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Abstract

Neural coreference resolution models trained
on one dataset may not transfer to new, low-
resource domains. Active learning mitigates
this problem by sampling a small subset of
data for annotators to label. While active learn-
ing is well-defined for classification tasks, its
application to coreference resolution is neither
well-defined nor fully understood. This pa-
per explores how to actively label coreference,
examining sources of model uncertainty and
document reading costs. We compare uncer-
tainty sampling strategies and their advantages
through thorough error analysis. In both syn-
thetic and human experiments, labeling spans
within the same document is more effective
than annotating spans across documents. The
findings contribute to a more realistic develop-
ment of coreference resolution models.

1 Introduction

Linguistic expressions are coreferent if they refer
to the same entity. The computational task of dis-
covering coreferent mentions is coreference resolu-
tion (CR). Neural models (Lee et al., 2018; Joshi
et al., 2020) are SOTA on ONTONOTES 5.0 (Pradhan
et al., 2013) but cannot immediately generalize
to other datasets. Generalization is difficult be-
cause domains differ in content, writing style, and
annotation guidelines. To overcome these chal-
lenges, models need copiously labeled, in-domain
data (Bamman et al., 2020).

Despite expensive labeling costs, adapting CR

is crucial for applications like uncovering infor-
mation about proteins in biomedicine (Kim et al.,
2012) and distinguishing entities in legal docu-
ments (Gupta et al., 2018). Ideally, we would like
to quickly and cheaply adapt the model without
repeatedly relying on an excessive amount of an-
notations to retrain the model. To reduce labeling
cost, we investigate active learning (Settles, 2009)
for CR. Active learning aims to reduce annotation

costs by intelligently selecting examples to label.
Prior approaches use active learning to improve the
model within the same domain (Gasperin, 2009;
Sachan et al., 2015) without considering adapting
to new data distributions. For domain adaptation
in CR, Zhao and Ng (2014) motivate the use of
active learning to select out-of-distribution exam-
ples. A word like “the bonds” refers to municipal
bonds in ONTONOTES but links to “chemical bonds”
in another domain (Figure 1). If users annotate
the antecedents of “the bonds” and other ambigu-
ous entity mentions, then these labels help adapt a
model trained on ONTONOTES to new domains.

Active learning for CR adaptation is well-
motivated, but the implementation is neither
straightforward nor well-studied. First, CR is a span
detection and clustering task, so selecting which
spans to label is more complicated than choos-
ing independent examples for text classification.
Second, CR labeling involves closely reading the
documents. Labeling more spans within the same
context is more efficient. However, labeling more
spans across different documents increases data
diversity and may improve model transfer. How
should we balance these competing objectives?

Our paper extends prior work in active learn-
ing for CR to the problem of coreference model
transfer (Xia and Van Durme, 2021):

1. We generalize the clustered entropy sampling
strategy (Li et al., 2020) to include uncertainty
in mention detection. We analyze the effect of
each strategy on coreference model transfer.

2. We investigate the trade-off between labeling
and reading through simulations and a real-
time user study. Limiting annotations to the
same document increases labeling throughput
and decreases volatility in model training.

Taken together, these contributions offer a blueprint
for faster creation of CR models across domains.1

1https://github.com/forest-snow/
incremental-coref
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Figure 1: CR models are trained on source domain ONTONOTES, which contains data like news articles. The source
document links “the bonds” to “municipal bonds”. In a target domain like PRECO (Chen et al., 2018), “the bonds”
may no longer have the same meaning. It can refer to “chemical bonds” (Document 1) or not be considered an
entity (Document 2). A solution is to continue training the source model on more spans from the target domain.
Active learning helps select ambiguous spans, like “the bonds”, for the user to label on this interface (Section 4.2).

2 Problem: Adapting Coreference

Lee et al. (2018) introduce C2F-COREF, a neural
model that outperforms prior rule-based systems.
It assigns an antecedent y to mention span x. The
set Y(x) of possible antecedent spans include a
dummy antecedent ϵ and all spans preceding x. If
span x has no antecedent, then x should be assigned
to ϵ. Given entity mention x, the model learns a
distribution over its candidate antecedents in Y(x),

P (Y = y) =
exp {s(x, y)}∑︁

y′∈Y(x) exp {s(x, y′)}
. (1)

The scores s(x, y) are computed by the model’s
pairwise scorer (Appendix A.1).

CR models like C2F-COREF are typically trained
on ONTONOTES. Recent work in CR improves
upon C2F-COREF and has SOTA results on
ONTONOTES (Wu et al., 2020; Joshi et al., 2020).
However, annotation guidelines and the underly-
ing text differ across domains. As a result, these
CR models cannot immediately transfer to other
datasets. For different domains, spans could hold
different meanings or link to different entities. Xia
and Van Durme (2021) show the benefits of contin-
ued training where a model trained on ONTONOTES

is further trained on the target dataset. For several

target domains, continued training from ONTONOTES

is stronger than training the model from scratch,
especially when the training dataset is small.

Their experiments use an incremental variant of
C2F-COREF called ICOREF (Xia et al., 2020). While
C2F-COREF requires Θ(n) memory to simultane-
ously access all spans in the document and infer
a span’s antecedent, ICOREF only needs constant
memory to predict a span’s entity cluster. Despite
using less space, ICOREF retains the same accu-
racy as C2F-COREF. Rather than assigning x to
antecedent y, ICOREF assigns x to cluster c where c
is from a set of observed entity clusters C,

P (C = c) =
exp {s(x, c)}∑︁

c′∈C exp {s(x, c′)}
. (2)

As the algorithm processes spans in the document,
each span is either placed in a cluster from C or
added to a new cluster. To learn the distribution
over clusters (Equation 2), the algorithm first cre-
ates a cluster representation that is an aggregate
of span representations over spans that currently
exist in the cluster. With cluster and span repre-
sentations, individual spans and entity clusters are
mapped into a shared space. Then, we can compute
s(x, c) using the same pairwise scorer as before.

Xia and Van Durme (2021) show that continued
training is useful for domain adaptation but assume
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that labeled data already exist in the target domain.
However, model transfer is more critical when an-
notations are scarce. Thus, the question becomes:
how can we adapt CR models without requiring a
large, labeled dataset? Our paper investigates ac-
tive learning as a potential solution. Through active
learning, we reduce labeling costs by sampling and
annotating a small subset of ambiguous spans.

