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Abstract

Transformer based re-ranking models can
achieve high search relevance through context-
aware soft matching of query tokens with doc-
ument tokens. To alleviate runtime complexity
of such inference, previous work has adopted a
late interaction architecture with pre-computed
contextual token representations at the cost
of a large online storage. This paper pro-
poses contextual quantization of token embed-
dings by decoupling document-specific and
document-independent ranking contributions
during codebook-based compression. This al-
lows effective online decompression and em-
bedding composition for better search rele-
vance. This paper presents an evaluation of
the above compact token representation model
in terms of relevance and space efficiency.

1 Introduction

Modern search engines for text documents typi-
cally employ multi-stage ranking. The first retrieval
stage extracts top candidate documents matching
a query from a large search index with a simple
ranking method. The second stage or a later stage
uses a more complex machine learning algorithm to
re-rank top results thoroughly. Recently neural re-
ranking techniques from transformer-based archi-
tectures have achieved impressive relevance scores
for top k document re-ranking, such as MacAvaney
et al. (2019). However, using a transformer-based
model to rank or re-rank is extremely expensive dur-
ing the online inference (Lin et al., 2020). Various
efforts have been made to reduce its computational
complexity (e.g. Gao et al. (2020)).

A noticeable success in time efficiency improve-
ment is accomplished in ColBERT (Khattab and
Zaharia, 2020) which conducts late interaction
of query terms and document terms during run-
time inference so that token embeddings for doc-
uments can be pre-computed. Using ColBERT
re-ranking after a sparse retrieval model called

DeepImpact (Mallia et al., 2021) can further en-
hance relevance. Similarly BECR (Yang et al.,
2022), CEDR-KNRM (MacAvaney et al., 2019),
and PreTTR (MacAvaney et al., 2020) have also
adopted the late interaction architecture in their
efficient transformer based re-ranking schemes.

While the above work delivers good search rel-
evance with late interaction, their improvement
in time efficiency has come at the cost of a large
storage space in hosting token-based precomputed
document embeddings. For example, for the MS
MARCO document corpus, the footprint of embed-
ding vectors in ColBERT takes up to 1.6TB and
hosting them in a disk incurs substantial time cost
when many embeddings are fetched for re-ranking.
It is highly desirable to reduce embedding foot-
prints and host them in memory as much as possi-
ble for fast and high-throughput access and for I/O
latency and contention avoidance, especially when
an online re-ranking server is required to efficiently
process many queries simultaneously.

The contribution of this paper is to propose
a compact representation for contextual token em-
beddings of documents called Contextual Quantiza-
tion (CQ). Specifically, we adopt codebook-based
quantization to compress embeddings while explic-
itly decoupling the ranking contributions of doc-
ument specific and document-independent infor-
mation in contextual embeddings. These ranking
contributions are recovered with weighted compo-
sition after quantization decoding during online in-
ference. Our CQ scheme includes a neural network
model that jointly learns context-aware decomposi-
tion and quantization with an objective to preserve
correct ranking scores and order margins. Our eval-
uation shows that CQ can effectively reduce the
storage space of contextual representation by about
14 times for the tested datasets with insignificant
online embedding recovery overhead and a small
relevance degradation for re-ranking passages or
documents.
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2 Problem Definition and Related Work

The problem of neural text document re-ranking
is defined as follows. Given a query with multiple
terms and a set of candidate documents, rank these
documents mainly based on their embeddings and
query-document similarity. With a BERT-based re-
ranking algorithm, typically a term is represented
by a token, and thus in this paper, word “term”
is used interchangeably with “token”. This paper
is focused on minimizing the space cost of token
embeddings for fast online re-ranking inference.

Deep contextual re-ranking models. Neu-
ral re-ranking has pursued representation-based
or interaction-based algorithms (Guo et al., 2016;
Dai et al., 2018; Xiong et al., 2017). Embedding
interaction based on query and document terms
shows an advantage in these studies. The trans-
former architecture based on BERT (Devlin et al.,
2019) has been adopted to re-ranking tasks by using
BERT’s [CLS] token representation to summarize
query and document interactions (Nogueira and
Cho, 2019; Yang et al., 2019; Dai and Callan, 2019;
Nogueira et al., 2019a; Li et al., 2020). Recently
BERT is integrated in late term interaction (MacA-
vaney et al., 2019; Hofstätter et al., 2020c,b; Mitra
et al., 2021) which delivers strong relevance scores
for re-ranking.

