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Abstract
Word and morpheme segmentation are funda-
mental steps of language documentation as
they allow to discover lexical units in a lan-
guage for which the lexicon is unknown. How-
ever, in most language documentation scenar-
ios, linguists do not start from a blank page:
they may already have a pre-existing dictio-
nary or have initiated manual segmentation of
a small part of their data. This paper studies
how such a weak supervision can be taken ad-
vantage of in Bayesian non-parametric models
of segmentation. Our experiments on two very
low resource languages (Mboshi and Japhug),
whose documentation is still in progress, show
that weak supervision can be beneficial to the
segmentation quality. In addition, we investi-
gate an incremental learning scenario where
manual segmentations are provided in a se-
quential manner. This work opens the way
for interactive annotation tools for documen-
tary linguists.

1 Introduction

Recent years have witnessed a blooming of re-
search aimed at applying language technologies
(LTs) to “under-resourced languages”.1 Such stud-
ies have been mostly motivated on three main
grounds (not necessarily mutually exclusive): (a) to
develop tools that could speed up the work of field
linguists collecting and annotating recordings for
these languages; (b) to provide linguistic communi-
ties with LTs that are necessary in an increasingly
digitalised world, e.g. to interact with smartphones
or computers in their own language and communi-
cate with speakers of other languages; (c) to chal-
lenge existing machine-learning techniques in very
low resource settings, where hardly any resource
(dictionary, corpus, grammar) is available.

1Acknowledged by workshop series such as “Spoken Lan-
guages Technologies for Under-resourced languages (SLTU),
“Collaboration and Computing for Under-Resourced Lan-
guages” (CCURL) and “Computational Methods in the Study
of Endangered Languages” (ComputEL) inter alia.

Those objectives are thoroughly discussed in
a recent position paper (Bird, 2020) who notices,
among other things, that objective (c) (training lan-
guage processing tools with zero resource) is ques-
tionable in the context of language documentation
works which can often rely on some pre-existing
knowledge, such as a word list, or information from
related languages. Accordingly, this paper explores
ways to make the best of prior resources and im-
prove the effectiveness of unsupervised language
analysis techniques for the purpose of linguistic
documentation. Our main objective is to develop
tools that will effectively assist field linguists in
their documentary tasks (objective (a)). We focus
on segmentation tasks, which aim to automatically
identify meaningful units in an unsegmented pho-
netic or orthographic string (Johnson, 2008; Doyle
and Levy, 2013; Eskander et al., 2016; Godard
et al., 2018b; Eskander et al., 2019).

Following these authors, we experiment with
Bayesian non-parametric segmentation models, de-
rived in our case from Goldwater et al. (2009) and
subsequent work, which we recap in Section 2. Our
first contribution is in Section 3 which studies mul-
tiple semi-supervised learning regimes aimed to
take advantage of pre-existing linguistic material
such as incomplete segmentations and word lists.

In Sections 4 and 5, we experimentally assess
the pros and cons of these weakly supervised ap-
proaches in batch and online learning, for two ex-
tremely low-resource languages currently in the
process of being documented: Mboshi, a Bantu lan-
guage used in former studies (Godard et al., 2018a);
and Japhug, a language from the Sino-Tibetan fam-
ily spoken in the Western part of China thoroughly
documented by Jacques (2021). These two lan-
guages were selected because they illustrate actual
documentation processes, for which high-quality
linguistic resources have been derived from field-
work, at the end of a long and difficult procedure
(Aiton, 2021). A complementary analysis follows,
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where we use the Japhug corpus to take a closer
look at the units identified automatically, contrast-
ing morpheme-based and word-based supervision.

2 Background

Going from audio recordings to fully annotated
transcripts implies two successive segmentation
steps: the first segments words and happens during
the production of phonemic or orthographic tran-
scripts; the second further splits words into morphs,
which are then annotated with syntactic informa-
tion and glosses. We mostly focus on the former
task, assuming a two-step process: first, the compu-
tation of a phonemic transcript that we assume is
given; then the segmentation into words for which
we consider two settings: batch and online learning.
The word and morpheme segmentation tasks are
closely related and rely on similar tools: using the
Japhug corpus, which contains both levels of seg-
mentations, we also study the implications of using
lists of words vs morphemes as weak supervision.

In its baseline form, the word segmentation pro-
cess is fully unsupervised, and the only training ma-
terial is a set of transcribed sentences (see Fig. 1).

We rely on Bayesian non-parametric approaches
to word segmentation (see (Cohen, 2016) for a
thorough exposition), and our baselines are the
unigram version of the dpseg model (Goldwa-
ter et al., 2009) and a variant where the underly-
ing Dirichlet Process is replaced by a Pitman-Yor
Process as in (Neubig, 2014). We selected uni-
gram models for their simplicity, which (a) makes
them amenable to the processing of very small sets
of sentences; (b) makes the online learning set-
ting tractable. While using higher-order models
or more sophisticated models of the same family
(Teh, 2006b; Mochihashi et al., 2009) may improve
the performance (see (Godard et al., 2016) for an
experimental comparison), we believe that in our
low-resource conditions, these variations would be
small2 and would not change our main conclusions.