3 Method: Active Learning

Neural models achieve high accuracy for
ONTONOTES but cannot quickly adapt to new
datasets because of shifts in domain or annotation
standards (Poot and van Cranenburgh, 2020). To
transfer to new domains, models need substantial
in-domain, labeled data. In low-resource situations,
CR is infeasible for real-time applications. To
reduce the labeling burden, active learning may
target spans that most confuse the model. Active
learning for domain adaptation (Rai et al., 2010)
typically proceeds as follows: begin with a model
trained on source data, sample and label k spans
from documents in the target domain based on a
strategy, and train the model on labeled data.

This labeling setup may appear straightforward
to apply to CR, but there are some tricky de-
tails. The first complication is that—unlike text
classification—CR is a clustering task. Early ap-
proaches in active learning for CR use pairwise an-
notations (Miller et al., 2012; Sachan et al., 2015).
Pairs of spans are sampled and the annotator labels
whether each pair is coreferent. The downside to
pairwise annotations is that it requires many labels.
To label the antecedent of entity mention x, x must
be compared to every candidate span in the docu-
ment. Li et al. (2020) propose a new scheme called
discrete annotations. Instead of sampling pairs of
spans, the active learning strategy samples individ-
ual spans. Then, the annotator only has to find and
label first antecedent of x in the document, which
bypasses the multiple pairwise comparisons. Thus,
we use discrete annotations to minimize labeling.

To further improve active learning for CR, we
consider the following issues. First, the CR model
has different scores for mention detection and link-
ing, but prior active learning methods only consid-
ers linking. Second, labeling CR requires time to
read the document context. Therefore, we explore
important aspects of active learning for adapting
CR: model uncertainty (Section 3.1), and the bal-
ance between reading and labeling (Section 3.2).

3.1 Uncertainty Sampling
A well-known active learning strategy is uncer-
tainty sampling. A common measure of uncertainty
is the entropy in the distribution of the model’s
predictions for a given example (Lewis and Gale,
1994). Labeling uncertain examples improves accu-
racy for tasks like text classification (Settles, 2009).
For CR, models have multiple components, and
computing uncertainty is not as straightforward. Is
uncertainty over where mentions are located more
important than linking spans? Or the other way
around? Thus, we investigate different sources of
CR model uncertainty.

3.1.1 Clustered Entropy
To sample spans for learning CR, Li et al. (2020)
propose a strategy called clustered entropy. This
metric scores the uncertainty in the entity cluster
assignment of a mention span x. If x has high clus-
tered entropy, then it should be labeled to help the
model learn its antecedents. Computing clustered
entropy requires the probability that x is assigned
to an entity cluster. Li et al. (2020) use C2F-COREF,
which only gives probability of x being assigned
to antecedent y. So, they define P (C = c) as the
sum of antecedent probabilities P (Y = y),

P (C = c) =
∑︂

y∈C∩Y(x)

P (Y = y). (3)

Then, they define clustered entropy as,

H(x) = −
∑︂
c∈C

P (C = c) logP (C = c). (4)

The computation of clustered entropy in Equation 4
poses two issues. First, summing the probabilities
may not accurately represent the model’s proba-
bility of linking x to c. There are other ways to
aggregate the probabilities (e.g. taking the maxi-
mum). C2F-COREF never computes cluster prob-
abilities to make predictions, so it is not obvious
how P (C = c) should be computed for clustered
entropy. Second, Equation 4 does not consider
mention detection. For ONTONOTES, this is not an
issue because singletons (clusters of size 1) are not
annotated and mention detection score is implicitly
included in P (Y = y). For other datasets con-
taining singletons, the model should disambiguate
singleton clusters from non-mention spans.

To resolve these issues, we make the following
changes. First, we use ICOREF to obtain cluster prob-
abilities. ICOREF is a mention clustering model so it
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already has probabilities over entity clusters (Equa-
tion 2). Second, we explore other forms of max-
imum entropy sampling. Neural CR models have
scorers for mention detection and clustering. Both
scores should be considered to sample spans that
confuse the model. Thus, we propose more strate-
gies to target uncertainty in mention detection.

3.1.2 Generalizing Entropy in Coreference
To generalize entropy sampling, we first formal-
ize mention detection and clustering. Given span
x, assume X is the random variable encoding
whether x is an entity mention (1) or not (0). In
Section 2, we assume that the cluster distribution
P (C) is independent of X: P (C) = P (C |X).2

In other words, Equation 2 is actually computing
P (C = c |X = 1). We sample top-k spans with
the following strategies.

ment-ent Highest mention detection entropy:

HMENT(x) = H(X) (5)

= −
1∑︂

i=0

P (X = i) logP (X = i).

The probability P (X) is computed from normal-
ized mention scores sm (Equation 10). Ment-ent
may sample spans that challenge mention detec-
tion (e.g. class-ambiguous words like “park”). The
annotator can clarify whether spans are entity men-
tions to improve mention detection.

clust-ent Highest mention clustering entropy:

HCLUST(x) = H(C |X = 1) (6)

= −
∑︂
c∈C

P (C = c |X = 1) log

P (C = c |X = 1).

Clust-ent looks at clustering scores without ex-
plicitly addressing mention detection. Like in
ONTONOTES, all spans are assumed to be entity men-
tions. The likelihood P (C = c |X = 1) is given
by ICOREF (Equation 2).

cond-ent Highest conditional entropy:

HCOND(x) = H(C |X)

=

1∑︂
i=0

P (X = i)H(C |X = i)

= P (X = 1)H(C |X = 1)

= P (X = 1)HCLUST(x).

(7)

2A side effect of ONTONOTES models lacking singletons.

We reach the last equation because there is no un-
certainty in clustering x if x is not an entity mention
and H(C |X = 0) = 0. Cond-ent takes the un-
certainty of mention detection into account. So,
we may sample more pronouns because they are
obviously mentions but difficult to cluster.

joint-ent Highest joint entropy:

HJOINT(x) = H(X,C) = H(X) + H(C |X)

= HMENT(x) + HCOND(x). (8)

Joint-ent may sample spans that are difficult to de-
tect as entity mentions and too confusing to cluster.
This sampling strategy most closely aligns with the
uncertainty of the training objective. It may also
fix any imbalance between mention detection and
linking (Wu and Gardner, 2021).