Efficiency optimization for transformer-based
re-ranking. Several approaches have been pro-
posed to reduce the time complexity of transformer-
based ranking. For example, architecture sim-
plification (Hofstätter et al., 2020c; Mitra et al.,
2021), late interaction with precomputed token
embeddings (MacAvaney et al., 2020), early ex-
iting (Xin et al., 2020), and model distillation (Gao
et al., 2020; Hofstätter et al., 2020a; Chen et al.,
2020b). We will focus on the compression of to-
ken representation following the late-interaction
work of ColBERT (Khattab and Zaharia, 2020) and
BECR (Yang et al., 2022) as they deliver fairly com-
petitive relevance scores for several well-known
ad-hoc TREC datasets. These late-interaction ap-
proaches follow a dual-encoder design that sep-
arately encodes the two sets of texts, studied in
various NLP tasks (Zhan et al., 2020; Chen et al.,
2020a; Reimers and Gurevych, 2019; Karpukhin
et al., 2020; Zhang et al., 2020).

Several previous re-ranking model attempted to
reduce the space need for contextual token em-
beddings. ColBERT has considered an option of
using a smaller dimension per vector and limit-

ing 2 bytes per number as a scalar quantization.
BECR (Yang et al., 2022) uses LSH for hashing-
based contextual embedding compression (Ji et al.,
2019). PreTTR (MacAvaney et al., 2020) uses a
single layer encoder model to reduce the dimension-
ality of each token embedding. Following PreTTR,
a contemporaneous work called SDR in Cohen
et al. (2021) considers an autoencoder to reduce
the dimension of representations, followed by an
off-the-shelf scalar quantizer. For the autoencoder,
it combines static BERT embeddings with contex-
tual embeddings. Inspired by this study, our work
decomposes contextual embeddings to decouple
ranking contributions during vector quantization.
Unlike SDR, CQ jointly learns the codebooks and
decomposition for the document-independent and
dependent components guided by a ranking loss.

Vector quantization. Vector quantization with
codebooks was developed for data compression to
assist approximate nearest neighbor search, for ex-
ample, product quantizer (PQ) from Jégou et al.
(2011), optimized product quantizer (OPQ) from
Ge et al. (2013); residual additive quantizer(RQ)
from Ai et al. (2015) and local search additive quan-
tizer (LSQ) from Martinez et al. (2018). Recently
such a technique has been used for compressing
static word embeddings (Shu and Nakayama, 2018)
and document representation vectors in a dense
retrieval scheme called JPQ (Zhan et al., 2021a).
None of the previous work has worked on quantiza-
tion of contextual token vectors for the re-ranking
task, and that is the focus of this paper.

3 Contextual Quantization

Applying vector quantization naively to token em-
bedding compression does not ensure the rank-
ing effectiveness because a quantizer-based com-
pression is not lossless, and critical ranking sig-
nals could be lost during data transformation. To
achieve a high compression ratio while maintaining
the competitiveness in relevance, we consider the
ranking contribution of a contextual token embed-
ding for soft matching containing two components:
1) document specific component derived from the
self attention among context in a document, 2)
document-independent and corpus-specific com-
ponent generated by the transformer model. Since
for a reasonable sized document set, the second
component is invariant to documents, its storage
space is negligible compared to the first compo-
nent. Thus the second part does not need compres-
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Figure 1: Offline processing and online ranking with contextual quantization

sion. We focus on compressing the first compo-
nent using codebooks. This decomposition strategy
can reduce the relevance loss due to compression
approximation, which allows a more aggressive
compression ratio. Our integrated vector quantizer
with contextual decomposition contains a ranking-
oriented scheme with an encoder and decoder net-
work for jointly learning codebooks and compo-
sition weights. Thus, the online composition of
decompressed document-dependent information
with document-independent information can retain
a good relevance.

3.1 Vector Quantization and Contextual
Decomposition

A vector quantizer consists of two steps as dis-
cussed in Shu and Nakayama (2018). In the com-
pression step, it encodes a real-valued vector (such
as a token embedding vector in our case) into a
short code using a neural encoder. The short code
is a list of reference indices to the codewords in
codebooks. During the decompression step, a neu-
ral decoder is employed to reconstruct the original
vector from the code and codebooks.

The quantizer learns a set of M codebooks
{C1, C2, · · · , CM} and each codebook contains K
codewords (Cm = {cm1 , cm2 , · · · , cmK}) of dimen-
sion h. Then for any D-dimensional real valued
vector x ∈ RD, the encoder compresses x into an
M dimensional code vector s. Each entry of code
s is an integer j, denoting the j-th codeword in
codebook Cm. After locating all M codewords
as [c1, · · · , cM ], the original vector can be recov-
ered with two options. For a product quantizer,
the dimension of codeword is h = D/M , and
the decompressed vector is x̂ = c1 ◦ c2 · · · ◦ cM
where symbol ◦ denotes vector concatenation. For
an additive quantizerthe decompressed vector is

x̂ =
∑M

j=1 cj .
Codebook-based contextual quantization.