Word segmentation models fundamentally rely
on probabilistic models for word sequences defin-
ing P (w = w1 . . . wT ); word sequences can
also be viewed as segmented sequences of char-
acters y = y1 . . . yL, so that the same model can
be used for the joint probability of (y, b), with
b = b1 . . . bL representing the vector of boundary

2Godard et al. (2018a) report results with the bigram ver-
sion of dpseg on the Mboshi corpus; the difference with our
unigram version is about 4 points for the boundary F-score.

locations where value bt = 1 (resp. bt = 0) de-
notes a boundary (resp. no boundary) after symbol
yt. In an unsupervised setting, these boundaries are
hidden and are latent variables in the model. Such
models lend themselves well to Gibbs sampling,
which repeatedly produces samples of each bound-
ary given all the other boundaries in the corpus.

In dpseg, the underlying sequence model is
a unigram model: P (w1 . . . wT ) =

∏T
t=1 P (wt).

The probability of individual words corresponds
to a Dirichlet Process with parameters α, the con-
centration parameter, and P0, the base distribution,
and yields the following formulation for the condi-
tional probability of wt given the past words w<t:

P (wt = w|w<t) =
nw(w<t) + αP0(w)

t+ α− 1
, (1)

where nw(w<t) counts the number of times w has
occurred in the past. With lower values of α, the
most frequent words tend to be generated more
(hence, concentration), while with higher values,
the words are more smoothly distributed. P0, the
base distribution, assigns scores to arbitrary char-
acter strings; Goldwater et al. (2009) use a length
model and a uniform character model. For word w
made of characters y1, ..., ym, P0 is computed as:

P0(w) = p#(1− p#)m−1︸ ︷︷ ︸
length model

m∏
j=1

P (yj)︸ ︷︷ ︸
character model

(2)

where p# is the probability to end the word.
For this model, Gibbs sampling compares at each

position t two sequences of words wt=0 (no bound-
ary at position t) and wt=1 (a boundary is inserted).
As these sequences only differ minimally, terms
such as P (bt = 0|y, b−t) are readily derived (see
e.g. (Goldwater et al., 2009)). Gibbs sampling is
performed for a number of iterations that are suf-
ficient to reach convergence, and we use the last
iteration to uncover the resulting segmentation. To
speed up mixing, Goldwater et al. (2009) also use
annealing, so that a larger search space is explored.

An extension of dpseg, denoted pypseg,
uses a Pitman-Yor Process (PYP) instead of the
Dirichlet Process and generalises equation (1) with
an additional discount parameter, which enables
to better control the generation of new words.
PYPs are introduced in (Teh, 2006b; Mochihashi
et al., 2009); a fast implementation is in (Neubig,
2014). For our experiments, both models have
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y = b1 á2 a3 á4 m5 i6 k7 ú8 n9 d10 á11 p12 o13 o14 y15 á16 k17 a18 l19 a20
b = 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1
w6=0 báa ámikúndá poo yá kala
b = 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1
w6=1 báa ámi kúndá poo yá kala

Figure 1: The sentence segmentation task illustrated with a sentence from the Mboshi corpus: ‘báa ámikúndá poo
yá kala’ (‘they found the old village’). The two possible segmentations only differ in one boundary at position
t = 6, one (w6=0) where ‘ámikúndá’ is one single unit and one (w6=1) where it is split in two.

been re-implemented in Python. This implemen-
tation is available at https://github.com/
shuokabe/pyseg.

3 Supervising word segmentation

In this section, we discuss realistic sources of weak
supervision for segmentation tasks and how they
can be included in Bayesian models.

3.1 Finding supervision information

Segmentation boundaries Segmentation data,
corresponding to the location of boundary (and
non-boundary) information, can be obtained in dif-
ferent ways. For instance, when audio recordings
are available, prosodic cues such as short silences
or specific intonative patterns can serve to iden-
tify plausible locations for word endings. Longer
pauses generally denote the end of an utterance,
which we assume are already given. This would
yield a sparse partial annotation, where supervi-
sion data is randomly scattered across the corpus.

Another realistic situation where we have ac-
cess to a partial annotation is when a small sub-
set is already segmented. In this case, the partial
annotation is dense and concentrated in a few sen-
tences, a semi-supervised setting also studied in
(Sirts and Goldwater, 2013). We thus consider
two questions: (a) which is more effective between
dense and sparse annotations? (b) how effective
is supervision in an incremental learning regime,
where automatic (dense) annotations are progres-
sively corrected and used to update the model?

Word lists Word lists constitute another valuable
and common source of information. They may con-
tain morphs, morphemes, lexemes or fully inflected
forms, with various levels of information (part-of-
speech, gloss, translation, etc.). In this study, we
consider that lists of surface forms are available
and evaluate their usefulness, depending on their
size and on the way they were collected. A related
question is about the relative interest of word and

morph lists, which we study in Section 5.3. The use
of more sophisticated forms of lexical information
regarding word structure, PoS, is out of the scope
of this paper and is left for future work.

