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Abstract

Vision and language navigation (VLN) is a
challenging visually-grounded language un-
derstanding task. Given a natural language
navigation instruction, a visual agent interacts
with a graph-based environment equipped with
panorama images and tries to follow the de-
scribed route. Most prior work has been con-
ducted in indoor scenarios where best results
were obtained for navigation on routes that are
similar to the training routes, with sharp drops
in performance when testing on unseen environ-
ments. We focus on VLN in outdoor scenarios
and find that in contrast to indoor VLN, most
of the gain in outdoor VLN on unseen data is
due to features like junction type embedding or
heading delta that are specific to the respective
environment graph, while image information
plays a very minor role in generalizing VLN to
unseen outdoor areas. These findings show a
bias to specifics of graph representations of ur-
ban environments, demanding that VLN tasks
grow in scale and diversity of geographical en-
vironments.'

1 Introduction

Vision and language navigation (VLN) is a chal-
lenging task that requires the agent to process nat-
ural language instructions and ground them in a
visual environment. The agent is embodied in the
environment and receives navigation instructions.
Based on the instructions, the observed surround-
ings, and the current trajectory the agent decides
its next action. Executing this action changes the
position and/or heading of the agent within the en-
vironment, and eventually the agent follows the
described route and stops at the desired goal loca-
tion. The most common evaluation metric in VLN
is the proportion of successful agent navigations,
called task completion (TC).

'Code: https://github.com/raphael-sch/
map2sedq_vln

Data & Demo: https://map2seq.schumann.pub/
vin/

While early work on grounded navigation was
confined to grid-world scenarios (MacMahon et al.,
2006; Chen and Mooney, 2011), recent work has
studied VLN in outdoor environment consisting
of real-world urban street layouts and correspond-
ing panorama pictures (Chen et al., 2019). Recent
agent models for outdoor VLN treat the task as a
sequence-to-sequence problem where the instruc-
tions text is the input and the output is a sequence
of actions (Chen et al., 2019; Xiang et al., 2020;
Zhu et al., 2021b). In contrast to indoor VLN (An-
derson et al., 2018; Ku et al., 2020), these works
only consider a seen scenario, i.e., the agent is
tested on routes that are located in the same area
as the training routes. However, studies of indoor
VLN (Zhang et al., 2020) show a significant per-
formance drop when testing in previously unseen
areas.

The main goal of our work is to study outdoor
VLN in unseen areas, pursuing the research ques-
tion of which representations of an environment
and of instructions an agent needs to succeed at this
task. We compare existing approaches to a new ap-
proach that utilizes features based on the observed
environment graph to improve generalization to un-
seen areas. The first feature, called junction type
embedding, encodes the number of outgoing edges
at the current agent position; the second feature,
called heading delta, encodes the agent’s heading
change relative to the previous timestep. As our
experimental studies show, representations of full
images do not contribute very much to successful
VLN in outdoor scenarios beyond these two fea-
tures. One reason why restricted features encoding
junction type and heading delta are successful in
this task is that they seem to be sufficient to en-
code peculiarities of the graph representation of the
environments. Another reason is the current restric-
tion of outdoor environments to small urban areas.
In our case, one dataset is the widely used Touch-
down dataset introduced by Chen et al. (2019), the
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other dataset is called map2seq and has recently
been introduced by Schumann and Riezler (2021).
The map2seq dataset was created for the task of
navigation instructions generation but can directly
be adopted to VLN. We conduct a detailed analy-
sis of the influence of general neural architectures,
specific features such as junction type or heading
delta, the role of image information and instruction
token types, to outdoor VLN in seen and unseen
environments on these two datasets.

Our specific findings unravel the contributions of
these features on several VLN subtasks such as ori-
entation, directions, stopping. Our general finding
is that current outdoor VLN suffers a bias towards
urban environments and to artifacts of their graph
representation, showing the necessity of more di-
verse datasets and tasks for outdoor VLN.

Our main contributions are the following:

* We describe a straightforward agent model
that achieves state-of-the-art task completion
and is used as a basis for our experiments.

* We introduce the unseen scenario for outdoor
VLN and propose two environment-dependent
features to improve generalization in that set-
ting.

* We compare different visual representations
and conduct language masking experiments
to study the effect in the unseen scenario.

* We adopt the map2seq dataset to VLN and
show that merging it with Touchdown im-
proves performance on the respective test sets.

2 VLN Problem Definition

The goal of the agent is to follow a route and stop
at the desired target location based on natural lan-
guage navigation instructions. The environment is
a directed graph with nodes v € V and labeled
edges (u,v) € E. Each node is associated with a
360° panorama image p and each edge is labeled
with an angle o, .. The agent state s € S con-
sists of a node and the angle at which the agent
is heading: (v, () | u € N*), where NJ*“
are all outgoing neighbors of node v. The agent
can navigate the environment by performing an ac-
tion a € {FORWARD, LEFT,RIGHT, STOP} at each
timestep ¢. The FORWARD action moves the agent
from state (v, y ) t0 (U, (y, ), Where (u, u’)
is the edge with an angle closest to «, ). The
RIGHT and LEFT action rotates the agent towards
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Figure 1: The ORAR model for outdoor vision and
language navigation follows a sequence-to-sequence
architecture. The instructions text is encoded and used
along the visual features to predict the next agent action.
The recurrent decoder has two layers, the first encodes
observations about the current environment state, the
second allows attention over the input text and panorama
view. The predicted action changes the state of the agent
in the environment and with it the panorama view of the
next timestep.

the closest edge angle in clockwise or counterclock-
wise direction, respectively: (v, a(, ). Given a
starting state s; and instructions text x, the agent
performs a series of actions ay,...,ar until the
STOP action is predicted. If the agent stops within
one neighboring node of the desired target node
(goal location), the navigation was successful. The
described environment and location finding task
was first introduced by (Chen et al., 2019) and we
will also refer to it as "outdoor VLN task" through-
out this paper.