Now we describe how codebook-based compres-
sion is used in our contextual quantization. Given
a token t, we consider its contextual embedding
vector E(t) as a weighted combination of two com-
ponents: E(t∆) and E(t̄). E(t∆) captures the
document-dependent component, and E(t̄) cap-
tures the document-independent component dis-
cussed earlier. For a transformer model such
as BERT, E(t) is the token output from the last
encoder layer, and we obtain E(t̄) by feeding
[CLS] ◦ t ◦ [SEP] into BERT model and taking
last layer’s output for t.

During offline data compression, we do not ex-
plicitly derive E(t∆) as we only need to store the
compressed format of such a value, represented
as a code. Let Ê(t∆) be the recovered vector
with codebook-based decompression, as a close
approximation of E(t∆). Let Ê(t) be the final com-
posed embedding used for online ranking with late-
interaction. Then Ê(t) = g(Ê(t∆),E(t̄)) where
g(.) is a simple feed-forward network to combine
two ranking contribution components.

The encoder/decoder neural architecture for
contextual quantization. We denote a token in
a document d as t. The input to the quantization
encoder is E(t) ◦ E(t̄). The output of the quanti-
zation encoder is the code vector s of dimension
M . Let code s be (s1, · · · , sm, · · · , sM ) and each
entry sm will be computed below in Eq. 4. This
computation uses the hidden layer h defined as:

h =tanh(w0(E(t) ◦ E(t̄)) + b0). (1)

The dimension of h is fixed as 1 × MK/2. The
hidden layer a is computed by a feed forward layer
with a softplus activation (Eq. 2) with an output
dimension of M ×K after reshaping, Let am be
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the m-th row of this output.

am =softplus(wm
1 h + bm

1 ). (2)

To derive a discrete code entry for sm, follow-
ing the previous work (Shu and Nakayama, 2018),
we apply the Gumbel-softmax trick (Maddison
et al., 2017; Jang et al., 2017) as shown in Eq. 3,
where the temperature τ is fixed at 1 and ϵk is a
noise term sampled from the Gumbel distribution
− log(− log(Uniform[0, 1])). Here pm is a vector
with dimension K. (pm)j is the j-th entry of the
vector. Similarly, (am)j is the j-th entry of am.

(pm)j =
exp(log((am)j + ϵj)/τ)∑K

j′=1 exp(log((am)j′ + ϵj′)/τ)
. (3)

sm = arg max
1≤j≤K

(pm)j . (4)

In the decompression stage, the input to the quan-
tization decoder is the code s, and this decoder
accesses M codebooks {C1, C2, · · · , CM} as M
parameter matrices of size K × h which will be
learned. For each m-entry of code s, sm value is
the index of row vector in Cm to be used as its cor-
responding codeword. Once all codewords c1 to
cM are fetched, we recover the approximate vec-
tor Ê(t∆) as

∑M
j=1 cj for additive quantization or

c1 ◦ c2 · · · ◦ cM for product quantization.
Next, we perform a composition with a one-layer

or two-layer feed-forward network to derive the
contextual embedding as Ê(t) = g(Ê(t∆,E(t̄)).
With one feed-forward layer,

Ê(t) = tanh(w2(Ê(t∆) ◦ E(t̄)) + b2). (5)

The above encoder and decoder for quantiza-
tion have parameter w0,b0,w1,b1,w2,b2, and
{C1, C2, · · · , CM}. These parameters are learned
through training. Once these parameters are
learned, the quantization model is fixed and the
code for any new token embedding can be com-
puted using Eq. 4 in offline processing.

Figure 1 depicts the flow of offline learning
and the online inference with context quantiza-
tion. Given a query with l tokens {q1, q2, ..ql},
and a documents with n tokens {t1, t2, ..tn}, The
query token embeddings encoded with a trans-
former based model (e.g. BERT) are denoted as
E(q1), · · · ,E(ql). The embeddings for document
tokens through codebook base decompression are
Ê(t1), · · · Ê(tn). The online inference then uses

the interaction of query tokens and document to-
kens defined in a re-ranking algorithm such as Col-
BERT to derive a ranking score (denoted as fq,d).

The purpose of injecting E(t̄) in Eq. 1 is to de-
couple the document-independent ranking contri-
bution from contextual embedding Ê(t∆) so that
this quantization encoder model will be learned
to implicitly extract and compress the document-
dependent ranking contribution.