3.2 Trade-off between Reading and Labeling

For CR, the annotator reads the document context
to label the antecedent of a mention span. An-
notating and reading spans from different docu-
ments may slow down labeling, but restricting sam-
pling to the same document may cause redundant
labeling (Miller et al., 2012). To better understand
this trade-off, we explore different configurations
with k, the number of annotated spans, and m, the
maximum number of documents being read. Given
source model h0 already fine-tuned on ONTONOTES,
we adapt h0 to a target domain through active learn-
ing (Algorithm 1):

Scoring To sample k spans from unlabeled
data U of the target domain, we score spans with
an active learning strategy S. Assume S scores
each span through an acquisition model (Lowell
et al., 2019). For the acquisition model, we use
ht−1, the model fine-tuned from the last cycle. The
acquisition score quantifies the span’s importance
given S and the acquisition model.

Reading Typically, active learning samples k
spans with the highest acquisition scores. To con-
strain m, the number of documents read, we find
the documents of the m spans with highest acquisi-
tion scores and only sample spans from those docu-
ments. Then, the k sampled spans will belong to at
most m documents. If m is set to “unconstrained”,
then we simply sample the k highest-scoring spans,
irrespective of the document boundaries.

Our approach resembles Miller et al. (2012)
where they sample spans based on highest uncer-
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Algorithm 1 Active Learning for Coreference

Require: Source model h0, Unlabeled data U , Ac-
tive learning strategy S, No. of cycles T , No. of
labeled spans k, Max. no. of read docs m

1: Labeled data L = {}
2: for cycles t = 1, . . . , T do
3: ax ← Score span x ∈ U by S(ht−1, x)
4: Q ← Sort (↓) x ∈ U by scores ax
5: Qm ← Top-m spans in Q
6: D ← {dx |x ∈ Qm} where dx is doc of x
7: ˜︁Q ← Filter Q s.t. spans belong to d ∈ D
8: ˜︁Qk ← Top-k spans in ˜︁Q
9: Lk ← Label antecedents for ˜︁Qk

10: L ← L ∪ Lk
11: ht ← Continue train h0 on L

return hT

tainty and continue sampling from the same doc-
ument until uncertainty falls below a threshold.
Then, they sample the most uncertain span from a
new document. We modify their method because
the uncertainty threshold will vary for different
datasets and models. Instead, we use the number
of documents read to control context switching.

Labeling An oracle (e.g., human annotator or
gold data) labels the antecedents of sampled spans
with discrete annotations (Section 3).

Continued Training We combine data labeled
from current and past cycles. We train the source
model h0 (which is already trained on ONTONOTES)
on the labeled target data. We do not continue
training a model from a past active learning cycle
because it may be biased from only training on
scarce target data (Ash and Adams, 2020).

4 Active Learning for CR through
Simulations and Humans

We run experiments to understand two important
factors of active learning for CR: sources of model
uncertainty (Section 3.1) and balancing reading
against labeling (Sections 3.2). First, we simu-
late active learning on PRECO to compare sampling
strategies based on various forms of uncertainty
(Section 4.1). Then, we set up a user study to inves-
tigate how humans perform when labeling spans
from fewer or more documents from PRECO (Sec-
tion 4.2). Specifically, we analyze their annotation
time and throughput. Finally, we run large-scale
simulations on PRECO and QBCOREF (Section 4.3).

We explore different combinations of sampling
strategies and labeling configurations.

Models In all experiments, the source model
is the best checkpoint of ICOREF model trained
on ONTONOTES (Xia et al., 2020) with SPANBERT-
LARGE-CASED (Joshi et al., 2020) encoder. For
continued training on the target dataset, we op-
timize with a fixed parameter configuration (Ap-
pendix A.2). We evaluate models on AVG F1, the
averaged F1 scores of MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), and CEAFϕ4 (Luo,
2005). For all synthetic experiments, we simulate
active learning with gold data substituting as an an-
notator. However, gold mention boundaries are not
used when sampling data. The model scores spans
that are likely to be entity mentions for inference,
so we limit the active learning candidates to this
pool of high-scoring spans. For each active learn-
ing simulation, we repeat five runs with different
random seed initializations.

Baselines We compare the proposed sampling
strategies (Section 3.1.2) along with li-clust-ent,
which is clustered entropy from Li et al. (2020)
(Equation 4). Active learning is frustratingly
less effective than random sampling in many set-
tings (Lowell et al., 2019), so we include two ran-
dom baselines in our simulation. Random samples
from all spans in the documents. Random-ment,
as well as other strategies, samples only from the
pool of likely (high-scoring) spans. Thus, random-
ment should be a stronger baseline than random.

Datasets ONTONOTES 5.0 is the most common
dataset for training and evaluating CR (Pradhan
et al., 2013). The dataset contains news articles
and telephone conversations. Only non-singletons
are annotated. Our experiments transfer a model
trained on ONTONOTES to two target datasets: PRECO

and QBCOREF. PRECO is a large corpus of grade-
school reading comprehension texts (Chen et al.,
2018). Unlike ONTONOTES, PRECO has annotated
singletons. There are 37K training, 500 validation,
and 500 test documents. Because the training set is
so large, Chen et al. (2018) only analyze subsets of
2.5K documents. Likewise, we reduce the training
set to a subset of 2.5K documents, comparable to
the size of ONTONOTES.

The QBCOREF dataset (Guha et al., 2015) con-
tains trivia questions from Quizbowl tournaments
that are densely packed with entities from academic
topics. Like PRECO, singletons are annotated. Un-
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Figure 2: Test AVG F1 on PRECO for each strategy.
On each cycle, fifty spans from one document are sam-
pled and labeled. We repeat each simulation five times.
Ment-ent, clust-ent, and joint-ent are most effective
while random hurts the model the most.
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Figure 3: Cumulative counts of entities, non-entities,
pronouns, and singletons sampled for each strategy
over first four cycles of the PRECO simulation. Random
mostly samples non-entities. Li-clust-ent and cond-
ent sample many entity mentions but avoid singletons.

like other datasets, the syntax is idiosyncratic and
world knowledge is needed to solve coreference.
Examples are pronouns before the first mention
of named entities and oblique references like “this
polity” for “the Hanseatic League”. These compli-
cated structures rarely occur in everyday text but
serve as challenging examples for CR. There are
240 training, 80 validation, and 80 test documents.