3 Model Architecture

In this section we introduce the model that we use
to analyze navigation performance in the unseen
and seen scenario for outdoor VLN. The architec-
ture is inspired by the cross-modal attention model
for indoor VLN (Krantz et al., 2020). First we give
a high level overview of the model architecture and
rough intuition. Afterwards we provide a more
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formal description.

As depicted in Figure 1, the model follows a
sequence-to-sequence architecture where the input
sequence is the navigation instructions text and the
output is a sequence of agent actions. At each de-
coding timestep, a new visual representation of the
current agent state within the environment is com-
puted, where the agent state is dependent on the
previously predicted actions. The decoder RNN
has two layers where the first encodes metadata
and a visual representation. The second RNN layer
encodes a contextualized text and visual represen-
tation and eventually predicts the next action.

The intuition behind the model architecture is to
firstly accumulate plain observations available at
the current timestep and entangle them with previ-
ous observations in the first recurrent layer. Based
on these observations, the model focuses attention
to certain parts of the instructions text and visual
features which are again entangled in the second
recurrent layer. Thus, we use the acronym ORAR
(observation-recurrence attention-recurrence) for
the model.

In detail, the instructions encoder embeds and
encodes the tokens in the navigation instructions se-
quence X = x71, ..., 7, using a bidirectional LSTM
(Graves et al., 2005):

%; = embedding(x;)
((w1,...,wr), 2f) = Bi-LSTM(Z1, ..., £1.),

where wy, ..., wy, are the hidden representations for
each token and 2}’ is the last LSTM cell state. The
visual encoder, described in detail below, emits a
fixed size representation p; of the current panorama
view and a sequence of sliced view representations
P, ..., 0y . The state zgmt of the cell in the first
decoder LSTM layer is initialized using z7. The
input to the first decoder layer is the concatenation
() of visual representation p;, previous action em-
bedding a;—1, junction type embedding n;, and
heading delta d;. The output of the first decoder
layer,
h{irst _ LSTMfirst([dt_l ® iy B dt o ﬁt]);

is then used as the query of multi-head atten-
tion (Vaswani et al., 2017) over the text encoder.
The resulting contextualized text representation c;’

is then used to attend over the sliced visual repre-
sentations:

¢ = MultiHeadAttention(h{ "™ (w1, ..., wr))
¥ = MultiHeadAttention(c?, (7}, ..., B} ).

The input and output of the second decoder layer
are

hfecond — ]_JSTl\/[second([7?69 h{irst ® C;U D Cﬂ)a

where t is the embedded timestep ¢. The hidden rep-
resentation h$*°"? of the second decoder LSTM
layer is then passed through a feed forward network
to predict the next agent action a;.

3.1 Visual Encoder

At each timestep ¢ the panorama at the current
agent position is represented by extracted visual
features. We slice the panorama into eight pro-
jected rectangles with 60° field of view, such that
one of the slices aligns with the agent’s heading.
This centering slice and the two left and right
of it are fed into a ResNet pretrained” on Ima-
geNet (Russakovsky et al., 2015). We consider
two variants of ResNet derived panorama features.
One variant extracts low level features from the
fourth to last layer (4th-to-last) of a pretrained
ResNet-18 and concatenates each slice’s feature
map along the width dimension, averages the 128
CNN filters and cuts out 100 dimensions around
the agents heading. This results in a feature matrix
of 100 x 100 (py, ..., pr°°). The full procedure is
described in detail in Chen et al. (2019) and Zhu
et al. (2021b). The other variant extracts high level
features from a pretrained ResNet-50’s pre-final
layer for each of the 5 slices: ]5%, ..., P;. Bach slice
vector Py is of size 2, 048 resulting in roughly the
same number of extracted ResNet features for both
variants, making a fair comparison. Further, we use
the semantic segmentation representation of the
panorama images. We employ omnidirectional se-
mantic segmentation (Yang et al., 2020) to classify
each pixel by one of the 25 classes of the Map-
illary Vistas dataset (Neuhold et al., 2017). The
classes include e.g. car, truck, traffic light, vegeta-
tion, road, sidewalk. See Figure 1 bottom right for
a visualization. Each panorama slice (p;, ..., p7) is
then represented by a 25 dimensional vector where
each value is the normalized area covered by the
corresponding class (Zhang et al., 2020). For either
feature extraction method, the fixed sized panorama
representation p; is computed by concatenating the
slice features p;, ..., ; and passing them to a feed
forward network.

https://pytorch.org/vision/0.8/models.
html
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Figure 2: Visualization of automatic agent rotation ini-
tiated by the environment. Grey circles and intercon-
necting edges are part of the environment graph. Black
solid arrows are actions initiated by the agent. Black
dotted arrows depict agent heading and automatic ro-
tation by the environment. a): 1) The agent moves
forward. 2) Agent’s heading does not point to an out-
going edge. 3) Agent is automatically rotated to the
closest edge without causing problems. b): The agent
receives instructions like "Turn right at the next intersec-
tion". 1) The agent moves forward. 2) Agent’s heading
does not point to an outgoing edge. 3) The environment
automatically rotates the agent towards the closest out-
going edge. 4) The agent has no explicit information
about the automatic rotation and predicts a right turn as
instructed, leading to a failed navigation.