Table 1 gives an example with several token
codes produced by CQ for different sentences rep-
resenting different contexts, and illustrates context
awareness of CQ’s encoding with a small codebook
dimension (M=K=4). For example, 1 in code [4,
4, 3, 1] means the 4-th dimension uses the first
codeword of the corresponding codebook. Train-
ing of CQ uses the MS MARCO passage dataset
discussed in Section 4 and these sentences are not
from this dataset. Our observation from this exam-
ple is described as follows. First, in general token
codes in the same sentences are closer to each other,
and token codes in different sentences, even with
the same word “bank”, are far away with a visi-
ble Hamming distance. Thus CQ coding allows a
context-based separation among tokens residing in
different contexts. Second, by looking at boldfaced
tokens at each sentence, their distance in terms of
contextual semantics and proximity is reflected to
some degree in their CQ codes. For instance, a
small Hamming code distance of three words “ac-
tor”, “poet” and “writer” resembles their semantic
and positional closeness. A larger code distance
of two “bank”s in the 3rd and 4th sentences relates
with their word sense and positional difference.

Training loss for parameter learning. We
have explored three training loss functions. The
first option is to follow a general quantizer (Shu
and Nakayama, 2018) using the mean squared er-
ror (MSE) between the reconstructed and origi-
nal embedding vectors of all token ti. Namely
LMSE =

∑
∥E(ti)− Ê(ti)∥22.

The second option is the pairwise cross-entropy
loss based on rank orders. After warming up with
the MSE loss, we further train the quantizer using
LPairwiseCE =

∑
(−

∑
j=d+,d− Pj logPj) where

d+ and d− are positive and negative documents for
query q.

We adopt the third option which borrows the idea
of MarginMSE loss from Hofstätter et al. (2020a)
proposed for BERT-based ranking model distilla-
tion. In MarginMSE, a student model is trained to
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Context Token codes
William Shakespeare was widely regarded as the world’s greatest writer actor poet
actor, poet, writer and dramatist. [4,4,3,1] [4,4,3,1] [1,4,3,1]
I would like to have either a cup of coffee or a good fiction coffee fiction
to kill time. [3,3,3,4] [3,1,3,4]
She sat on the river bank across from a series of wide, 1st bank 2nd bank
large steps leading up a hill to the bank of America building. [3,1,4,2] [4,1,3,1]
Some language techniques can recognize word senses in phrases 1st bank 2nd bank
such as a river bank and a bank building. [4,3,2,2] [3,1,1,4]
If you get a cold, you should drink a lot of water and get some rest. 1st get 2nd get

[2,2,4,2] [2,1,2,4]

Table 1: Example context-aware token codes produced by CQ using M=K=4 for the illustration purpose.

mimic the teacher model in terms of both ranking
scores as well as the document relative order mar-
gins. In our case, the teacher model is the ranking
model without quantization and the student model
is the ranking model with quantization. It is defined
as LMarginMSE =

∑
((fq,d+ − fq,d−)− (f̂q,d+ − f̂q,d−))2,

where fq,d and f̂q,d denote the ranking score with
and without quantization, respectively. The above
loss function distills the ColBERT ranking charac-
teristics into the CQ model for better preservation
of ranking effectiveness.

3.2 Related Online Space and Time Cost

Online space for document embeddings. The
storage cost of the precomputed document embed-
dings in a late-interaction re-ranking algorithm is
dominating its online space need. To recover token-
based document embeddings, an online server with
contextual quantization stores three parts: code-
books, the short codes of tokens in each document,
and the document-independent embeddings.

Given a document collection of Z documents of
length n tokens on average, let V be the number of
the distinct tokens. For M codebooks with M ∗K
codewords of dimension h, we store each entry of
a codeword with a 4-byte floating point number.
Thus the space cost of codebooks is M ∗K ∗ h ∗ 4
bytes, and the space for document-independent em-
beddings of dimension D is V ∗D ∗4 bytes. When
M = 16,K = 256, D = 128 as in our experi-
ments, if we use the product quantization with the
hidden dimension h = 8, the codebook size is 131
MB. In the WordPiece English token set for BERT,
V ≈ 32K and the space for document-independent
embeddings cost about 16.4 MB. Thus the space
cost of the above two parts is insignificant.

The online space cost of token-based document
embeddings is Z ∗ n ∗ (M log2 K

8 + 2) bytes. Here
each contextual token embedding of length D is

encoded into a code of length M and the space of
each code costs log2K bits. For each document,
we also need to store the IDs of its tokens in order to
access document-independent embeddings. We use
2 bytes per token ID in our evaluation because the
BERT dictionary based on WordPiece (Wu et al.,
2016) tokenizer has about 32,000 tokens.

In comparison, the space for document embed-
dings in ColBERT with 2 bytes per number costs
Z∗D∗n∗2 bytes. Then the space ratio of ColBERT
without CQ and with CQ is about 2D×8

M log2 K+2×8 ,
which is about 14:1 when D = 128, M = 16 and
K = 256. BECR uses 5 layers of the refinement
outcome with the BERT encoder for each token and
stores each layer of the embedding with a 256 bit
LSH signature. Thus the space cost ratio of BECR
over ColBERT-CQ is approximately 5×256

M log2 K+2×8 ,
which is about 9:1 when M = 16 and K = 256.
We can adjust the parameters of each of ColBERT,
BECR, and ColBERT-CQ for a smaller space with
a degraded relevance, and their space ratio to CQ
remains large, which will be discussed in Section 4.