Having a collection of fully segmented utter-
ances, as discussed above, is another way to gener-
ate word lists. So these two sources of information
must be viewed as complementary ways to super-
vise the task at hand: boundary marks at the token
level, word list at the type level.

3.2 Forms of Weak Supervision

Segmentation boundaries Observed segmenta-
tion boundaries can be used to facilitate the training
process. Two experimental conditions, both affect-
ing the Gibbs sampler (gs), have been considered:

• gs.sparse: a fraction (λ%) of the actual
boundaries are observed, which corresponds
to a sparse annotation scenario.

• gs.dense: for λ% of sentences, all bound-
ary and non-boundary variables are given.

In both cases, we modify the sampling process and
make sure that the value of observed variables is
not sampled, as in (Sirts and Goldwater, 2013).

Using a word list Assuming now that a word
list D is available, we consider the following ap-
proaches to reinforce the likelihood of units in D
in the output segmentation:

• d.count: D is used to initialise the ‘inter-
nal’ model dictionary, and words in D are cre-
ated with a fixed pseudo-count of value λ. For-
mally, ∀w ∈ D, the counting function nw() of
Equation (1) will add λ to their actual count.

• d.mix: D is combined with the base distri-
bution, resulting in the following mixture P ′0:

P ′0(w) =
λ

|D|
1{w∈D} + (1− λ)P0(w), (3)
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where λ ∈ [0, 1], |D| is the size of D, and
1{w∈D} is the indicator function testing mem-
bership in D. As for d.count, P ′0 increases
the probability of words in D, but in a looser
way, due to the term αP0 in Equation (1).

• d.ngram: the baseline dpseg version uses
a uniform character model for P0 (Equa-
tion (2)); here, we use D to train a character
n-gram language model (LM), with n = 2
and add-k smoothing in our experiments.

• d.mix+ngram: this method combines
d.mix and d.ngram: P0 is replaced with
the mixture P ′0 of Equation (3) and the char-
acter model is an n-gram LM. This can be
viewed as a proxy to the complete nested
Dirichlet Process of Mochihashi et al. (2009),
with D implementing a cache mechanism for
known words.

We have also used weaker forms of supervision
aimed at learning a better length model, with hardly
any improvement with respect to the baseline; these
results are not reported below.

3.3 Incremental training

In addition to the static use of supervision informa-
tion described above, we also considered a more
dynamic training regime, where dense annotations
are provided in a sequential manner through inter-
action with an expert linguist, enabling incremental
learning. To measure the effectiveness of this ap-
proach, we contrast three scenarios in Section 5.2:

• the baseline is the post-edition of a fully unsu-
pervised model without further training;

• the post-edition of a fully unsupervised model,
with additional Gibbs sampling iterations ev-
ery batch utterances for iter iterations. This
aims at propagating forward the supervision
information obtained from past annotations.
This method is referred to as o.regular.

• on top of this, we also used the past anno-
tated sentences to reestimate the base dis-
tribution of the underlying process as in
d.ngram. The corresponding results are la-
belled o.2level in Figure 2.

4 Experimental settings

4.1 Linguistic material
Two languages have been considered in this paper:
Mboshi and Japhug.

Mboshi is a tonal Bantu language spoken in the
Republic of Congo (Bantu C25). The data has
been collected as part of the BULB project (Adda
et al., 2016). It has seven vowels and 25 consonant
phonemes with five prenasalised consonants (made
of two to three consonants), a common feature in
Bantu languages (Embanga Aborobongui, 2013;
Kouarata, 2014). Although the language is usu-
ally not written, linguists have transcribed it with
graphemes in a way that approximates the phonetic
content. To mark the distinction between long and
short vowels, they were either duplicated (VV) or
not (V). One challenge for Mboshi word segmen-
tation is its complex phonological rules, notably,
vowel elision patterns whereby a vowel disappears
before another one (also a common Bantu feature)
(Rialland et al., 2015). This kind of phenomenon
makes it harder to find the boundaries.

From a morphological point of view, words are
composed of roots and affixes. Another characteris-
tic Bantu feature is its deletion rule for class-prefix
consonants in nouns. Templates for verb structure
are also quite rigid, with affixes following a strict
ordering (Godard et al., 2018a).

Our corpus is a manual alphabetic transcription
of audio recordings.3 It contains 5,312 sentences
segmented in words, one sentence per line.

Japhug is a Sino-Tibetan language from the Gyal-
rong family spoken in the Sichuan province in
China. Japhug has eight vowels and 50 conso-
nant phonemes, which can combine to create a
large number (more than 400) of consonant clus-
ters. The rich cluster feature is one important char-
acteristic of Japhug, which actually has one of the
largest inventory of consonant clusters in the Trans-
Himalayan language family. The structure of these
clusters can be analysed by looking at patterns of
partial reduplication of syllable initial consonants.
There are no tones in this language.