3.2 Junction Type Embedding

The junction type embedding is a feature that we
introduce to better analyze generalization to unseen
areas. It embeds the number of outgoing edges of
the current environment node and is categorized
into {2, 3, 4, >4}. It provides the agent information
about the type of junction it is positioned on: a
regular street segment, a three-way intersection, a
four way intersection or an intersection with more
than four outgoing streets. We want to point out
that the number of outgoing edges isn’t oracle infor-
mation in the environment described in Section 2.
The agent can rotate left until the same panorama
view is observed and thus counting the number
of outgoing edges by purely interacting with the
environment. But it is clear that the feature lever-
ages the fact that the environment is based on a
graph and it would not be available in a continuous
setting (Krantz et al., 2020).

3.3 Heading Delta

As described in Section 2, the environment defined
and implemented by Chen et al. (2019) only al-
lows states where the agent is heading towards
an outgoing edge. As a consequence the environ-
ment automatically rotates the agent towards the
closest outgoing edge after transitioning to a new
node. The environment behavior is depicted in Fig-

ure 2a) for a transition between two regular street
segments. However, as depicted in Figure 2b), a
problem arises when the agent is walking towards
a three-way intersection. The automatic rotation
introduces unpredictable behavior for the agent and
we hypothesis that it hinders generalization to un-
seen areas. To correct for this environment artifact,
we introduce the heading delta feature d; which
encodes the change in heading direction relative to
the previous timestep. The feature is normalized
to (—1, 1] where a negative value indicates a left ro-
tation and a positive value indicates a right rotation.
The magnitude signals the degree of the rotation
up to 180°.

4 Data

We use the Touchdown (Chen et al., 2019) and the
map2seq (Schumann and Riezler, 2021) datasets
in our experiments. Both datasets contain human
written navigation instructions for routes located in
the same environment. The environment consists
of 29,641 panorama images from Manhattan and
the corresponding connectivity graph.

4.1 Touchdown

The Touchdown dataset (Chen et al., 2019) for vi-
sion and language navigation consists of 9,326
routes paired with human written navigation in-
structions. The annotators navigated the panorama
environment based on a predefined route and wrote
down navigation instructions along the way.

4.2 Map2seq

The map2seq (Schumann and Riezler, 2021)
dataset was created for the task of navigation in-
structions generation. The 7,672 navigation instruc-
tions were written by human annotators who saw a
route on a rendered map, without the corresponding
panorama images. The annotators were told to in-
clude visual landmarks like stores, parks, churches,
and other amenities into their instructions. A differ-
ent annotator later validated the written navigation
instructions by using them to follow the described
route in the panorama environment (without the
map). This annotation procedure allows us to use
the navigation instructions in the map2seq dataset
for the vision and language navigation task. We are
the first to report VLN results on this dataset.

4.3 Comparison

Despite being located in the same environment, the
routes and instructions from each dataset differ in
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multiple aspects. The map2seq instructions typi-
cally include named entities like store names, while
Touchdown instructions focus more on visual fea-
tures like the color of a store. Both do not include
street names or cardinal directions and are written
in egocentric perspective. Further, in map2seq the
agent starts by facing in the correct direction, while
in Touchdown the initial heading is random and
the first part of the instruction is about orientating
the agent ("Turn around such that the scaffolding
is on your right"). A route in map2seq includes a
minimum of three intersections and is the shortest
path from the start to the end location. In Touch-
down there are no such constraints and a route can
almost be circular. The routes in both datasets are
around 35-45 nodes long with some shorter outliers
in Touchdown. On average instructions are around
55 tokens long in map2seq and around 89 tokens
long in Touchdown.

5 Experiments

We are interested in the generalization ability to
unseen areas and how it is influenced by the two
proposed features, types of visual representation,
navigation instructions and training set size. Along-
side of the results in the unseen scenario, we report
results in the seen scenario to interpret performance
improvements in relation to each other. All exper-
iments* are repeated ten times with different ran-
dom seeds. The reported numbers are the average
over the ten repetitions. Results printed in bold
are significantly better than non-bold results in the
same column. Significance was established by a
paired t-test’ on the ten repetition results and a
p-value < 0.05 without multiple hypothesis cor-
rections factor. Individual results can be found in
the Appendix.

5.1 Data Splits

To be able to compare our model with previous
work, we use the original training, development
and test split (Chen et al., 2019) for the seen sce-
nario on Touchdown. Because we are the first to
use the map2seq data for VLN we create a new split
for it. The resulting number of instances can be

3The shortest path bias reduces the number of reasonable
directions at each intersection and thus makes the task easier.

“Except comparison models on the Touchdown seen test
set for which we copy the results from the respective work.