Time cost for online decompression and com-
position. Let k be the number of documents to
re-rank. The cost of decompression with the short
code of a token using the cookbooks is O(M ∗ h)
for a product quantizer and O(M ∗D) for an addi-
tive quantizer. Notice M ∗ h = D. For a one-layer
feed-forward network as a composition to recover
the final embedding, the total time cost for decom-
pression and composition is O(k ∗ n ∗ D2) with
a product quantizer, and O(k ∗ n(M ∗D +D2))
with an additive quantizer. When using two hidden
layers with D dimensions in the first layer output,
there is some extra time cost but the order of time
complexity remains unchanged.

Noted that because of using feed-forward layers
in final recovery, our contextual quantizer cannot
take advantage of an efficiency optimization called
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asymmetric distance computation in Jégou et al.
(2011). Since embedding recovery is only applied
to top k documents after the first-stage retrieval,
the time efficiency for re-ranking is still reasonable
without such an optimization.

4 Experiments and Evaluation Results

4.1 Settings

Dataset # Query # Doc Mean Doc # Judgments
Length per query

MS MARCO passage Dev 6980 8.8M 67.5 1
TREC DL 19 passage 200 – – 21
TREC DL 20 passage 200 – – 18
MS MARCO doc Dev 5193 3.2M 1460 1

TREC DL 19 doc 200 – – 33

Table 2: Dataset statistics. Mean doc length is the aver-
age number of WordPiece (Wu et al., 2016) tokens.

Datasets and metrics. The well-known MS
MARCO passage and document ranking datasets
are used. As summarized the in Table 2, our eval-
uation uses the MS MARCO document and pas-
sage collections for document and passage rank-
ing (Craswell et al., 2020; Campos et al., 2016).
The original document and passage ranking tasks
provide 367,013 and 502,940 training queries re-
spectively, with about one judgment label per query.
The development query sets are used for relevance
evaluation. The TREC Deep Learning (DL) 2019
and 2020 tracks provide 200 test queries with many
judgment labels per query for each task.

Following the official leader-board standard, for
the development sets, we report mean reciprocal
rank (MRR@10, MRR@100) for relevance instead
of using normalized discounted cumulative gain
(NDCG) (Järvelin and Kekäläinen, 2002) because
such a set has about one judgment label per query,
which is too sparse to use NDCG. For TREC DL
test sets which have many judgement lables per
query, we report the commonly used NDCG@10
score. We also measure the dominating space need
of the embeddings in bytes and re-ranking time
latency in milliseconds. To evaluate latency, we
uses an Amazon AWS g4dn instance with Intel
Cascade Lake CPUs and an NVIDIA T4 GPU.

In all tables below that compare relevance, we
perform paired t-test on 95% confidence levels. In
Tables 3, 4, and 5, we mark the results with ‘†’ if
the compression method result in statistically sig-
nificant degradation from the ColBERT baseline.
In Table 6, ‘†’ is marked for numbers with statisti-
cally significant degradation from default setting in
the first row.

Choices of first-stage retrieval models. To re-
trieve top 1,000 results before re-ranking, we con-
sider the standard fast BM25 method (Robertson
and Zaragoza, 2009). We have also considered
sparse and dense retrievers that outperform BM25.
We have used uniCOIL (Lin and Ma, 2021; Gao
et al., 2021) as an alternative sparse retriever in
Table 3 because it achieves a similar level of rel-
evance as end-to-end ColBERT with a dense re-
triever, and that of other learned sparse representa-
tions (Mallia et al., 2021; Formal et al., 2021b,a).
ColBERT+uniCOIL has 0.369 MRR while end-
to-end ColBERT has 0.360 MRR on MSMARCO
Dev set. Moreover, retrieval with a sparse repre-
sentation such as uniCOIL and BM25 normally
uses much less computing resources than a dense
retriever. Relevance numbers reported in some of
the previous work on dense retrieval are derived
from the exact search as an upper bound of accu-
racy. When non-exact retrieval techniques such as
approximate nearest neighbor or maximum inner
product search are used on a more affordable plat-
form for large datasets, there is a visible loss of
relevance (Lewis et al., 2021). It should be em-
phasized that the first stage model can be done by
either a sparse or a dense retrieval, and this does
not affect the applicability of CQ for the second
stage as the focus of this paper.