Japhug also has a rich morphology, both for
verbs and nouns. Remarkably, in verb forms, up
to six or seven prefixes can be chained to express
features such as tense, aspect, modality, while suf-
fixation is used to express inflectional phenomena.

3Download from: https://www.islrn.org/
resources/747-055-093-447-8/.
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Even though these processes are quite regular, they
contribute to generating a large number of possible
word forms. Recordings, annotated corpora, and
dictionaries for Japhug are available from the Pan-
gloss collection.4 An extensive description of the
language is given in (Jacques, 2021).5

Our training material has been extracted from
the LATEX source files of this book, by collecting all
Japhug examples. These can easily be retrieved by
searching the \gll command introducing Japhug
sentences. Not only are the resulting sentences
well-curated, but they are also segmented at two
levels: words and morphemes. This will lead to a
specific experiment presented in Section 5.3.

language Mboshi Japhug
segment word word morph.

Nutt 5130 3628 3628
WL 4.19 4.73 2.90
TL 6.39 7.30 5.41
Ntype 5312 6739 2731
Ntoken 30556 28579 46632

Table 1: Statistics for the Mboshi and Japhug corpora.
For the latter, we use the word-based and morpheme-
based segmentations.

Table 1 displays the general statistics for the two
languages. Nutt, Ntype, and Ntoken represent the
number of utterances, of word types, and of word
tokens, respectively. WL represents the average to-
ken length, while TL is the average type length.
The sentences used for semi-supervision corre-
spond to the first 200 sentences of each dataset,
which is a realistic amount of data. Likewise, lex-
ical supervision corresponds to the list of words
observed in the same 200 sentences, and respec-
tively contain 517 words for Mboshi, 664 words
and 493 morphemes for Japhug.

4.2 Model settings
In our experimental setting, we made sure to also
resample the hyperparameter(s) after each itera-
tion, following mostly (Teh, 2006a; Mochihashi
et al., 2009): the concentration parameter α has
a Gamma posterior distribution, and the discount
parameter d a Beta distribution. The initial values
of the hyperparameters were set as in Goldwater
et al.’s work on the unigram dpseg: concentration

4http://pangloss.cnrs.fr/corpus/Japhug.
5Available at https://github.com/langsci/

295/tree/main/chapters.

parameter: α = 20, p# = 0.5, discount parameter
for pypseg: d = 0.5. The Gibbs sampler always
runs for 20,000 iterations and simulated annealing
is implemented as in (Goldwater et al., 2009) with
10 increments of temperature.

All the results are obtained by collecting the
predicted boundaries at the end of the last sampling
iteration of one single run.

4.3 Evaluation metrics

Following Goldwater et al. (2009), evaluation relies
on ‘PRF’ metrics: precision, recall, and F-score,
defined as follows: precision P = TP

TP+FP , recall
R = TP

TP+FN , and F-score F = 2∗ precision∗recall
precision+recall ,

where TP are the true positives (match in the ref-
erence and segmented texts), FP are the false posi-
tives, and FN are the false negatives. These metrics
are computed at three levels:6

• boundary level (BP, BR, BF): compare the ref-
erence boundary vectors with the predictions;

• token level (WP, WR, WF): compare word
in the reference and segmented sentences: a
correct match requires two correct boundaries;

• type level (LP, LR, LF): compare the set of
unique words in the reference and segmented
utterances.

To have an overall view of the output text, we
also report the average type and token lengths (TL
and WL) as well as their counts (Ntype andNtoken),
as in Table 1. Numbers are computed on the entire
text (including the supervised part).

5 Results

This section presents the results for the models
presented above. We also report the performance
of SentencePiece, another word segmentation tool
based on a unigram language model (Kudo, 2018):7

To boost this baseline, the vocabulary size has been
set to the reference number of Ntype (cf. Table 1).
Supplementary material additionally contains re-
sults for Morfessor baselines (Creutz and Lagus,
2002), with the corresponding weak supervision.
As a reminder, our supervision here consists of
the first 200 sentences in the text, either directly
given as observed boundaries or used to generate
the initial word list.

6Below we only report F -scores; complete results are in
the appendix A.1.

7github.com/google/sentencepiece.
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5.1 Using weak supervision

5.1.1 dpseg

Table 2 displays our experimental results for the
5K Mboshi corpus for SentencePiece (SP), dpseg
and pypseg with various amounts of supervision.

First, the unsupervised dpseg model has better
results than SP on all three levels by a significant
margin. SP, on the other hand, produces more types
as it ‘knows’ the actual number of types to generate.

Regarding segmentation boundaries, the
gs.sparse model has disappointing results,
with scores lower than the baseline. On the other
hand, the dense supervision manages to improve
the baseline scores by around 2.5 points for BF,
4.5 points for WF, and 7.5 points for LF. This is an
encouraging result, since, with less than 5% of the
whole text, the model has improved in a noticeable
way, especially at type level, which seems to be
difficult for fully unsupervised learning.