Shttps://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.ttest_
rel.html

Figure 3: Visualization of the environment area located
in Manhattan. The seen scenario is depicted on the
left and the unseen scenario on the right. Each white
dot is a training route and each black dot is a test route
in the Touchdown and map2seq dataset. The unseen
scenario is characterized by geographic separation of
the training and testing area.

seen unseen

train dev test train dev test

Touchdown 6,525 1,391 1,409 6,770 800 1,507
map2seq 6,072 800 800 5,737 800 800
Merged 12,597 2,191 2,209 12,507 1,600 2,307

Table 1: Number of instances in the data splits for the
seen and unseen scenario of Touchdown and map2seq.

seen in the left column of Table 1. For the unseen
scenario, we create new splits for both datasets. We
separate the unseen area geographically by drawing
a boundary across lower Manhattan (see Figure 3).
Development and test instances are randomly cho-
sen from within the unseen area. Routes that are
crossing the boundary are discarded. The right col-
umn of Table 1 shows the number of instances for
both splits. Additionally, we merge the two datasets
for both scenarios. This is possible because both
datasets are located in the same environment and
the unseen boundary is equivalent.

5.2 Training Details

We train the models with Adam (Kingma and Ba,
2015) by minimizing cross entropy loss in the
teacher forcing paradigm. We set the learning rate
to Se-4, weight decay to le-3 and batch size to
64. After 150 epochs we select the model with
the best shortest path distance (SPD) performance
on the development set. We apply dropout of 0.3
after each dense layer and recurrent connection.
The multi-head attention mechanism is regularized
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Seen Unseen
Touchdown map2seq Touchdown map2seq

dev test dev test dev test dev test
Model nDTW TC nDTW TC nDTW TC nDTW TC nDTW TC naDTW TC nDTW TC nDTW TC
RConcat 22.5 106 229 11.8 30.7 17.1  27.7 14.7 39 23 35 19 37 20 3.8 2.1
GA 252 12.0 249 119 33.0 182 30.1 17.0 36 1.8 40 22 39 1.8 4.1 1.7
ARC - 153 - 141 - - - - - - - - - - -
ARC+12s - 195 - 167 - - - - - - - - - - - -
VLN Transformer 23.0 140 253 149 31.1 186  29.5 17.0 47 23 52 3.1 6.2 3.6 6.1 3.5
ORAR full model
® ResNet pre-final 38.9 26.0 384 253 65.0 49.1  62.3 46.7 13.0 9.6 12.1 8.8 34.6 242 345 246
e ResNet 4th-to-last 45.1 299 449 29.1 60.0 43.4 57.8 41.7 22.2 154  21.6 149 41.0 27.6  42.2 30.3
ORAR full model o ResNet 4th-to-last o ResNet pre-final o ResNet 4th-to-last o ResNet 4th-to-last
- no heading delta 45.5 30.0 45.3 29.3 63.2 477  60.3 449 21.6 152 21.2 14.8 33.0 22.0 33.6 23.6
- no junction type 40.6 259 409 255 65.9 529 62.1 47.5 79 4.8 7.1 43 13.1 74 11.8 7.1
-no head. & nojunc. 39.2 24.6 394 24.2 62.7 49.6 589 45.1 7.6 4.6 7.0 4.4 89 50 82 47

Table 2: Results on Touchdown and map2seq for the seen and unseen scenario. Metrics are normalized Dynamic
Time Warping (nDTW) and task completion (TC). In the first section we list results for the comparison models:
RConcat, GA, VLN Transformer (Zhu et al., 2021b) and ARC, ARC+learn2stop (Xiang et al., 2020). In the second
section we present results for the ORAR model with two different types of image features: ResNet pre-final features
are extracted from the last layer before the classification and ResNet 4th-to-last are low level features extracted from
the fourth to last layer of a pretrained ResNet. The last section ablates the two proposed features: heading delta and

Jjunction type embedding.

by attention dropout of 0.3 and layer normaliza-
tion. The navigation instructions are lower-cased
and split into byte pair encodings (Sennrich et al.,
2016) with a vocabulary of 2,000 tokens and we
use BPE dropout (Provilkov et al., 2020) during
training. The BPE embeddings are of size 32 and
the bidirectional encoder LSTM has two layers of
size 256. The feed forward network in the visual
encoder consists of two dense layers with 512 and
256 neurons, respectively, and 64 neurons in case of
using semantic segmentation features. The embed-
dings that encode previous action, junction type,
and step count are of size 16. The two decoder
LSTM layers are of size 256 and we use two atten-
tion heads. Training the full model takes around 3
hours on a GTX 1080 Ti.

5.3

We compare the ORAR model to previous works.
Because these works only report results for the
seen scenario on Touchdown, we evaluate those for
which we could acquire the code, on the map2seq
dataset and the unseen scenario. The models RCon-
cat (Mirowski et al., 2018; Chen et al., 2019),
GA (Chaplot et al., 2018; Chen et al., 2019) and
ARC (Xiang et al., 2020) use an LSTM to encode
the instructions text and a single layer decoder
LSTM to predict the next action. They differ in how
the text and image representations are incorporated
during each timestep in the decoder. As the name

Model Comparison

suggests, in RConcat the two representations are
concatenated. GA uses gated attention to compute
a fused representation of text and image. ARC uses
the hidden representation of the previous timestep
to attend over the instructions text. This contextu-
alized text representation is then concatenated to
the image representation. They further introduce
ARC+12s which cascades the action prediction into
a binary stopping decision and a subsequent di-
rection classification. The VLN-Transformer (Zhu
et al., 2021b) uses pretrained BERT (Devlin et al.,
2019) to encode the instructions and VLN-BERT
(Majumdar et al., 2020) to fuse the modalities.