Re-ranking models and quantizers compared.
We demonstrate the use of CQ for token compres-
sion in ColBERT in this paper. We compare its
relevance with ColBERT, BECR and PreTTR. We
chose to apply CQ to ColBERT because assuming
embeddings are in memory, ColBERT is one of
the fastest recent online re-ranking algorithms with
strong relevance scores and CQ addresses its em-
bedding storage weakness. Other re-ranking mod-
els compared include: BERT-base (Devlin et al.,
2019), a cross encoder re-ranker, which takes a
query and a document at run time and uses the
last layers output from the BERT [CLS] token to
generate a ranking score; TILDEv2 (Zhuang and
Zuccon, 2021), which expands each document and
additively aggregates precomputed neural scores.

We also evaluate the use of unsupervised quan-
tization methods discussed in Section 2 for Col-
BERT, including two product quantizers (PQ and
OPQ), and two additive quantizers (RQ and LSQ).

Appendix A has additional details on the retriev-
ers considered, re-ranker implementation, training,
and relevance numbers cited.
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Model Specs. Dev TREC DL19 TREC DL20
MRR@10 NDCG@10 NDCG@10

Retrieval choices
BM25 0.172 0.425 0.453
docT5query 0.259 0.590 0.597
DeepCT∗ 0.243 0.572 –
TCT-ColBERT(v2) 0.358 – –
JPQ∗ 0.341 0.677 –
DeepImpact 0.328 0.695 0.628
uniCOIL 0.347 0.703 0.675

Re-ranking baselines ( +BM25 retrieval)
BERT-base 0.349 0.682 0.655
BECR 0.323 0.682 0.655
TILDEv2∗ 0.333 0.676 0.686
ColBERT 0.355 0.701 0.723

Quantization ( +BM25 retrieval)
ColBERT-PQ 0.290† (-18.3%) 0.684 (-2.3%) 0.714 (-1.2%)
ColBERT-OPQ 0.324† (-8.7%) 0.691 (-1.4%) 0.688† (-4.8%)
ColBERT-RQ – 0.675† (-3.7%) 0.696 (-3.7%)
ColBERT-LSQ – 0.664† (-5.3%) 0.656† (-9.3%)
ColBERT-CQ 0.352 (-0.8%) 0.704 (+0.4%) 0.716 (-1.0%)

( +uniCOIL retrieval)
ColBERT 0.369 0.692 0.701
ColBERT-CQ 0.360† (-2.4%) 0.696 (+0.6%) 0.720 (+2.7%)

Table 3: Relevance scores for MS MARCO passage
ranking. The % degradation from ColBERT is listed
and ‘†’ is marked for statistically significant drop.

4.2 A Comparison of Relevance

Table 3 and Table 4 show the ranking relevance in
NDCG and MRR of the different methods and com-
pare against the use of CQ with ColBERT (marked
as ColBERT-CQ). We either report our experiment
results or cite the relevance numbers from other
papers with a ∗ mark for such a model. For quan-
tization approaches, we adopt M=16, K=256, i.e.
compression ratio 14:1 compared to ColBERT.

For the passage task, ColBERT outperforms
other re-rankers in relevance for the tested cases.
ColBERT-CQ after BM25 or uniCOIL retrieval
only has a small relevance degradation with around
1% or less, while only requiring 3% of the stor-
age of ColBERT. The relevance of the ColBERT-
CQ+uniCOIL combination is also competitive to
the one reported in Mallia et al. (2021) for the Col-
BERT+DeepImpact combination which has MRR
0.362 for the Dev query set, NDCG@10 0.722 for
TREC DL 2019 and 0.691 for TREC DL 2020.

For the document re-ranking task, Table 4 sim-
ilarly confirms the effectiveness of ColBERT-CQ.
ColBERT-CQ and ColBERT after BM25 retrieval
also perform well in general compared to the rele-
vance results of the other baselines.

From both Table 3 and Table 4, we observe that
in general, CQ significantly outperforms the other
quantization approaches (PQ, OPQ, RQ, and LSQ).
As an example, we further explain this by plotting
the ranking score of ColBERT with and without a

Model Specs. Dev TREC DL19
MRR@100 NDCG@10

Retrieval choices
BM25 0.203 0.446
docT5query 0.289 0.569
DeepCT∗ 0.320 0.544
TCT-ColBERT(v2) 0.351 –
JPQ∗ 0.401 0.623
uniCOIL 0.343 0.641

Re-ranking baselines ( +BM25 retrieval)
BERT-base∗ 0.393 0.670
ColBERT 0.410 0.714

Quantization ( +BM25 retrieval)
ColBERT-PQ 0.400† (-2.4%) 0.702 (-1.7%)
ColBERT-OPQ 0.404† (-1.5%) 0.704 (-1.4%)
ColBERT-RQ – 0.704 (-1.4%)
ColBERT-LSQ – 0.707 (-1.0%)
ColBERT-CQ 0.405† (-1.2%) 0.712 (-0.3%)