When supervising with a word list, all models
but d.2gram outperform the baseline. Yet, the
d.count and d.mix methods have lower scores
than the gs.dense: this was expected for BF
and WF—where directly supervising boundaries is
likely to be more useful than an indirect one, but
less so for LF. Regarding the d.2gram model, its
poor BF and WF scores are more than compen-
sated by an increase of around 12 points in LF,
showing the impact of a better type model. Finally,
by combining the d.mix and d.2gram strategies,
d.mix+2gram obtains the overall best results.

5.1.2 pypseg

Results are in the right part of Table 2, where
the baseline is the fully unsupervised pypseg. It
slightly outperforms dpseg by less than 1 point in
terms of F-scores. In our setting, although PYP in-
creases the number of discovered types, it does not
improve the performance in any significant manner.

This trend is confirmed for weakly supervised
models:8 the gs.dense model is the only one
benefiting from a small improvement in all F-
scores. d.count underperforms both the baseline
and its dpseg version. With worsened BF and WF
scores compared to the baseline, d.mix+2gram
with pypseg is worse than with dpseg. Overall,
the former seems to benefit less from annotations
than the latter.

8We do not report the results of d.mix and d.2gram but
their combination d.mix+2gram, due to space limitation.

The performance of the bigram character model
is noteworthy both with dpseg and pypseg. This
improvement alone (i.e. d.2gram) is responsible
not only for a large increase in LF, but also for an
average type length that gets much closer to its true
value (6.39 in the reference, 6.60 with dpseg and
d.mix+2gram).

5.1.3 Results for Japhug
Table 3 displays a selection of results for Japhug
(segmented in words). As previously observed,
supervision noticeably improves the results for both
models, with pypseg outperforming dpseg by a
small margin on all metrics.9 Note also that SP is
much worse than Bayesian models, only reaching
the same F-score as dpseg for the LF metric.

The best results are obtained with lexical super-
vision and the d.mix+2gram model for dpseg:
it combines the type boost in P ′0 from d.mix and
the improved base model from d.2gram.

5.2 Incremental learning

Figure 2 displays the evolution of the boundary
error rate (number of errors over 100 sentences
/ length of the 100 sentences) as more annotated
sentences are available, for three contrasts of § 3.3
(baseline, o.regular, and o.2level). We use
the dpseg model and 50 complementary Gibbs
sampling iterations every 100 sentences.

Figure 2: Average loss over 100 sentences on the 5K
Mboshi text with incremental training (batch = 100,
iter = 50)

While the baseline error rate (in blue) remains
the same throughout training, both supervised mod-
els show a sharp decrease, from 0.14 to about 0.06.
The large drop at the beginning for the o.2level

9Full results are in appendix A.1.
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mod. SP dpseg pypseg
sup. / base. sparse dense count mix 2gram mix+2 base. dense count mix+2

BF 44.6 65.9 65.0 68.7 66.3 68.3 64.7 66.4 66.2 68.8 65.5 65.8
WF 17.7 37.6 36.4 42.4 38.1 41.7 36.5 39.4 37.9 42.5 37.6 38.7
LF 19.5 23.8 22.0 31.4 23.9 30.7 36.1 40.0 24.5 31.6 24.0 39.9

WL 3.89 3.74 3.50 3.78 3.73 3.79 5.10 5.11 3.77 3.82 3.80 5.16
TL 6.93 4.61 4.45 4.87 4.60 4.87 6.57 6.60 4.65 4.89 4.79 6.62
Ntype 5031 1980 1938 2237 1999 2181 4636 4620 2063 2310 2163 4741
Ntok. 32.9k 34.2k 36.6k 33.8k 34.3k 33.8k 25.1k 25.0k 33.9k 33.5k 33.7k 24.8k

Table 2: Results on the 5K Mboshi text for various models and weak supervision settings (20K iterations, 200 su-
pervision sentences, λ = 0.25). SP stands for SentencePiece; mix+2 for d.mix+2gram.

mod. SP dpseg pypseg
sup. / base. dense mix+2 base.

BF 59.7 72.9 75.0 78.8 73.0
WF 30.3 45.7 50.4 55.8 46.1
LF 20.0 20.1 28.3 42.7 20.8

WL 4.72 3.34 3.44 4.50 3.36
TL 6.71 4.21 4.67 6.19 4.25
Ntype 6413 2258 2610 5041 2295
Ntok. 28.6k 40.5k 39.3k 30.0k 40.2k

Table 3: Results on the 3K Japhug text with various
models (20K iterations, 200 supervision sentences). SP
stands for SentencePiece; mix+2 for d.mix+2gram.

model (green) can be attributed to the use of the bi-
gram character model. It gives this model an initial
edge over o.regular that remains significant for
the first 3,000 sentences. Here again, the benefits
of improving the base distribution (character-based
model) as much as possible in the early training
iterations clearly appear.

5.3 Supervising words and morphemes

This section addresses a recurring issue in word seg-
mentation model related to the linguistic nature of
the units learnt by the model and the consequences
of choosing one or the other reference in training.
The Japhug corpus contains both annotation levels
and is a perfect test bed for this study. We have thus
used a segmentation model (dpseg) with and with-
out weak supervision (using the d.mix+2gram
variant) at the level of words or morphemes, and
the results are also evaluated against the two refer-
ences (a segmentation in words or in morphemes).
Results are in Table 4.