5.4 Metrics

We use task completion (TC) as the main perfor-
mance metric. It represents the percentage of suc-
cessful agent navigations (Chen et al., 2019). We
further report normalized Dynamic Time Warp-
ing (nDTW) which quantifies agent and gold trajec-
tory overlap for all routes (Ilharco et al., 2019). The
shortest path distance (SPD) is measured within the
environment graph from the node the agent stopped
to the goal node (Chen et al., 2019).

6 Results & Analysis

The two upper sections of Table 2 show the results
of the ORAR model introduced in Section 3 in
comparison to other work. While the model sig-
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Unseen

Touchdown map2seq
Visual Features dev test dev test
ResNet pre-final 96 88 242 246
- no junction type 44 4.0 10.7 11.0
ResNet 4th-to-last 154 149 27.6 303
- no junction type 48 43 74 7.1
semantic segmentation 11.5 11.0 29.0 31.1
- no junction type 55 55 11.6 12.1
no image 11.5 95 28.5 30.5
- no junction type 3.0 2.8 54 55

Table 3: Study of visual features for the unseen scenario
of Touchdown and map2seq. Metric is task completion.

nificantly outperforms all previous work on both
datasets, our main focus is analyzing generalization
to the unseen scenario. It is apparent that the type
of image features influences agent performance and
will be discussed in the next section. The bottom
section of Table 2 ablates the proposed heading
delta and junction type features for the best mod-
els. Removing the heading delta feature has little
impact in the seen scenario, but significantly re-
duces task completion in the unseen scenario of
the map2seq dataset. Surprisingly, the feature has
no impact in the unseen scenario of Touchdown.
We believe this is a consequence of the different
data collection processes. Touchdown was specifi-
cally collected for VLN and annotators navigated
the environment graph, while map2seq annotators
wrote instructions only seeing the map. Removing
the junction type embedding leads to a collapse
of task completion in the unseen scenario on both
datasets. This shows that without this explicit fea-
ture, the agent lacks the ability to reliably identify
intersections in new areas.

6.1 Visual Features

Table 3 shows results for different types of visual
features in the unseen scenario. We compare high
level ResNet features (pre-final), low level ResNet
features (4th-to-last), semantic segmentation fea-
tures and using no image features. For the ResNet
based features, the low level 4th-to-last features
perform better than pre-final on both datasets. On
map2seq the no image baseline performs on par
with models that have access to visual features.
When we remove the junction type embedding,
the task completion rate drops significantly, which
shows that the agent is not able to reliably locate
intersections from any type of visual features.

Touchdown
Seen Unseen
Sub-task dev test dev test
ORAR pre-final  26.0 25.3 9.6 8.8
orientation 792 71.5 66.7 67.6
directions 84.8 85.5 459 457
stopping 40.7 41.0 374 36.1
ORAR 4th layer 29.9 29.1 154 149
orientation 924 91.5 842 84.1
directions 81.6 8I.1 534 524
stopping 39.7 40.2 364 352
ORAR noimage 152 13.3 11.1 95
orientation 59.8 57.0 61.3 60.5
directions 74.1 733 58.8 57.9
stopping 39.3 38.8 36.1 34.0

Table 4: Oracle analysis on Touchdown. Division into
three sub-tasks: orientation, directions and stopping.
Providing oracle actions for two of the three sub-tasks
allows an isolated look at the remaining one. Underlined
results are best for the sub-task, e.g. 85.5 is the best TC
for the directions task on the test set in the seen scenario.

6.2 Sub-task Oracle

The agent has to predict a sequence of actions in
order to successfully reach the goal location. In
Touchdown this task can be divided into three sub-
tasks (see Section 4). First the agent needs to ori-
entate itself towards the correct starting heading.
Next the agent has to predict the correct directions
at the intersections along the path. The third sub-
task is stopping at the specified location. Providing
oracle actions (during testing) for two of the three
sub-tasks lets us look at the completion rate of
the remaining sub-task. Table 4 shows the com-
pletion rates for each of the three sub-tasks when
using ResNet pre-final, 4th-to-last and no image
features. In the seen scenario we can observe that
the pre-final features lead to the best performance
for the directions task. The 4th-to-last features on
the other hand lead to the best orientation task per-
formance and the stopping task is not influenced
by the choice of visual features. In the unseen
scenario 4th-to-last features again provide best ori-
entation task performance but no image features
lead to the best performance for the directions task.
This shows that the ResNet 4th-to-last features are
primarily useful for the orientation sub-task and ex-
plains the discrepancy of the no image baseline on
Touchdown and map2seq identified in the previous
subsection. In the Appendix we use this knowledge
to train a mixed-model that uses 4th-to-last features
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Figure 4: Masking experiments on the seen and unseen
test set of Touchdown. Object or direction tokens are
masked during training and testing.

for the orientation sub-task and pre-final/no image
features for directions and stopping.