4.1 Simulation: Uncertainty Sampling

To compare different sampling strategies, we first
run experiments on PRECO. We sample fifty spans
from one document for each cycle. By the end
of a simulation run, 300 spans are sampled from
six documents. For this configuration, uncertainty
sampling strategies generally reach higher accuracy
than the random baselines (Figure 2), but cond-ent
and li-clust-ent are worse than random-ment.

4.1.1 Distribution of Sampled Span Types
To understand the type of spans being sampled,
we count entity mentions, non-entities, pronouns,
and singletons that are sampled by each strategy
(Figure 3). Random samples very few entities,
while other strategies sample more entity mentions.
Clust-ent and cond-ent sample more entity men-
tions and pronouns because the sampling objec-
tive prioritizes mentions that are difficult to link.
Clust-ent, joint-ent, and ment-ent sample more
singleton mentions. These strategies also show
higher AVG F1 (Figure 2). For transferring from
ONTONOTES to PRECO, annotating singletons is use-
ful because only non-singleton mentions are la-
beled in ONTONOTES. We notice ment-ent sampling
pronouns, which should obviously be entity men-
tions, only in the first cycle. Many pronouns in
ONTONOTES are singletons, so the mention detector
has trouble distinguishing them initially in PRECO.

4.1.2 Error Analysis
Kummerfeld and Klein (2013) enumerate the ways
CR models can go wrong: missing entity, extra en-
tity, missing mention, extra mention, divided entity,
and conflated entity. Missing entity means a gold
entity cluster is missing. Missing mention means
a mention span for a gold entity cluster is missing.
The same definitions apply for extra entity and ex-
tra mention. Divided entity occurs when the model
splits a gold entity cluster into multiple ones. Con-
flated entity happens when the model merges gold
entity clusters. For each strategy, we analyze the
errors of its final model from the simulation’s last
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Figure 4: For each sampling strategy, we analyze the
model from the last cycle of its PRECO simulation. We
compare the number of errors across common error
types in CR. The source ONTONOTES model severely
suffers from missing entities and missing mentions.
Ment-ent helps most with reducing these errors.

cycle (Figure 4). We compare against the source
model that is only trained on ONTONOTES.

The source model makes many missing entity
and missing mention errors. It does not detect sev-
eral entity spans in PRECO, like locations (“Long
Island”) or ones spanning multiple words (“his kind
acts of providing everything that I needed”). These
spans are detected by uncertainty sampling strate-
gies and rand-ment. Ment-ent is most effective
at reducing “missing” errors. It detects gold entity
clusters like “constant communication” and “the
best educated guess about the storm”. By train-
ing on spans that confuse the mention detector, the
model adapts to the new domain by understanding
what constitutes as an entity mention.

Surprisingly, li-clust-ent makes at least twice as
many extra entity and extra mention errors than
any other strategy. For the sentence, “Living in a
large building with only 10 bedrooms”, the gold
data identifies two entities: “a large building with
only 10 bedrooms” and “10 bedrooms”. In both
ONTONOTES and PRECO, the guidelines only allow
the longest noun phrase to be annotated. Yet, the

li-clust-ent model predicts additional mentions, “a
large building” and “only 10 bedrooms”. We find
that li-clust-ent tends to sample nested spans (Ta-
ble 4). Due to the summed entropy computation,
nested spans share similar values for clustered en-
tropy as they share similar antecedent-linking prob-
abilities. This causes the extra entity and extra
mention errors because the model predicts there are
additional entity mentions within a mention span.

Finally, we see a stark difference between
random-ment and random. Out of all the sam-
pling strategies, random is least effective at pre-
venting missing entity and missing mention errors.
We are more likely to sample non-entities if we
randomly sample from all spans in the document
(Appendix A.7). By limiting the sampling pool
to only spans that are likely to be entity mentions,
we sample more spans that are useful to label for
CR. Thus, the mention detector from neural models
should be deployed during active learning.

4.2 User Study: Reading and Labeling

We hold a user study to observe the trade-off be-
tween reading and labeling. Three annotators, with
minimal NLP knowledge, label spans sampled from
PRECO. We use ment-ent to sample spans because
the strategy shows highest AVG F1 (Figure 2). First,
the users read instructions (Appendix A.6) and
practice labeling for ten minutes. Then, they com-
plete two sessions: FewDocs and ManyDocs. In
each session, they label as much as possible for at
least twenty-five minutes. In FewDocs, they read
fewer documents and label roughly seven spans per
document. In ManyDocs, they read more docu-
ments and label about one span per document.

For labeling coreference, we develop a user in-
terface that is open-sourced (Figure 8). To label the
antecedent of the highlighted span, the user clicks
on a contiguous span of tokens. The interface sug-
gests overlapping candidates based on the spans
that are retained by the CR model.

In the user study, participants label at least
twice as much in FewDocs compared to Many-
Docs (Figure 5). By labeling more spans in Few-
Docs, the mean AVG F1 score is also slightly higher.
Our findings show that the number of read docu-
ments should be constrained to increase labeling
throughput. Difference in number of labeled spans
between FewDocs and ManyDocs is more pro-
nounced when two annotators volunteer to continue
labeling after required duration (Appendix A.6).
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mark the first span labeled in a different document. The
mean AVG F1 across users for each session is on the
right. By restricting the number of read documents in
FewDocs, users label at least twice as many spans and
the model slightly improves in AVG F1.

4.3 Simulation: Uncertainty Sampling and
Reading-Labeling Trade-off

We finally run simulations to explore both sources
of model uncertainty and the trade-off between
reading and labeling. The earlier experiments have
individually looked at each aspect. Now, we an-
alyze the interaction between both factors to un-
derstand which combination works best for adapt-
ing CR to new domains. We run simulations on
PRECO and QBCOREF that trade-off the number of
documents read m with the number of annotated
spans k (Figure 6). We vary m between one, five,
and an unconstrained number of documents. For
PRECO, we set k to twenty and fifty. For QBCOREF,
we set k to twenty and forty. These results are also
presented in numerical form (Appendix A.5).

