 2013) datasets are used for sentiment
analysis. SST-2 and IMDB include movie reviews,
and Elec includes reviews on Amazon electron-
ics. AG-news (Zhang et al., 2015) and DBpedia
(Zhang et al., 2015) are topic classification tasks
for Wikipedia and news articles, respectively. For
each dataset, we sampled K labeled samples per
class from the training set. K was set to 50 for
low-resource settings; we also experimented by
varying K ∈ {50, 100, 200, 400, 800, 1600}. We
used the test samples as the unlabeled set for each
dataset, which is referred to as transductive setting
in few-shot classification (Liu et al., 2019).

4.2 Methods for Comparison

In this section, we describe the various stop-criteria
for comparison with our method.

EB The EB (Mahsereci et al., 2017) is a criterion
based on gradients of training samples. The EB-
criterion stops when the following condition is met:

1− |S|
D

D∑
k=1

[
(∇LS,k)2

Σ̂k

] > 0 (3)

where S represents a sample set, D is the number
of parameters, ∇L is the gradients of loss, and
subscript k indicates the k-th weight of the total
parameters. Σ̂ is the variance estimator, which is
calculated as follows:

Σ̂k =
1

(|S| − 1)

∑
x∈S

(∇lk(x)−∇LS,k)2 (4)

where∇l(x) is the loss gradient on sample x. Note
that LS = 1

|S|
∑

x∈S l(x). For further details, refer
Mahsereci et al. (2017).

LID Lee and Chung (2021) approximated LID
as follows:

LID = −
∑
x∈Du

[
1

m

m∑
i=1

ln
di(~z(x))

dm(~z(x))

]−1
(5)

where ~z(x) is the representation vector of sample
x, and di is the Euclidean distance of ~z(x) and
its i-th nearest neighbor. m is a hyperparameter,
which denotes the number of nearest neighbors.
The lowest LID is the stop criterion.

Val-stopsplit(x) and Val-stopadd(x) Val-stop de-
notes validation-based stopping. Val-stopsplit(x) in-
dicates that x validation samples per class are taken
from the labeled set. Therefore, K−x samples are
trained and x samples are validated for each class.
Val-stopadd(x) indicates that x additional samples
per class are used for validation; i.e., Val-stopadd(x)
uses a total of K+x labeled samples per class. Val-
stopadd(x) has an unfair advantage because it uses
additional labeled samples.

PE-stop-epoch The stopping epoch is consid-
ered a hyperparameter, which is pre-estimated with
cross-validation, as described in Section 2. We use
four-fold cross-validation.

Conf-sim and class-sim can also be used as a
single stop-criterion, as mentioned before. We com-
pare the single criteria with the combined BUS-stop
criterion. Conf-sim stops when Sconf is the lowest,
and class-sim stops when Sclass is the highest.

712



Dataset SST-2 IMDB Elec AG-news DBpedia Average
Method Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss
Val-stopsplit(25) 0.775 0.516 0.746 0.572 0.781 0.507 0.846 0.477 0.982 0.085 0.826 0.431
EB 0.826' 0.565 0.833' 0.551 0.843' 0.534 0.861 0.491 0.986' 0.103 0.869 0.449
LID 0.794 0.602 0.761 0.571 0.815 0.494 0.859 0.515 0.971 0.765 0.840 0.589
PE-stop-epoch 0.816 0.628 0.826' 0.585 0.837 0.524 0.859 0.487 0.985 0.079 0.865 0.460
Conf-sim (ours) 0.807 0.442' 0.793 0.484' 0.823 0.433' 0.863' 0.421 0.985' 0.077' 0.854 0.371
Class-sim (ours) 0.795 0.570 0.789 0.560 0.793 0.531 0.857 0.561 0.986' 0.078 0.844 0.460
BUS-stop (ours) 0.831 0.455 0.828 0.456 0.848 0.417 0.865 0.432 0.986 0.074 0.872 0.367
*Val-stopadd(25) 0.819 0.431 0.824' 0.447' 0.842' 0.407' 0.867 0.415 0.986' 0.075' 0.868 0.355

Table 2: Performance comparison of different stop-criteria in balanced classification. We used 50 labeled samples
per class for all stop-criteria except for Val-stopadd(25). *Note that the Val-stopadd(25) has an unfair advantage:
for each class, it used 25 additional labeled samples for validation while using 50 labeled samples for training.
The best performances, except for the Val-stopadd(25), are denoted in bold. ‘'’ denotes that the performance is
statistically similar to the BUS-stop (i.e., p-value over 0.05).