6.3 Token Masking

To analyze the importance of direction and object
tokens in the navigation instructions, we run mask-
ing experiments similar to Zhu et al. (2021a), ex-
cept that we mask the tokens during training and
testing instead of during testing only. Figure 4
shows the resulting task completion rates for an
increasing number of masked direction or object
tokens. From the widening gap between masking
object and direction tokens, we can see that the
direction tokens are more important to successfully
reach the goal location. Task completion nearly
doesn’t change when masking object tokens, indi-
cating that they are mostly ignored by the model.
While task completion significantly drops when di-
rection tokens are masked, the agent still performs
on a high level. This finding is surprising and in
dissent with Zhu et al. (2021a) who report that task
completion nearly drops to zero when masking di-
rection tokens during testing only. We believe that
in our setting (masking during testing and train-
ing), the model learns to infer the correct directions
from redundancies in the instructions or context
around the direction tokens. Besides the general
trend of lower performance on the unseen scenario,
we can not identify different utilization of object or

direction tokens in the seen and unseen scenario.

6.4 Merged Datasets

We train the ORAR full model on the merged
dataset (see Section 5.1). Model selection is per-
formed on the merged development set but results
are also reported for the individual test sets of
Touchdown and map2seq. For comparison with
models trained on the non-merged datasets, the
first row of Table 5 shows the best results of Ta-
ble 2. Training on the merged dataset signifi-
cantly improves nDTW and task completion across
both datasets and scenarios. This shows that both
datasets are compatible and the merged dataset can
further be used by the VLN community to evaluate
their models on more diverse navigation instruc-
tions. Despite being trained on twice as many in-
stances, the no image baseline still performs on par
on map2seq unseen. From this we conclude that the
current bottleneck for better generalization to un-
seen areas is the number of panorama images seen
during training instead of number of instructions.

7 Related Work

Natural language instructed navigation of embod-
ied agents has been studied in generated grid en-
vironments that allow a structured representation
of the observed environment (MacMahon et al.,
2006; Chen and Mooney, 2011). Fueled by the ad-
vances in image representation learning (He et al.,
2016), the environments became more realistic by
using real-world panorama images of indoor loca-
tions (Anderson et al., 2018; Ku et al., 2020). Com-
plementary outdoor environments contain street
level panoramas connected by a real-world street
layout (Mirowski et al., 2018; Chen et al., 2019;
Mehta et al., 2020). Agents in this outdoor en-
vironment are trained to follow human written
navigation instructions (Chen et al., 2019; Xiang
et al., 2020), instructions generated by Google
Maps (Hermann et al., 2020), or a combination
of both (Zhu et al., 2021b). Recent work focuses
on analyzing the navigation agents by introduc-
ing better trajectory overlap metrics (Jain et al.,
2019; Ilharco et al., 2019) or diagnosing the perfor-
mance under certain constraints such as uni-modal
inputs (Thomason et al., 2019) and masking direc-
tion or object tokens (Zhu et al., 2021a). Other
work used a trained VLN agent to evaluate auto-
matically generated navigation instructions (Zhao
et al., 2021). An open problem in indoor VLN is
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Seen Unseen
Merged Touchdown map2seq Merged Touchdown map2seq
dev test test test dev test test test

Model nDTW TC naDTW TC nDTW TC naDTW TC nDTW TC nDTW TC nDTW TC naDTW TC
best non-merged 449 29.1 62.3 46.7 - - 21.6 149 422 30.3
ORAR full model

® 1o image 37.5 26.6  35.8 24.7 23.0 14.8 58.3 42.1 31.6 22.3  27.0 19.2 16.6 11.7 46.5 33.2
e ResNet pre-final 51.3 38.8 49.3 36.8 39.1 27.7 67.3 52.8 28.9 22.0 25.7 20.0 17.4 13.6 41.3 32.1
e ResNet 4th-to-last  53.4 37.8  51.8 35.7 46.0 30.1 62.1 45.5 35.7 254  33.6 24.2 27.0 19.3 46.1 33.5

Table 5: Results for models trained on the merged dataset. Test results are presented for the merged test set and
individual Touchdown and map2seq test sets. Metrics are normalized Dynamic Time Warping (nDTW) and task
completion (TC). In the first row the best results of Table 2 (non-merged training sets) are listed for comparison.
The bottom section presents results on the ORAR full model with different types of image features.

the generalization of navigation performance to pre-
viously unseen areas. Proposed solutions include
back translation with environment dropout (Tan
et al., 2019), multi-modal environment representa-
tion (Hu et al., 2019) or semantic segmented im-
ages (Zhang et al., 2020). Notably the latter work
identifies the same problem in the Touchdown task.

8 Conclusion

We presented an investigation of outdoor vision
and language navigation in seen and unseen envi-
ronments. We introduced the heading delta feature
and junction type embedding to correct an arti-
fact of the environment and explicitly model the
number of outgoing edges, respectively. Both are
helpful to boost and analyze performance in the
unseen scenario. We conducted experiments on
two datasets and showed that the considered visual
features poorly generalize to unseen areas. We con-
jecture that VLN tasks need to grow in scale and
diversity of geographical environments and naviga-
tion tasks.
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Touchdown map2seq
Ablation dev  test dev test
ORAR full model 299 29.1 49.1 46.7
- no 2nd RNN 232 239 433 406

- no BPE dropout 26.6 259 452 43.1
- no text attention 94 104 220 21.8
- no image attention 21.5 20.1 48.8 45.7

Table 6: ORAR full model ablation study on the seen
scenario of Touchdown and map2seq. Metric is task
completion and ablations are not cumulative.