In the unsupervised setting, segmentation met-
rics are markedly better with morpheme-based ref-

ref. word morpheme
sup. / word mor. / word mor.

BF 72.9 78.8 76.1 80.8 71.0 75.8
WF 45.7 55.8 51.0 54.7 39.2 45.1
LF 20.1 42.7 32.8 41.2 33.5 43.8

WL 3.34 4.50 4.09 3.34 4.50 4.09
TL 4.21 6.19 5.43 4.21 6.19 5.43
Ntype 2258 5041 4077 2258 5041 4077
Ntok. 40.5k 30.0k 33.1k 40.5k 30.0k 33.1k

Table 4: Comparison of the results on the 3K Japhug
text with the word or morpheme segmented reference
(ref.), dictionary from 200 supervision sentences (sup.)

erences, especially for the LF metric. This again
shows the tendency of the unigram model to over-
segment the training sentences.

With word supervision, we observe a shift in
behaviour that is consistent with the provided anno-
tations: better word-level metrics with word-based
annotations, and accordingly, a decrease of per-
formance for morpheme-based scores. With mor-
pheme supervision, results are more contrasted: an
improvement for word segmentation (because some
words are also morphemes) that is not matched for
morpheme boundaries. Looking at the detailed re-
sults (see appendix A.1, Table 7), one can see that
this is due to an undersegmentation, which yields a
poor recall at the boundary and token levels. Here,
the main remaining benefit of supervision is an
increase in the LF score.

These preliminary results suggest that consider-
ing only one type of boundary is a too naive view
of the segmentation process and does not allow us
to fully benefit from annotated data. They call for
models that would carefully distinguish boundaries
within words and between words, with appropriate
supervision for each of these levels.
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5.4 Error analysis

It is noteworthy that dictionary supervision almost
deterministically ensures that the input word types
will occur in the segmented output. For instance,
96% of the words in the Mboshi supervision dictio-
nary are found in the output of the d.mix+2gram
method, whereas we only find 44% with fully un-
supervised learning. Similar trends are observed
for Japhug. Some remaining errors are, however,
observed: in the example of Figure 3, the word
‘bana’ belongs to the supervision dictionary but
remains attached to the following word ‘ba’. Ad-
ditional examples are in appendix A.2. This may
be because both words ‘bana’ and ‘ba’ often occur
together, a cooccurrence that can not be captured
by our unigram model (Goldwater et al., 2009).

reference bana ba adi otEE imbva
unsupervised banaba adio tEE imbva

supervised banaba adi otEEimbva

Figure 3: Example of a segmentation error for the
Mboshi sentence: ‘these children are the same size’.

6 Related work

Unsupervised segmentation is a generic NLP task
that can be performed at multiple levels of analy-
sis: a document segmented in sections, a speech
segmented in utterances, an utterance segmented in
words, a word segmented in morphemes, syllables
or phonemes. It has been studied in multiple ways,
and we report here recent work related to word
discovery for language documentation, noting that
the same methods also apply to the unsupervised
segmentation of continuous speech into ‘words’
(de Marcken, 1996) which has given rise to a vast
literature on language acquisition. Recently, this
task has become central in preprocessing pipelines,
with new implementations of simple models (Sen-
nrich et al., 2016; Kudo and Richardson, 2018).

Linear segmentation models in the Bayesian
realm can be traced back to (Goldwater et al.,
2006, 2009). They were extended with nesting
in (Mochihashi et al., 2009), where the base distri-
bution of the Dirichlet Process is a char-based non-
parametric model; and in (Uchiumi et al., 2015;
Löser and Allauzen, 2016), who consider hidden
state variables in the word generation process. This
extension enables, for instance, to jointly learn seg-
mentation and PoS tagging or to introduce some

morphotactics in the model. Other sources of weak
supervisions along these lines concern the use of
higher-order n-grams and of prosodic cues (Doyle
and Levy, 2013). Finally, (Börschinger and John-
son, 2012) (with particle filtering techniques) and
(Neubig, 2014) (with block sampling) study ways
to speed up inference.

The unsupervised techniques exposed in Sec-
tion 2 only depend on the design of a probabilistic
word generation process. This means that they are
also readily applicable when this process is condi-
tioned to some input, for instance, when a transla-
tion is available as an additional information source.
This setup is notably studied in (Neubig et al., 2011;
Stahlberg et al., 2012), and also considered, with
radically different tools, in (Anastasopoulos and
Chiang, 2017; Godard et al., 2018c).