Figure 2: Example of the accuracy and loss curves with
SST-2 dataset. The loss and conf-sim were scaled be-
tween 0.5-1.0. The red vertical line denotes the best
model selected by the BUS-stop method.

4.3 Implementation

BERT-base (Devlin et al., 2019) was adopted as
our text encoder. The Adam optimizer (Kingma
and Ba, 2015) was applied for categorical cross-
entropy loss (i.e., −

∑
yi log pi), and its learning

rate was set to 3e-5. The dropout (Srivastava et al.,
2014) was set to 0.2, and the batch size was 16. All
the stop-criteria were evaluated simultaneously for
each run to reduce the variance of the estimation.
We averaged 10 results in all the experiments. In
EB, 64 random training samples were used for S
in Eq. (3). In LID, the final vector of the [CLS]
token in the BERT model was assigned to ~z(x)
in Eq. (5), and the best m was selected from
{5, 10, 20, 50, 100}. In BUS-stop, nque in Alg. 2
was set to five. Note that K is the number of train-
ing samples per class. When K was set to 50, T
and r in the preliminary stage (see Alg. 1) were set
to 5 and 1:1, respectively. When K was set above
50, T and r were set to 4 and 3:1, respectively. In
our calibration method, we used Ĉval as B and
macro F1-score as the Accval.

SST-2 IMDB Elec AG-news Avg.
Val-stopsplit(25) 0.052 0.070 0.049 0.020 0.048
EB 0.119 0.123 0.117 0.074 0.109
LID 0.088 0.076 0.058 0.052 0.069
PE-stop-epoch 0.131 0.122 0.107 0.069 0.107
Conf-sim (ours) 0.036 0.064 0.040 0.011 0.038
Class-sim (ours) 0.079 0.069 0.064 0.059 0.068
BUS-stop (ours) 0.072 0.071 0.061 0.039 0.061
Val-stopadd(25) 0.035 0.056 0.045 0.021 0.039

Table 3: Over-confidence error (OE) of different stop-
criteria. In DBpedia, all the OEs were close to zero.

5 Results

5.1 Balanced Classification

Table 2 shows the results when K=50 for train-
ing. It is noted that the original test sets have a
balanced class distribution. We also report the loss
measure as well as accuracy because loss can im-
ply over-training. As shown in Table 2, our BUS-
stop method exhibits the best performance on an
average, and the accuracy is better even than Val-
stopadd(25), which uses a larger numbers of labeled
samples. Note that Val-stopadd(25) uses a total of
75 labeled samples per class. The performance
of Val-stopsplit(25) indicates that splitting data for
validation can result in poor performance in low-
resource settings. LID underperforms compared to
the PE-stop-epoch that does not require unlabeled
samples. Conf-sim shows the second-best loss on
an average. Class-sim underperforms as a stop cri-
terion by itself. However, the BUS-stop method,
which combines these two methods, shows better
performance than each one on an average. Figure 2
displays the results of conf-sim and class-sim over
the epochs. More examples are presented in Ap-
pendix A. In Fig. 2, the conf-sim curve is similar
to the long-term trend of the loss; however, it does
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Dataset SST-2 IMDB Elec Average
Method Acc F1 Loss Acc F1 Loss Acc F1 Loss Acc F1 Loss
Val-stopsplit(25) 0.788 0.719 0.499 0.732 0.674 0.589 0.783 0.724 0.507 0.768 0.706 0.532
EB 0.846' 0.786' 0.504 0.810 0.749 0.568 0.839 0.789 0.541 0.832 0.775 0.537
LID 0.750 0.698 0.632 0.712 0.668 0.678 0.780 0.728 0.574 0.747 0.698 0.628
PE-stop-epoch 0.843 0.779 0.527 0.821 0.763 0.589 0.843 0.789 0.521 0.836 0.777 0.545
Conf-sim (ours) 0.816 0.754 0.427 0.813 0.750 0.432' 0.835 0.775 0.398 0.821 0.760 0.419
Class-sim (ours) 0.862' 0.797' 0.489 0.844' 0.779' 0.510 0.873' 0.807' 0.409 0.860 0.794 0.469
BUS-stop (ours) 0.860 0.792 0.379 0.849 0.787 0.406 0.876 0.815 0.343 0.861 0.798 0.376
Val-stopadd(25) 0.823 0.767 0.412 0.820 0.767 0.457 0.837 0.784 0.407 0.827 0.773 0.426