PRECO For PRECO, the test AVG F1 of ICOREF

trained on the full training dataset is 0.860. When
m is constrained to one or five, AVG F1 can reach
around 0.707 from training the model on only 300
spans sampled by ment-ent. As m increases, fewer
spans are sampled per document and all sampling
strategies deteriorate. After training on sparsely an-
notated documents, the model tends to predict sin-
gletons rather than cluster coreferent spans. Like
in the user study, we see benefits when labeling
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Figure 6: Test AVG F1 on PRECO and QBCOREF of
each strategy throughout simulations. Each row varies
in m, the maximum number of documents read per cy-
cle. Each column varies in k, the number of annotated
spans per cycle. For m of one or five, ment-ent shows
highest AVG F1 for PRECO and other uncertainty sam-
pling strategies are best for QBCOREF. When m is un-
constrained, many strategies show unstable training.
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more spans within a document. Interestingly, li-
clust-ent performs better when document reading
is not constrained to one document. The issue with
li-clust-ent is that it samples nested mention spans
(Section 4.1.2). Duplicate sampling is less severe if
spans can be sampled across more documents. An-
other strategy that suffers from duplicate sampling
is cond-ent because it mainly samples pronouns.
For some documents, the pronouns all link to the
same entity cluster. As a result, the model trains on
a less diverse set of entity mentions and cond-ent
drops in AVG F1 as the simulation continues.

QBCOREF For QBCOREF, the test AVG F1 of
ICOREF trained on the full training dataset is 0.795.
When we constrain m to one or five, li-clust-
ent, clust-ent, cond-ent, and joint-ent have high
AVG F1. Clustering entity mentions in QBCOREF

questions is difficult, so these strategies help tar-
get ambiguous mentions (Table 5). Ment-ent is
less useful because demonstratives are abundant in
QBCOREF and make mention detection easier. Li-
clust-ent still samples nested entity mentions, but
annotations for these spans help clarify interwo-
ven entities in Quizbowl questions. Unlike PRECO,
li-clust-ent does not sample duplicate entities be-
cause nested entity mentions belong to different
clusters and need to be distinguished.

Overall, the most helpful strategy depends on
the domain. For domains like PRECO that contain
long documents with many singletons, ment-ent is
useful. For domains like QBCOREF where resolving
coreference is difficult, we need to target linking
uncertainty. Regardless of the dataset, random
performs worst. Random-ment has much higher
AVG F1, which shows the importance of the men-
tion detector in active learning. Future work should
determine the appropriate strategy for a given do-
main and annotation setup.

5 Related Work

Gasperin (2009) present the first work on active
learning for CR yet observe negative results: active
learning is not more effective than random sam-
pling. Miller et al. (2012) explore different settings
for labeling CR. First, they label the most uncertain
pairs of spans in the corpus. Second, they label
all pairs in the most uncertain documents. The
first approach beats random sampling but requires
the annotator to infeasibly read many documents.
The second approach is more realistic but loses
to random sampling. Zhao and Ng (2014) argue

that active learning helps domain adaptation of CR.
Sachan et al. (2015) treat pairwise annotations as
optimization constraints. Li et al. (2020) replace
pairwise annotations with discrete annotations and
experiment active learning with neural models.

Active learning has been exhaustively studied
for text classification (Lewis and Gale, 1994; Zhu
et al., 2008; Zhang et al., 2017). Text classification
is a much simpler task, so researchers investigate
strategies beyond uncertainty sampling. Yuan et al.
(2020) use language model surprisal to cluster doc-
uments and then sample representative points for
each cluster. Margatina et al. (2021) search for con-
strastive examples, which are documents that are
similar in the feature space yet differ in predictive
likelihood. Active learning is also applied to tasks
like machine translation (Liu et al., 2018), visual
question answering (Karamcheti et al., 2021), and
entity alignment (Liu et al., 2021).

Rather than solely running simulations, other
papers have also ran user studies or developed user-
friendly interfaces. Wei et al. (2019) hold a user
study for active learning to observe the time to
annotate clinical named entities. Lee et al. (2020)
develop active learning for language learning that
adjusts labeling difficulty based on user skills. Klie
et al. (2020) create a human-in-the-loop pipeline to
improve entity linking for low-resource domains.

6 Conclusion

Neural CR models desparately depend on large,
labeled data. We use active learning to transfer a
model trained on ONTONOTES, the “de facto” dataset,
to new domains. Active learning for CR is diffi-
cult because the problem does not only concern
sampling examples. We must consider different
aspects, like sources of model uncertainty and cost
of reading documents. Our work explores these
factors through exhaustive simulations. Addition-
ally, we develop a user interface to run a user study
from which we observe human annotation time and
throughput. In both simulations and the user study,
CR improves from continued training on spans sam-
pled from the same document rather than different
contexts. Surprisingly, sampling by entropy in men-
tion detection, rather than linking, is most helpful
for domains like PRECO. This opposes the assump-
tion that the uncertainty strategy must be directly
tied to the training objective. Future work may ex-
tend our contributions to multilingual transfer or
multi-component tasks, like open-domain QA.
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7 Ethical Considerations

This paper involves a user study to observe the
trade-off between reading and labeling costs for an-
notating coreference. The study has been approved
by IRB to collect data about human behavior. Any
personal information will be anonymized prior to
paper submission or publication. All participants
are fully aware of the labeling task and the infor-
mation that will be collected from them. They
are appropriately compensated for their labeling
efforts.
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A Appendix

A.1 Coreference Resolution Models

C2F-COREF In C2F-COREF, a pairwise scorer
computes s(x, y) to learn antecedent distribution
P (Y ) (Equation 1). The model’s pairwise scorer
judges whether span x and span y are coreferent
based on their antecedent score sa and individual
mention scores sm,

s(x, y) =

{︄
0 y = ϵ

sm(x) + sm(y) + sa(x, y) y ̸= ϵ
,

(9)
Suppose gx and gy are the span representations
of x and y, respectively. Mention scores and an-
tecedent scores are then computed with feedfor-
ward networks FFNNm and FFNNc,

sm(x) = FFNNm(gx) (10)

sa(x, y) = FFNNa(gx, gy, ϕ(x, y)). (11)

The input ϕ(x, y) includes features like the distance
between spans. The unary mention score sm can be
viewed as the likelihood that the span is an entity
mention. For computational purposes, the C2F-
COREF model only retains top-k spans with the
highest unary mention scores. Lee et al. (2018)
provide more details about the pairwise scorer and
span pruning.