A somewhat richer trend of works aimed at in-
forming word segmentation relies on the model of
adaptor grammars (AG) of Johnson et al. (2007),
applied to the segmentation task as early as (John-
son, 2008). AGs generalise finite-state models such
as dpseg and pypseg by modelling trees and
subtrees, rather than mere strings. Their use neces-
sitates a context-free description of the language,
which enables to integrate information regarding
word and syllable structures. Even generic descrip-
tions can be useful, but finding the most appropriate
and effective one is challenging (Johnson and Gold-
water, 2009; Eskander et al., 2016). This formalism
has also been used to introduce syntactic informa-
tion (Johnson et al., 2014), prosodic information
(Börschinger and Johnson, 2014), and partial anno-
tations (Sirts and Goldwater, 2013). Recent soft-
ware packages for AGs are presented in (Bernard
et al., 2020) and (Eskander et al., 2020). Using
AGs comes, however, with a high computational
price, as the Gibbs sampling process typically re-
quires repeated parses of the corpus, even though
cheaper estimation techniques may also be consid-
ered (Cohen et al., 2010). As our goal is to integrate
learning techniques in interactive annotation tools,
AGs were not deemed appropriate, and we explored
simpler alternatives.

Similar arguments apply to the use of neural
networks, which have attracted a growing interest
even for very low-resource languages, combining
supervised segmentation methods (Moeng et al.,
2021; Liu et al., 2021) with cross-lingual transfer
or data augmentation techniques (Silfverberg et al.,
2017; Kann et al., 2018; Lane and Bird, 2020).
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7 Conclusion and outlook

In this work, we have studied various ways to use
weak supervision for automatic word segmentation.
In language documentation scenarios, such supervi-
sion is often available, taking the form of a partial
annotation or word lists. Bayesian non-parametric
models lend themselves well to this setting, and
our experiments have shown that two variants of
a simple unigram model were getting a substan-
tial boost from weak supervision, a result that has
been obtained with two languages currently being
documented. The most effective approach seems
to start with a small set of fully segmented data,
which helps learning in two ways: as a training
signal for segmentation and as lexical prior for the
base distribution. Based on this observation, we
have further evaluated the longer-term benefits of
an incremental training regime and also contrasted
the improvement obtained using a word-based vs a
morpheme-based vocabulary list.

Our future work will continue to explore the
interplay between word and morpheme segmenta-
tions, as both are required in actual documentation
settings, possibly extending our analyses on addi-
tional languages. We will also consider supervising
the annotation process with lists of non-inflected
forms, which requires to jointly learn inflectional
patterns and segmentation. Finally, our main objec-
tive remains to integrate these techniques into an
annotation platform and evaluate how much they
help speed up the annotation process, hence the
need to control the run-time of our algorithms.
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A Appendix

A.1 Full results

Table 5 displays the complete results of Table 2
with both precision and recall for the three evalua-
tion levels. SentencePiece (SP) tends to have more
balanced scores for precision and recall, whereas
dpseg displays a wider gap between the two met-
rics, especially at type level.

The ‘Morf’ column displays the performance
of Morfessor 2.0 (Creutz and Lagus, 2002; Smit
et al., 2014).10 These results have been obtained
with the morph-length parameter set to the ob-
served average token length (4.19). This setting
led to better F-scores than using the gold number
of types for num-morph-types or the default Mor-
fessor model. The Morfessor model outperforms
SentencePiece significantly for both boundary (BF)
and token (WF) F-scores, while it lags behind for
the type-based metrics. Compared to the unsuper-
vised dpseg, Morfessor is worse on all accounts
by a wide margin.

Table 6, in turn, displays the complete results of
Table 3, again with both precision and recall for the
three evaluation levels.

The ‘Morf’ column in Table 6 also represents the
Morfessor results, with a morph-length parameter
of 4.73. Here again, Morfessor outperforms Senten-
cePiece on the boundary and token-level F-scores
(to a smaller extent) but not at type level.

Finally, Table 7 displays the complete results for
the word and morpheme experiment (Table 4).

A.2 Output analysis

reference obengi amipasa koo sa kř
unsupervised obengia mipasa koo sakř

supervised obengi amipasa koo sakř

Figure 4: Example of Mboshi sentence (‘the hunter
made a path through the forest’) corrected through su-
pervision (here, d.mix+2gram): ‘obengi’ is a word
in the supervision dictionary

Figure 4 shows an example sentence derived
from the Mboshi data. The word ‘obengi’ is present
in the supervision dictionary. In the unsupervised
model (unsupervised line), the word was wrongly

10https://github.com/aalto-speech/
morfessor.
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mod. SP Morf dpseg pypseg
sup. / / base. sparse dense count mix 2gram mix+2 base. dense count mix+2

BP 42.71 55.76 61.79 58.83 64.80 62.09 64.46 73.57 75.63 62.30 65.20 61.88 75.51
BR 46.65 53.85 70.66 72.73 73.09 71.15 72.58 57.68 59.15 70.51 72.78 69.51 58.36
BF 44.59 54.78 65.93 65.05 68.70 66.31 68.28 64.66 66.39 66.15 68.78 65.48 65.84
WP 17.07 29.43 35.63 33.45 40.41 36.03 39.68 40.47 43.82 36.07 40.58 35.81 43.20
WR 18.38 28.59 39.88 40.03 44.71 40.40 43.83 33.19 35.87 40.03 44.51 39.48 35.03
WF 17.70 29.00 37.63 36.45 42.45 38.09 41.65 36.47 39.45 37.95 42.45 37.56 38.69
LP 20.00 21.22 43.84 41.23 53.06 43.72 52.82 38.74 43.03 43.72 52.12 41.42 42.27
LR 18.94 10.64 16.34 15.04 22.35 16.45 21.69 33.81 37.42 16.98 22.67 16.87 37.73
LF 19.45 14.17 23.81 22.04 31.45 23.91 30.75 36.11 40.03 24.46 31.59 23.97 39.87