Table 4: Performance comparison in an imbalanced setting of binary classification tasks. We used 50 labeled
samples per class for training (i.e., K=50), and the class distributions of the test sets were adjusted to 2:8 (nega-
tive:positive). ‘'’ denotes that the performance is statistically similar to the BUS-stop (i.e., p-value over 0.05).

Train Test 2:8 4:6 6:4 8:2

2:8
EB 0.845 0.732 0.643 0.511
BUS-stop (ours) 0.828 0.719 0.669 0.521
Val-stopadd(25) 0.679 0.660 0.621 0.634

4:6
EB 0.860 0.820 0.790 0.728
BUS-stop (ours) 0.864 0.825 0.815 0.808
Val-stopadd(25) 0.820 0.808 0.801 0.794

6:4
EB 0.790 0.816 0.825 0.845
BUS-stop (ours) 0.845 0.826 0.833 0.864
Val-stopadd(25) 0.826 0.824 0.823 0.824

8:2
EB 0.611 0.696 0.774 0.870
BUS-stop (ours) 0.682 0.714 0.793 0.865
Val-stopadd(25) 0.667 0.707 0.733 0.782

Avg.: EB=0.760, BUS-stop=0.779, Val-stopadd(25)=0.750

Table 5: Accuracy comparison in various imbalanced
settings (negative:positive) of the SST-2. The bold de-
notes the best performance of the three stop-criteria.

not accurately reflect the short-term fluctuation of
the performance from epochs 7–16. On the other
hand, class-sim is observed to be well responsive
to the short-term fluctuation of the accuracy, but
does not reflect the long-term trend. BUS-stop,
which is a combination of these two methods, takes
advantage of the short- as well as long-term meth-
ods, and thereby facilitates fine stopping. The EB-
criterion shows the statistically similar accuracy
to the BUS-stop method in most datasets. In the
EB-criterion and PE-stop-epoch, the average loss
is not good enough compared to the high accuracy.
The accuracy and loss show somewhat conflicting
results. That was due to over-confidence on the mis-
classified samples, caused by over-training. Note
that Loss = −

∑
yi log pi. Overconfidence on the

wrong label makes pi close to zero on its true label
yi. Thus, excessively low pi can increase the loss
drastically. Table 3 lists the over-confidence error
(OE); the equation for OE is presented in Thulasi-
dasan et al. (2019). This confidence error can be
detrimental in various applications, as described by
Guo et al. (2017).

5.2 Imbalanced Classification

We experimented with an imbalanced setting in bi-
nary classification tasks. For testing, we sampled
1,000 instances in the SST-2 test set, and 10,000
instances each in the IMDB and Elec test sets, with
a class distribution of 2:8 (negative:positive). The
macro F1-score is also reported. Table 4 shows the
results when K was set to 50 for training. In most
cases, BUS-stop exhibits the best performance with
respect to the accuracy as well as loss. In addition,
it is noted that BUS-stop outperforms the other
methods with a greater margin in an imbalanced
setting than in a balanced one (Table 2). It is ob-
served that ratios marked with ‘'’ are fewer in the
imbalanced setting. Class-sim shows the best or
second-best accuracy among the datasets. It is ob-
served that the output class distribution can be an
important indicator for a better model.

Table 5 shows the results in various imbalanced
settings of the SST-2 (both the training and test sets
are imbalanced). The number of training samples
was fixed to 100 for the different class-distribution
settings. In general, when the class distributions
of the training and test sets are similar, the results
shows better performance for all the three methods,
EB, BUS-stop, and Val-stopadd(25). In most cases,
BUS-stop consistently outperforms Val-stopadd(25)
and EB, and the margin is greater when the class
distributions are more different between the train-
ing and test sets. This result indicates that BUS-
stop is robust to imbalanced classification.

6 Discussion

Impact of the training size Figure 3 indicates the
accuracy curve with respect to the training size,
using the IMDB dataset. The x values of Val-
stopadd(x) and Val-stopsplit(x) were set to 25, 25,
50, 100, 200, and 400, according to the increase
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Figure 3: Accuracy by different training sizes in IMDB.