Incremental Clustering We elaborate upon the
clustering algorithm of ICOREF here. As the algo-
rithm processes spans in the document, each span
is either placed in a cluster from C or added to a
new cluster. To learn the distribution over clus-
ters (Equation 2), the algorithm first creates a clus-
ter representation gc that is an aggregate of span
representation that is an aggregate of span repre-
sentations over spans that currently exist in the
cluster. (Equation 12). With cluster and span repre-
sentations, individual spans and entity clusters are
mapped into a shared space. Then, we can compute
s(x, c) using the same pairwise scorer as Lee et al.
(2018). Suppose that model predicts c∗ as most
likely cluster: c∗ = argmaxc∈C s(x, c). Now, the
algorithm makes one of two decisions:

1. If s(x, c∗) > 0, then x is assigned to c∗ and
update gc∗ such that

gc∗ = se(c
∗, x)gc∗ + (1− se(c

∗, x))gx,
(12)

where se is a learned weight.

Strategy PRECO QBCOREF

random 2 < 1
random-ment 4 < 1
ment-ent 5 < 1
li-clust-ent 12 < 1
clust-ent 12 1
cond-ent 14 1
joint-ent 16 1

Table 1: The time (minutes) to sample a batch of
fifty spans from five documents from either PRECO or
QBCOREF for a given active learning strategy. On large
datasets like PRECO, we see that li-clust-ent, clust-ent,
cond-ent, and joint-ent are slower because the strat-
egy needs to incrementally cluster each span and then
compute clustering entropy.

2. If s(x, c∗) ≤ 0, then a new entity cluster cx =
{x} is added to C.

The algorithm repeats for each span in the docu-
ment.

Like C2F-COREF, the ICOREF model only retains
top-k spans with highest unary mention score. All
of our active learning baselines (Section 4), ex-
cept random, sample spans from this top-k pool
of spans.

A.2 Training Configuration

The SPANBERT-LARGE-CASED encoder has 334M pa-
rameters and ICOREF has 373M parameters in total.
For model fine-tuning, we train for a maximum of
fifty epochs and implement early stopping with a
patience of ten epochs. We set top span pruning
to 0.4, dropout to 0.4, gradient clipping to 10.0,
and learning rate to 1e-4 for Adam optimizer. The
hyperparameter configuration is based on results
from prior work (Lee et al., 2017; Xia et al., 2020).

All experiments in the paper are ran on NVIDIA
Tesla V100 GPU and 2.2 GHz Intel Xeon Silver
4114 CPU processor.

A.3 Simulation Time

We compare the time to sample fifty spans between
different active learning strategies for PRECO and
QBCOREF (Table 1). For PRECO, clust-ent, cond-
ent, and joint-ent are slower because they need
to run documents through ICOREF and get span-
cluster likelihood. On the other hand, ment-ent
only needs unary scores sm, which is much faster
to compute. Thus, for both datasets, running ment-
ent takes about the same time as random-ment.
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For QBCOREF, fine-tuning ICOREF on fifty spans
takes three minutes and fine-tuning on full train-
ing set takes thirty-four minutes. For PRECO, fine-
tuning ICOREF on fifty spans takes nine minutes and
fine-tuning on full training set takes five hours and
22 minutes.

A.4 Mention Detection Accuracy
For the annotation simulation in Section 4, we also
record mention detection accuracy. As ment-ent
targets ambiguity in mention detection, it is the
most effective strategy for improving mention de-
tection (Figure 7). The strategy is unaffected by
labeling setup parameters, like the number of spans
labeled per cycle or the number of documents read
per cycle. For strategies like cond-ent and joint-
ent, mention detection accuracy is stagnant or de-
creases as more spans are sampled (Figure 7a). Due
to deteriorating mention detection, the AVG F1 of
models also drop.

A.5 Numerical Results
The results for AVG F1 and mention detection accu-
racy are presented as graphs throughout the paper.
To concretely understand the differences between
the methods, we provide results in numerical form
(Tables 2,3). We show results from the PRECO and
QBCOREF simulations where twenty spans are la-
beled each cycle and the number of documents read
is either one or an unconstrained amount. The val-
ues in the tables show the mean and variance of
AVG F1 and mention detection accuracy over five
different runs.

A.6 User Study
Instructions to Participants We give the follow-
ing instructions to user study participants:

You will be shown several sentences
from a document. We have highlighted a
mention (a word or phrase) of an entity
(a person, place, or thing). This entity
mention may be a pronoun (such as “she”
or “their”) or something else.

We need your help to find an earlier men-
tion of the same entity, whether in the
same sentence or in an earlier sentence.
The mention does not have to be the im-
mediately previous one.

If the span is not an entity mention or
does not have an antecedent, please make
note of it on the interface.
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Figure 7: Comparing mention detection accuracy on
test set for different active learning strategies across
reading/labeling configurations. The plots are format-
ted in the same way as Figure 6. Generally, mention
detection improves most from ment-ent sampling.
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Total No. of Labeled Spans m Strategy AVG F1 Mention Accuracy

100 1 clust-ent 0.64 ± 0.02 0.71 ± 0.03
cond-ent 0.57 ± 0.02 0.66 ± 0.02
joint-ent 0.64 ± 0.03 0.76 ± 0.02
ment-ent 0.70 ± 0.01 0.80 ± 0.00
random 0.43 ± 0.09 0.49 ± 0.11
random-ment 0.65 ± 0.04 0.78 ± 0.02
li-clust-ent 0.56 ± 0.02 0.65 ± 0.03

unconstrained clust-ent 0.62 ± 0.03 0.70 ± 0.03
cond-ent 0.43 ± 0.09 0.67 ± 0.04
joint-ent 0.55 ± 0.06 0.71 ± 0.05
ment-ent 0.65 ± 0.03 0.76 ± 0.03
random 0.48 ± 0.07 0.54 ± 0.07
random-ment 0.69 ± 0.01 0.80 ± 0.01
li-clust-ent 0.62 ± 0.01 0.73 ± 0.01