A Architecture Ablation

We perform ablation studies on the ORAR full
model in the seen scenario to measure the impact
of individual architecture components. As seen in
Table 6, removing the second decoder RNN layer
or BPE dropout results in a decrease of six and
three task completion points, respectively. The
largest drop in performance is observed when re-
moving the text attention mechanism. This again
shows the importance of attention over the encoder
in sequence-to-sequence models. Removing the
image attention mechanism on the other hand does
not affect task completion on the map2seq dataset.

B Mixed-Model

The findings in Section 6.2 inspire us to modify
the ORAR model to use distinct visual features for
the orientation and directions/stopping task. The
orientation task is equivalent to the very first ac-
tion prediction by the agent. Thus we modify the
model architecture to use the ResNet 4th-to-last
features (+text representation) to predict the first
action and then start the recurrent prediction of the
remaining actions with a different set of visual fea-
tures (pre-final for the seen scenario and no image
features for the unseen scenario). The results for
this ORAR mixed model trained on the merged
dataset are shown in Table 7. We only test it on
Touchdown because map2seq does not have the
orientation task. The mixed model significantly
outperforms the single visual feature model on the
Touchdown seen test set but unfortunately shows
no improvement in the unseen scenario.

C Additional Metrics and Individual
Runs

We present the results of the individual repeti-
tions and additional metrics for the main results
in Table 2 and the results on the merged dataset

in Table 5. The additional metrics are success
weighted normalized Dynamic Time Warping (Il-
harco et al., 2019) and shortest-path distance (Chen
et al., 2019).
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Seen Unseen
Merged Touchdown map2seq Merged Touchdown map2seq
dev test test test dev test test test

Model nDTW TC naDTW TC nDTW TC nDTW TC nDTW TC nDTW TC nDTW TC nDTW TC
best non-merged - - - - 449 29.1 62.3 46.7 - - - - 21.6 149 422 303
best merged 534 37.8 518 35.7 46.0 30.1 67.3 52.8 35.7 254  33.6 24.2 27.0 193  46.1 33.5

o 4th-to-last + pre-final e 4th-to-last + no image
ORAR mixed model  58.6 444 57.4 429 51.3 36.9 - - 36.3 26.1 33.6 239 26.3 18.3 - -

Table 7: Results for the mixed model in comparison to previous best results. Metrics are normalized Dynamic Time
Warping (nDTW) and task completion (TC). In the first two rows the best results of Table 2 and Table 5 are listed
for comparison. The last section presents results for the ORAR mixed model which uses different image features for
different sub-tasks.

Seen Unseen
Touchdown map2seq Touchdown map2seq

dev test dev test dev test dev test
Model SDTW SPD sDTW SPD SDTW SPD SDTW SPD SDTW SPD SDTW SPD SDTW SPD SDTW SPD
RConcat 9.8 204 11.1 204 16.0 19.0 13.7 20.1 1.8 29.6 1.4 293 1.2 33.1 1.7 34.1
GA 11.1 18.7 10.9 19.0 17.2 16.5 16.0 18.0 1.3 31.0 1.7 30.5 14 343 1.3 343
ARC 14.1 18.6 13.5 19.4 - - - - - - - - - - - -
ARCH+12s 19.0 17.1 16.3 18.8 - - - - - - - - - - - -
VLN Transformer 129 21.5 14.0 21.2 17.5 18.6 15.9 19.0 1.9 295 2.3 29.6 - - - -
ORAR full model
® ResNet pre-final 245 150 23.8 16.2 46.7 5.9 444 6.6 8.6 26.7 7.6 26.7 223 156 228 163
e ResNet 4th-to-last ~ 28.3 11.1 274 11.7 41.1 7.2 395 7.6 14.3 20.0 13.6 20.7 258 119 283 127
ORAR full model o ResNet 4th-to-last e ResNet pre-final e ResNet 4th-to-last e ResNet 4th-to-last
- no heading delta 283 109 27.6 115 454 6.8 42.7 7.7 14.0 20.5 13.5 20.8 204 168 219 17.1
- no junction type 23.1 13.6 228 139 472 7.6 43.0 8.6 4.0 26.6 37 267 43 289 42 299

Table 8: Results on Touchdown and map2seq for the seen and unseen scenario. Metrics are success weighted
normalized Dynamic Time Warping (SDTW) and shortest-path distance (SPD). For SDTW higher values are better
and for SPD lower values are better.