Train Test 2:8 4:6 6:4 8:2

2:8
Pred, Ĉu 0.999 0.946 0.781 0.583
CaliAcc 0.999 0.954 0.816 0.653
CaliF1 0.997 0.965 0.915 0.734

4:6
Pred, Ĉu 0.986 0.999 0.966 0.892
CaliAcc 0.997 0.998 0.987 0.966
CaliF1 0.998 0.998 0.989 0.973

6:4
Pred, Ĉu 0.939 0.976 0.998 0.983
CaliAcc 0.989 0.992 0.997 0.994
CaliF1 0.991 0.984 0.997 0.994

8:2
Pred, Ĉu 0.691 0.827 0.957 0.999
CaliAcc 0.770 0.863 0.964 0.999
CaliF1 0.912 0.908 0.975 0.996

Avg.: Ĉu=0.908, CaliAcc=0.934, CaliF1=0.958

Table 6: Cosine similarity between the class distribu-
tion of the test set and the estimated distribution in var-
ious imbalanced settings of the SST-2 dataset.

in K. It can be observed that the performance
of BUS-stop is good in the sufficient-data regime
as well. However, the performances of the three
stop-criteria converge almost similarly with the in-
crease in the training size. The impact of splitting
the samples for validation does not deteriorate the
performance when K is greater than 400. Rather,
Val-stopsplit(x) performs slightly better when K is
1600. This result suggests that when sufficient la-
beled data are available, validation-based stopping
can be a better choice.

Calibration performance In the BUS-stop
method, accurate estimation of the class distribu-
tion plays a crucial role. The cosine similarity
between the class distribution of the test set and the
estimated distributions by various estimators are
shown in Table 6, where the uncalibrated output
distributions (Ĉu) and the estimated distributions
by the calibration methods, based on the Acc-score
(CaliAcc) and macro F1-score (CaliF1), were com-
pared. When the class distributions are similar
between the test and training sets, the performance
of Ĉu is slightly better than those of the other es-

Figure 4: BUS-stop accuracy for different class dis-
tribution estimators in the 16 imbalanced settings de-
picted in Table 6.

Method Time complexity
Measured time

SST-2
(nu = 1.8k)

DBpedia
(nu = 70k)

EB g(nl) + α 0.32 m 0.49 m
LID g(nl) + p(nu) 0.12 m 5.02 m
PE-stop-epoch (T + 1) ∗ g(nl) 0.43 m 1.14 m
BUS-stop (T + 1) ∗ g(nl) + p(nu) 0.47 m 5.97 m
Val-stopadd(25) g(nl) 0.07 m 0.19 m

Table 7: Running time comparison for different stop-
criteria. The two longest times are denoted in bold.

timators. However, the estimation by calibration
based on the F1-score (CaliF1) is better on an aver-
age, and particularly when the class distributions of
the test and training sets are different. Figure 4 in-
dicates the BUS-stop accuracies when each model
stops based on the estimated class distribution in
Table 6 (the same color corresponds to one cell
in Table 6). For example, the yellow colors corre-
spond to the settings in which the class distribution
is 2:8 and 8:2 in the training and test sets, respec-
tively. As shown in Fig. 4, the better the class
distribution is estimated, the higher is the accuracy
of BUS-stop. Such high correlation indicates the
importance of the class distribution estimator. This
result is consistent with our assumption that the
output class distribution of better models will be
closer to the true distribution.

Running time The running times are not di-
rectly comparable owing to the different hyperpa-
rameter settings for each method. For example,
the BUS-stop and PE-stop-epoch require a separate
preliminary stage that consumes additional time.
We add up both the times taken in the prelimi-
nary stage and main stage. We denote the aver-
age running time per epoch as g(nl) for training
the labeled samples and p(nu) for predicting the
unlabeled samples. The time complexity and the
measured time are shown in Table 7. Note that T is
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Method Val-stopsplit(25) Val-stopadd(25) BUS-stop
Selection local global local global local

Balanced classification
SST-2 0.775 0.785 0.819 0.840 0.831
IMDB 0.746 0.786 0.824 0.838 0.828
Elec 0.781 0.805 0.842 0.852 0.848
AG-news 0.846 0.857 0.867 0.871 0.865