200 1 clust-ent 0.68 ± 0.01 0.77 ± 0.01
cond-ent 0.62 ± 0.02 0.70 ± 0.03
joint-ent 0.68 ± 0.03 0.80 ± 0.02
ment-ent 0.71 ± 0.01 0.82 ± 0.00
random 0.48 ± 0.18 0.55 ± 0.21
random-ment 0.65 ± 0.05 0.77 ± 0.07
li-clust-ent 0.57 ± 0.05 0.67 ± 0.04

unconstrained clust-ent 0.65 ± 0.02 0.73 ± 0.03
cond-ent 0.36 ± 0.08 0.63 ± 0.07
joint-ent 0.40 ± 0.12 0.67 ± 0.12
ment-ent 0.67 ± 0.03 0.81 ± 0.01
random 0.49 ± 0.08 0.61 ± 0.07
random-ment 0.69 ± 0.01 0.81 ± 0.00
li-clust-ent 0.65 ± 0.03 0.75 ± 0.03

300 1 clust-ent 0.68 ± 0.02 0.78 ± 0.01
cond-ent 0.61 ± 0.03 0.70 ± 0.04
joint-ent 0.69 ± 0.02 0.81 ± 0.01
ment-ent 0.69 ± 0.02 0.82 ± 0.00
random 0.50 ± 0.09 0.58 ± 0.10
random-ment 0.61 ± 0.10 0.81 ± 0.01
li-clust-ent 0.63 ± 0.05 0.73 ± 0.05

unconstrained clust-ent 0.51 ± 0.12 0.70 ± 0.04
cond-ent 0.33 ± 0.07 0.57 ± 0.04
joint-ent 0.41 ± 0.05 0.69 ± 0.04
ment-ent 0.54 ± 0.07 0.80 ± 0.02
random 0.40 ± 0.04 0.60 ± 0.13
random-ment 0.65 ± 0.05 0.80 ± 0.04
li-clust-ent 0.67 ± 0.02 0.78 ± 0.01

Table 2: Results of PRECO simulation in numerical form, accompanying the graphs in Figures 6a and 7a. The table
shows AVG F1 and mention detection accuracy of experiments where twenty spans are sampled and labeled each
cycle. Results are shown for m, the maximum number of documents read, equal to one and also unconstrained.
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Total No. of Labeled Spans m Strategy AVG F1 Mention Accuracy

100 1 clust-ent 0.47 ± 0.06 0.62 ± 0.06
cond-ent 0.47 ± 0.03 0.61 ± 0.03
joint-ent 0.50 ± 0.03 0.65 ± 0.02
ment-ent 0.50 ± 0.01 0.66 ± 0.03
random 0.40 ± 0.07 0.53 ± 0.07
random-ment 0.44 ± 0.06 0.63 ± 0.04
li-clust-ent 0.45 ± 0.02 0.59 ± 0.03

unconstrained clust-ent 0.41 ± 0.05 0.59 ± 0.07
cond-ent 0.39 ± 0.10 0.57 ± 0.05
joint-ent 0.50 ± 0.01 0.66 ± 0.02
ment-ent 0.51 ± 0.02 0.69 ± 0.01
random 0.36 ± 0.08 0.48 ± 0.10
random-ment 0.48 ± 0.02 0.65 ± 0.01
li-clust-ent 0.47 ± 0.01 0.62 ± 0.02

200 1 clust-ent 0.52 ± 0.01 0.67 ± 0.01
cond-ent 0.52 ± 0.02 0.66 ± 0.02
joint-ent 0.53 ± 0.03 0.70 ± 0.03
ment-ent 0.51 ± 0.02 0.71 ± 0.02
random 0.40 ± 0.06 0.53 ± 0.08
random-ment 0.48 ± 0.05 0.68 ± 0.01
li-clust-ent 0.49 ± 0.01 0.64 ± 0.02

unconstrained clust-ent 0.45 ± 0.04 0.64 ± 0.06
cond-ent 0.39 ± 0.06 0.55 ± 0.06
joint-ent 0.48 ± 0.05 0.70 ± 0.03
ment-ent 0.49 ± 0.08 0.68 ± 0.13
random 0.34 ± 0.08 0.50 ± 0.11
random-ment 0.49 ± 0.04 0.70 ± 0.01
li-clust-ent 0.50 ± 0.03 0.68 ± 0.02

300 1 clust-ent 0.54 ± 0.02 0.70 ± 0.02
cond-ent 0.55 ± 0.02 0.70 ± 0.02
joint-ent 0.55 ± 0.02 0.74 ± 0.01
ment-ent 0.53 ± 0.02 0.75 ± 0.02
random 0.42 ± 0.05 0.55 ± 0.06
random-ment 0.49 ± 0.03 0.69 ± 0.03
li-clust-ent 0.53 ± 0.04 0.71 ± 0.02

unconstrained clust-ent 0.46 ± 0.04 0.67 ± 0.06
cond-ent 0.42 ± 0.07 0.58 ± 0.12
joint-ent 0.43 ± 0.11 0.68 ± 0.08
ment-ent 0.50 ± 0.06 0.74 ± 0.04
random 0.34 ± 0.18 0.45 ± 0.23
random-ment 0.47 ± 0.08 0.75 ± 0.02
li-clust-ent 0.52 ± 0.03 0.71 ± 0.01

Table 3: Results of QBCOREF simulation in numerical form, accompanying the graphs in Figures 6b and 7b. The
table shows AVG F1 and mention detection accuracy of experiments where twenty spans are sampled and labeled
each cycle. Results are shown for m, the maximum number of documents read, equal to one and also uncon-
strained.
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Figure 8: On the user interface, the sampled span is highlighted and the user must select an antecedent. If no
antecedents exist or the span is not an entity mention, then the user will click the corresponding buttons.
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Figure 9: Full annotation times of participants (dis-
tinguished by color) during the user study. Over a
longer period of time, the difference in number of la-
beled spans between the two sessions is much more pro-
nounced. Within fourty-five minutes, the red user can
label a hundred spans in the FewDocs session but only
labels about thirty spans in the ManyDocs session.