Seen

Unseen

task completion of the ten repetitions mean std task completion of the ten repetitions mean std
ORAR full model
© ResNet pre-final 26.1 185 258 25.1 26.8 287 244 255 256 260 253 25 88 92 73 98 85 84 100 82 94 81 88 0.8
o ResNet 4th-to-last  28.2  30.0 269 29.6 274 292 304 300 283 307 29.1 12 120 151 145 155 143 160 165 149 145 153 149 12
ORAR full model o ResNet 4th-to-last © ResNet 4th-to-last
-no heading delta 292 30.0 274 299 290 295 312 293 284 290 293 1.0 147 137 155 149 141 135 160 151 160 145 148 08
- no junction type 24.1 245 226 219 244 257 261 245 245 241 242 12 44 50 42 42 42 38 45 42 51 43 44 04
Table 9: Task completion for the ten individual runs with mean and standard deviation on the Touchdown seen and
unseen test set.
Seen Unseen
task completion of the ten repetitions mean std task completion of the ten repetitions mean std
ORAR full model
© ResNet pre-final 41.0 488 47.8 479 458 495 458 482 446 474 467 24 224 188 260 245 26.1 281 221 268 244 266 246 2.6
® ResNet 4th-to-last  40.5 422 42,1 421 38.6 429 412 42.1 452 405 417 1.6 329 296 289 285 276 322 268 33.6 340 284 303 25
ORAR full model © ResNet pre-final © ResNet 4th-to-last
- no heading delta 46.0 43.1 47.1 475 450 484 362 446 47.1 438 449 33 232 240 21.6 258 245 236 238 232 220 245 236 12
- no junction type 449 46.1 462 440 432 465 449 471 455 421 45.1 15 5.1 45 50 51 46 39 56 38 44 46 47 05

Table 10: Task completion for the ten individual runs with mean and standard deviation on the map2seq seen and

unseen test set.
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Seen Unseen

Merged Touchdown map2seq Merged Touchdown map2seq
dev test test test dev test test test

Model SDTW SPD spTtw SPD SDTW SPD sDTW SPD SDTW SPD sDTW SPD sbTW SPD  SDTW SPD
ORAR full model
® no image 25.0 188 232 194 139 26.1 39.8 7.8 20.6 17.9 17.7 21.3 10.5 26.7 31.1 114
® ResNet pre-final 36.8 12.5 348 14.1 26.1 18.8 502 5.7 20.3 20.1 18.4 22.0 122 258 30.2 14.8
® ResNet 4th-to-last 359 93 338 9.8 284 11.7 432 6.5 23.6 149 225 16.6 17.7 19.2 314 117
ORAR mixed model
® 4th-to-last + pre-final 42.1 8.6 40.8 9.3 348 11.5 - - - - - - - - - -
o 4th-to-last + no image - - - - - - - - 24.1 15.1 222 172 16.9 20.4 - -

Table 11: Results for models trained on the merged dataset. Test results are presented for the merged test set
and individual Touchdown and map2seq test sets. Metrics are success weighted normalized Dynamic Time
Warping (SDTW) and shortest-path distance (SPD). For SDTW higher values are better and for SPD lower values
are better.

Seen Unseen
task letion of the ten repetiti mean std task completion of the ten repetitions mean std
ORAR full model
® no image 240 241 253 258 246 261 244 241 241 245 247 0.7 20.1 182 195 197 18.6 186 187 198 186 199 192 0.7
® ResNet pre-final 36.7 347 353 37.1 364 36.1 388 364 368 395 36.8 1.4 189 19.8 19.8 208 20.I 200 205 199 202 199 200 05

© ResNet 4th-to-last 349 362 354 354 362 365 341 363 363 355 357 07 238 249 258 239 241 234 247 239 235 242 242 0.7

ORAR mixed model
o 4th-to-last + pre-final ~ 43.8 42.6 434 432 43.6 420 44.1 421 419 427 429 08 - - - - - - - - - - - -
o 4th-to-last + no image - - - - - - - - - - - - 238 234 237 234 241 247 246 241 238 229 238 05

Table 12: Task completion for the ten individual runs with mean and standard deviation on the merged seen and
unseen test set.

Seen Unseen
task letion of the ten r iti mean std task completion of the ten repetitions mean std
ORAR full model
® no image 141 144 158 165 14.1 163 145 149 133 145 148 1.0 121 107 121 122 11.0 115 115 129 11.0 122 11.7 07
® ResNet pre-final 275 25.1 264 284 266 274 303 277 270 302 277 15 13.1 13.0 13.1 141 135 137 141 135 139 137 13.6 04

® ResNet 4th-to-last 30.7 304 300 30.1 300 302 29.2 302 304 300 301 04 180 203 208 18.8 189 180 202 198 186 19.6 193 09

ORAR mixed model
o 4th-to-last + pre-final  37.6 363 36.4 37.8 379 351 380 366 356 374 369 1.0 - - - - - - - - - - - -
® 4th-to-last + no image - - - - - - - - - - - - 178 179 18.1 188 188 192 192 184 179 17.1 183 0.6

Table 13: Task completion for the ten individual runs with mean and standard deviation on the Touchdown seen and
unseen test set, trained on the merged training set.

Seen Unseen

task completion of the ten repetitions mean std task completion of the ten repetitions mean std

ORAR full model

® no image 415 412 421 421 432 434 419 404 431 421 42.1 09 35.1 325 33.6 338 329 320 324 328 328 342 332 09
® ResNet pre-final ~ 53.0 51.5 51.0 524 536 51.5 536 51.6 539 558 528 14 299 326 322 334 326 320 326 320 320 315 321 09
® ResNet 4th-to-last  42.5 464 449 446 47.1 478 428 47.1 466 452 455 1.7 348 335 352 335 339 336 331 31.6 326 330 335 1.0

Table 14: Task completion for the ten individual runs with mean and standard deviation on the map2seq seen and
unseen test set, trained on the merged training set.
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