Imbalanced classification
SST-2 0.788 0.807 0.823 0.832 0.860
IMDB 0.732 0.757 0.820 0.834 0.849
Elec 0.783 0.820 0.837 0.853 0.876

Table 8: Accuracy by global selection in Val-stop.

the number of retrainings in the preliminary stage,
which was set to five. The experimental settings are
the same as in Section 5.1. The time measurement
was conducted on a PC with an Intel Core i7 CPU,
64-GB RAM and an NVIDIA Titan X Pascal GPU.
As shown in the expression of time complexity, the
running time depends on the numbers of labeled
and unlabeled samples, nl and nu, respectively. In
DBpedia, which has a large number of unlabeled
samples, nu, the LID and BUS-stop methods take
the two longest running times. On the other hand,
in SST-2, the PE-stop-epoch and BUS-stop meth-
ods show the two longest running times, because
the nu is relatively small such that the g(nl) is more
dominant than the p(nu). The BUS-stop requires
a longer running time than other methods due to
the T -times retraining and the continual prediction
on the unlabeled set. To reduce the time, we can
adjust the T value or sample a smaller amount of
data from the unlabeled set.

Limitations The proposed BUS-stop method
was designed for classification tasks, and thereby
can be applied when the model can output confi-
dences. Regression tasks as well can be addressed
by converting into classification problems. The
continuous values normalized between 0-1 can be
represented as confidences in a binary classification.
However, it may be difficult to apply to other more
complex tasks (e.g., text summarization). This
study is limited to classification tasks. Another
limitation is that the BUS-stop, which is a non-
validation stop-method, cannot make direct com-
parisons between two models with different runs.
Early stopping can be seen as selecting the best re-
sulting model over the epochs. In a similar way, it
is also possible to select the best model among mul-
tiple runs. We refer to the former as local selection
and the latter as global selection. In validation-
based stopping, the global selection is simply to
select the model with the lowest validation loss

over multiple runs. However, the non-validation
methods have no clear criterion for this purpose.
We repeated training five runs for each and selected
the best model among the runs based on validation
loss. Other experimental settings are the same as in
Section 5. As shown in Table 8, the global selection
in validation-based stopping improves performance
across the datasets in both balanced and imbalanced
settings. However, in the imbalanced setting, the
BUS-stop still results in better performance. Note
that Val-stopadd(25) uses additional labeled sam-
ples. We also report that the global selections that
are based on the Sconf , Sclass, and LID did not
show significant performance improvement in our
experiment. The development of non-validation
global selection methods is left for future work.

7 Conclusion and Future Work

Validation-based early stopping can be detrimen-
tal in low-resource settings because the reduction
in the number of samples by validation split may
result in insufficient samples for training. In this
study, we proposed an early stopping method called
BUS-stop, based on unlabeled samples. Moreover,
we proposed a calibration method to better estimate
the true class distribution, which was used in the
BUS-stop method to improve the performance. We
conducted experiments on five popular text classifi-
cation datasets. The results indicated that BUS-stop
outperformed the existing stop-criteria in both bal-
anced and imbalanced settings. In particular, BUS-
stop showed robustness to imbalanced classifica-
tion. The proposed BUS-stop method enables the
training of all the available samples and presents
a better stopping point using large unlabeled sam-
ples. In future, we plan to better exploit the un-
labeled samples in self-training schemes. We can
also combine BUS-stop and self-training methods.
BUS-stop can be used to improve the performance
of the initial model, which plays an important role
in the final self-training performance. Addition-
ally, we consider applying the BUS-stop to domain
adaptation tasks in the future.
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Figure 5: Examples in balanced and imbalanced settings of the SST-2, IMDB, and Elec datasets. and
denotes conf-sim and class-sim, respectively; and denotes the test loss and accuracy, respectively. The
red vertical line denotes the best model selected by the BUS-stop method. The balanced and imbalanced settings
are the same as the settings in Section 5.1 and 5.2, respectively. The loss and conf-sim were scaled between 0.25-
0.75 for easy comparison. The BUS-stop enables fine-stopping. As shown in these figures, our method skillfully
avoids the points where the performance is decreased by fluctuations.

A Appendix

Fig. 5 provides several examples of the learning
curves and the stop-criteria measurements over the
epochs.
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