WL 3.89 4.31 3.74 3.50 3.78 3.73 3.79 5.10 5.11 3.77 3.82 3.80 5.16
TL 6.93 8.91 4.61 4.45 4.87 4.60 4.87 6.57 6.60 4.65 4.89 4.79 6.62
Ntype 5031 2663 1980 1938 2237 1999 2181 4636 4620 2063 2310 2163 4741
Ntok. 32901 29685 34204 36562 33810 34264 33755 25063 25015 33905 33514 33691 24782

Table 5: Complete results on the 5K Mboshi text for various models and weak supervision settings (20K iterations,
200 supervision sentences, λ = 0.25). SP stands for SentencePiece, Morf for Morfessor.

mod. SP Morf dpseg pypseg
sup. / / base. dense mix+2 base. mix+2

BP 59.65 53.43 61.10 63.75 76.62 61.39 76.67
BR 59.82 74.93 90.20 91.19 81.11 90.08 80.22
BF 59.74 62.38 72.85 75.04 78.80 73.02 78.40
WP 30.28 31.12 38.98 43.55 54.44 39.42 53.97
WR 30.35 42.05 55.18 59.92 57.23 55.51 56.15
WF 30.31 35.77 45.69 50.44 55.80 46.10 55.04
LP 20.51 20.05 39.95 50.77 49.93 40.92 49.32
LR 19.51 8.00 13.38 19.66 37.35 13.93 37.50
LF 20.00 11.44 20.05 28.35 42.73 20.79 42.60

WL 4.72 3.50 3.34 3.44 4.50 3.36 4.55
TL 6.71 9.72 4.21 4.67 6.19 4.25 6.20
Ntype 6413 2688 2258 2610 5041 2295 5124
Ntok. 28.6k 38.6k 40.5k 39.3k 30.0k 40.2k 29.7k

Table 6: Complete results on the 3K Japhug text with
various models (20K iterations, 200 supervision sen-
tences). SP stands for SentencePiece, Morf for Mor-
fessor.

segmented, affecting the second word, ‘amipasa’.
In the supervised model with d.mix+2gram, the
word is correctly segmented as ‘obengi’, and the
second word is also correct, although not in the
supervision dictionary.

Figure 5 presents two of the 200 sentences used
for supervision in Mboshi. This means that all the
words in the example are in the supervision dictio-
nary, which can explain why words such as ‘owoi’,
‘atyeeli’, or ‘lekonyi’ are correctly segmented in
the weakly supervised setting. Yet, some errors
remain (e.g. ‘adimo’ instead of ‘adi mo’) mainly
because of the cooccurrence effect.

ref. word morpheme
sup. / word mor. / word mor.

BP 61.10 76.62 70.30 87.59 93.30 93.16
BR 90.20 81.11 83.03 75.02 57.31 63.84
BF 72.85 78.80 76.14 80.82 71.00 75.76
WP 38.98 54.44 47.49 58.91 50.06 54.29
WR 55.18 57.23 55.00 51.12 32.25 38.54
WF 45.69 55.80 50.97 54.74 39.23 45.08
LP 39.95 49.93 43.51 45.53 25.85 36.55
LR 13.38 37.35 26.32 37.64 47.71 54.56
LF 20.05 42.73 32.80 41.21 33.53 43.77

WL 3.34 4.50 4.09 3.34 4.50 4.09
TL 4.21 6.19 5.43 4.21 6.19 5.43
Ntype 2258 5041 4077 2258 5041 4077
Ntok. 40.5k 30.0k 33.1k 40.5k 30.0k 33.1k

Table 7: Complete results on the 3K Japhug text with
the word or morpheme segmented reference (ref.), dic-
tionary from 200 supervision sentences (sup.)

reference atyeeli adi mo lekonyi
unsupervised at yee li adi mole konyi

supervised atyeeli adimo lekonyi

reference nř owoi dzue la baa
unsupervised nř o wo i dzuela baa

supervised nř owoi dzue la baa

Figure 5: Examples of Mboshi sentences used for su-
pervision (here, d.mix+2gram): ‘Termite workers
are on the dead wood ’ and ‘Did you listen to their
voices? ’

7397



A.3 Computing environment
Our experiments have been carried out on an In-
tel® Xeon® Processor E5-2643 v3 (6 cores and
12 threads). With this processor, the baseline
dpseg model on the 3K Japhug corpus takes
around 10 hours for 20,000 iterations of Gibbs sam-
pling.

All results in this paper have been obtained with
a random seed of 42. The remaining parameters
are presented in Section 4.2.
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