Table 4: Relevance scores for MS MARCO document
ranking. The % degradation from ColBERT is listed
and ‘†’ is marked for statistically significant drop.

quantizer in Figure 2(a). Compared to OPQ, CQ
trained with two loss functions generates ranking
scores much closer to the original ColBERT rank-
ing score, and this is also reflected in Kendall’s
τ correlation coefficients of top 1,000 re-ranked
results between a quantized ColBERT and the orig-
inal ColBERT (Figure 2(b)). There are two rea-
sons that CQ outperforms the other quantizers:
1) The previous quantizers do not perform con-
textual decomposition to isolate intrinsic context-
independent information in embeddings, and thus
their approximation yields more relevance loss; 2)
Their training loss function is not tailored to the
re-ranking task.

4.3 Effectiveness on Space Reduction

(a) (b)

Figure 2: (a) Ranking score by quantized ColBERT
with OPQ and CQ using two loss functions, vs. original
ColBERT score. (b) Distribution of Kendall’s τ corre-
lation coefficient between the 1,000 ranked results of
quantized and original ColBERT.

Table 5 shows the estimated space size in bytes
for embeddings in the MS MARCO document and

701



Doc task Passage task
Model Space Space Disk I/O Latency MRR@10
BECR 791G 89.9G – 8ms 0.323

PreTTR∗ – 2.6T >182ms >1000ms 0.358
TILDEv2∗ – 5.2G – – 0.326
ColBERT 1.6T 143G >182ms 16ms 0.355

ColBERT-small∗ 300G 26.8G – – 0.339
ColBERT-OPQ 112G 10.2G – 56ms 0.324†

ColBERT-CQ
undecomposed 112G 10.2G – 17ms 0.339†

K=256 112G 10.2G – 17ms 0.352
K=16 62G 5.6G – 17ms 0.339†

K=4 37G 3.4G – 17ms 0.326†

Table 5: Embedding space size in bytes for the doc-
ument ranking task and for the passage ranking task.
Re-ranking time per query and relevance for top 1,000
passages in milliseconds on a GPU using the Dev query
set. M=16. For ColBERT-OPQ and ColBERT-CQ-
undecomposed, K=256. Assume passage embeddings
in PreTTR and ColBERT do not fit in memory. ‘†’ is
marked for MRR numbers with statistically significant
degradation from the ColBERT baseline.

passage corpora, and compares CQ with other ap-
proaches. Each MS MARCO document is divided
into overlapped passage segments of size up to 400
tokens, and there are 60 tokens overlapped between
two consecutive passage segments, following the
ColBERT setup. As a result, the number of Word-
Piece tokens per document changes from 1460 to
about 2031 due to the addition of overlapping con-
textual tokens.

To demonstrate the tradeoff, we also list their
estimated time latency and relevance in passage
re-ranking as a reference and notice that more rel-
evance comparison results are in Tables 3 and 4.
The latency is the total time for embedding decom-
pression/recovery and re-ranking.

For PreTTR and ColBERT, we assume that their
passage embedding data cannot fit in memory given
their large data sizes. The disk I/O latency number
is based on their passage embedding size and our
test on a Samsung 870 QVO solid-state disk drive
to fetch 1,000 passage embeddings randomly. Their
I/O latency takes 110ms or 182ms with single-
thread I/O and with no I/O contention, and their
disk access can incur much more time when mul-
tiple queries are processed in parallel in a server
dealing with many clients. For example, fetching
1,000 passage embeddings for each of ColBERT
and PreTTR takes about 1,001ms and 3,870ms re-
spectively when the server is handling 16 and 64
queries simultaneously with multiple threads.

For other methods, their passage embedding data
is relatively small and we assume that it can be
preloaded in memory. The query latency reported

in the 4-th column of Table 5 excludes the first-
stage retrieval time. The default ColBERT uses
embedding dimension 128 and 2 byte floating num-
bers. ColBERT-small denotes an optional config-
uration suggested from the ColBERT paper using
24 embedding dimensions and 2-byte floating num-
bers with a degraded relevance performance.

As shown in Table 5, the embedding footprint
of ColBERT CQ uses about 112GB and 10.2GB,
respectively for document and passage re-ranking
tasks. By looking at the latency difference of Col-
BERT with and without CQ, the time overhead of
CQ for decompression and embedding recovery
takes 1ms per query, which is insignificant.

Compared with another quantizer ColBERT-
OPQ, ColBERT-CQ can achieve the same level
of space saving with K = 256 while having a
substantial relevance improvement. ColBERT-CQ
with K = 4 achieves the same level of relevance
as ColBERT-OPQ while yielding a storage reduc-
tion of 67% and a latency reduction of about 70%.
Comparing ColBERT-CQ with no contextual de-
composition, under the same space cost, ColBERT-
CQ’s relevance is 4% higher. CQ with K = 16
achieves the same level relevance as ColBERT-CQ-
undecomposed with K = 256, while the storage
of CQ reduces by 44%. Comparing with ColBERT-
small which adopts more aggressive space reduc-
tion, ColBERT-CQ with K = 16 would be com-
petitive in relevance while its space is about 4x
smaller.