User Interface We design a user interface for
annotators to label coreference (Figure 8). The
user interface takes the sampled spans from active
learning as input. Afterward, it will present the
document and highlight the sampled spans in the
document. The user the proceeds to go through
the list of “Queries”. For the “Active query”, they
need to either: find its antecedent, mark there is
“no previous mention”, or indicate that “query is
not an entity”. The interface will suggest some
overlapping candidates to help narrow down the
user’s search. The candidates are spans that the CR

model scores as likely entity mentions. Users may
use keyboard shortcuts to minimize labeling time.

The code for the user interface is released along
with the code for the simulations.

Extending Annotation Time User study partic-
ipants are asked to annotate at least twenty-five
minutes (Section 4.2). During the study, two par-
ticipants continue to label after the minimum dura-
tion. Figure 9 shows full results from the user study.
Over a longer duration, the differences between the
FewDocs and ManyDocs sessions are clearer.

A.7 Examples of Sampled Spans
We provide examples of spans that are sampled
from the experiments. For these examples, we look
at the simulation where document reading is con-
strained to one document and twenty spans are
sampled per cycle. We compare the spans sam-
pled by each strategy for both PRECO (Table 4) and
QBCOREF (Table 5). Across domains, the strategies
behave similarly, but we notice some differences
in ment-ent and joint-ent. In PRECO, those strate-
gies tend to sample a mix of spans that are and are
not entity mentions (Section 4.1.1). In QBCOREF,
they sample more entity mentions. This could be
due to more entity mentions present in a Quizbowl
question, which makes it more likely to sample
something that should belong to an entity cluster.

For other strategies, we notice some issues. As
mentioned in Section 4.1.2, li-clust-ent tends to
sample nested entity mentions, which may become
redundant for annotators to label. In fact, AVG F1

for li-clust-ent tends to be lower if document read-
ing is constrained to one document. Cond-ent suf-
fers from redundant labeling because pronouns are
repeatedly sampled and they tend to link to the
same entity cluster.
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Strategy Sampled Spans Comments

random Later, I got out of the back door secretly and gave the food to the old man,
whose [name I had discovered]1 was Taff. I had never seen anything else
as lovely as the smile of satisfaction [on]2 Taff’s face when he ate the food.
From then on, my visits to [the old house had]3 a purpose, and I enjoyed
every minute of the rest of my stay.

Sampled spans are typically not
entity mentions.

random-
ment

When opening the door, his face was full of smiles and he hugged [his two
children and gave [his wife]2 a kiss]1. Afterwards, he walked with me to the
car. We passed the tree. I was so curious that I asked [him]3 about what I
had [seen]4 earlier.

Diverse set of span types is sam-
pled, including spans that are
not entity mentions and ones
that do link to entities.

li-clust-
ent

Although [he and [his young men]2]1 had taken no part in the killings, he
knew that [the white men]3 would blame [all of [the Indians]5]4.

Many sampled spans are nested
entity mentions.

ment-ent This summer, Republicans have been [meeting]1 “behind closed doors” on
a Medicare proposal scheduled to be released [later this month, only a few
weeks before Congress votes]2 on it, thereby avoiding independent analysis
of the costs, mobilization by opponents and other inconvenient aspects of a
long national debate. Two years ago, the Republicans rang alarms about the
[Clinton]3 plan’s emphasis on [managed care]4

Sampled spans are both entity
mentions and non-entities. The
spans are difficult for mention
detection like “meeting” but
may also be hard for clustering
like “Clinton”.

clust-ent After that, [Mary]1 buys some school things, too. Here [mother]2 buys a lot
of food, like bread, cakes, meat and fish. [They]3 get home very late.

Different types of entity men-
tions are sampled.

cond-ent It is a chance to thank everyone who has contributed to shaping [you]1 during
the high school years; it is a chance to appreciate all those who have been
instrumental in [your]2 education. Take a moment to express gratitude to all
those who have shared the experiences of [your]3 high school years.

More pronouns are sampled be-
cause they are obviously entity
mentions and hard to cluster.
However, repeated sampling of
the same entity occurs.

joint-ent [This]1 is an eternal regret handed down from generation to generation and
[you]2 are only one of those who languish for (...) followers. [Love]3 is
telephone, but it is difficult to seize [the center time for dialing]4, and you
will let the opportunity slip if your call is either too early or too late.

Many entity mentions are sam-
pled but some are difficult for
mention detector to detect.

Table 4: The example spans from PRECO documents that are sampled with each active learning strategy.

Strategy Sampled Spans Comments

random The discovery of a tube behind a [fuse box alarms Linda, and the image of
stock[ings]2 disturbs the main]2 character due to his guilt over [an encounter
with a woman and his son Biff in [Boston]4]3.

Choice of sampled spans are
very random and do not seem to
improve learning coreference.

random-
ment

The speaker of one of [this author’s works]1 invites the reader to [take]2 a
little sun, a little honey, as commanded by [Persephone’s]3 bees.

Diverse set of span types is sam-
pled, including spans that are
not entity mentions and ones
that do link to entities.

li-clust-
ent

For 10 points, name [this [Moliere]2 play about [Argan who is constantly
concerned with [his]4 health]3]1.

Many sampled spans are nested
entity mentions.

ment-ent He then sees [Ignorance and Want]1 emerge from [a cloak]2. Earlier, he
sees [a door-knocker]3 [transform]4 into [a human figure, which drags a belt
made of chains and locks]5.

Compared to PRECO, more en-
tity mentions are sampled but
most sampled spans are still dif-
ficult to detect.

clust-ent [[Its]2 protagonist]1 hires Croton to rescue a different character after listening
to a giant - LRB - * - RRB - Christian named Urban [discuss]3 a meeting at
Ostranium.

Compared to PRECO, a few sam-
pled spans are not entity men-
tions.

cond-ent While [this work]1 acknowledges the soundness of the arguments that use the
example of the ancients, [[its]3 author]2 refuses to reply to [them]4, adding
that we are constructing no system here [we]5 are a historian, not a critic.

More pronouns are sampled be-
cause they are obviously entity
mentions and hard to cluster.
Unlike PRECO, repeated sam-
pling occurs less often.

joint-ent This man falls in love with [the maid with [lime colored panties]2]1 and dates
[Luciana]3.

Compared to PRECO, more en-
tity mentions are sampled.

Table 5: The example spans from QBCOREF documents that are sampled with each active learning strategy.
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