Comparing with other non-ColBERT baselines
(BECR, PreTTR, and TILDEv2), ColBERT-CQ
strikes a good balance across relevance, space and
latency. For the fast CPU based model (BECR,
TILDEv2), our model achieves better relevance
with either lower or comparable space usage. For
BECR, its embedding footprint with 89.9GB may
fit in memory for MS MARCO passages, it be-
comes very expensive to configure a machine with
much more memory for BECR’s MS MARCO doc-
ument embeddings with about 791GB.

4.4 Design Options for CQ

Table 6 shows the relevance scores for the TREC
deep learning passage ranking task with different
design options for CQ. As an alternative setting,
the codebooks in this table use M=16 and K=32
with compression ratio 21:1 compared to ColBERT.
Row 1 is the default design configuration for CQ
with product operators and 1 composition layer,
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TREC19 TREC20
CQ, Product, 1 layer, MarginMSE 0.687 0.713
Different model configurations
No decomposition. Product 0.663† 0.686
No decomposition. Additive 0.656† 0.693
CQ, Product, 1 layer,

raw static embedding 0.655† 0.683†

CQ, Additive, 1 layer 0.693 0.703
CQ, Product, 2 layers 0.683 0.707
CQ, Additive, 2 layers 0.688 0.703
Different training loss functions
CQ, Product, 1 layer, MSE 0.679 0.704
CQ, Product, 1 layer, PairwiseCE 0.683 0.705

Table 6: NDCG@10 of different design options for
CQ in TREC DL passage ranking. If the compres-
sion method result in statistically significant degradation
from the default setting, ‘†’ is marked.

and the MarginMSE loss function.
Different architecture or quantization options.

Rows 2 and 3 of Table 6 denote CQ using product
or additive operators without decomposing each
embedding into two components, and there is about
4% degradation without such decomposition.

Row 4 changes CQ using the raw static embed-
dings of tokens from BERT instead of the upper
layer outcome of BERT encoder and there is an up
to 4.7% degradation. Notice such a strategy is used
in SDR. From Row 5 to Row 7, we change CQ
to use additive operators or use a two-layer com-
position. The performance of product or additive
operators is in a similar level while the benefit of
using two layers is relatively small.

Different training loss functions for CQ. Last
two rows of Table 6 use the MSE and PairwiseCE
loss functions, respectively. There is an about 1.2%
improvement using MarginMSE. Figure 2 gives
an explanation why MarginMSE is more effective.
While CQ trained with MSE and MarginMSE gen-
erates ranking scores close to the original ranking
scores in Figure 2(a), the distribution of Kendall’s
τ correlation coefficients of 1,000 passages in Fig-
ure 2(b) shows that the passage rank order derived
by CQ with the MarginMSE loss has a better corre-
lation with that by ColBERT.

5 Concluding Remarks

Our evaluation shows the effectiveness of CQ
used for ColBERT in compressing the space of
token embeddings with about 14:1 ratio while
incurring a small relevance degradation in MS
MARCO passage and document re-ranking tasks.
The quantized token-based document embeddings

for the tested cases can be hosted in memory
for fast and high-throughput access. This is ac-
complished by a neural network that decomposes
ranking contributions of contextual embeddings,
and jointly trains context-aware decomposition
and quantization with a loss function preserving
ranking accuracy. The online time cost to de-
compress and recover embeddings is insignificant
with 1ms for the tested cases. The CQ imple-
mentation is available at https://github.com/yingrui-
yang/ContextualQuantizer.

Our CQ framework is also applicable to the
contemporaneous work ColBERTv2 (Santhanam
et al., 2021). Using uniCOIL scores for the
first-stage sparse retrieval and ColBERTv2+CQ
(M=16, K=256) for top 1,000 passage reranking,
we achieve 0.387 MRR@10 on the MSMARCO
passage Dev set, 0.746 NDCG@10 on TREC
DL19, and 0.726 NDCG@10 on DL20 with about
10.2GB embedding space footprint. Notice that
ColBERTv2 achieves a higher MRR@10 num-
ber 0.397 for the passage Dev set when used as
a standalone retriever (Santhanam et al., 2021) and
dense retrieval with such a multi-vector represen-
tation is likely to be much more expensive than
retrieval with a sparse representation on a large
dataset. The previous work in dense retrieval has
often employed faster but approximate search, but
that comes with a visible loss of relevance (Lewis
et al., 2021). Thus the above relevance number
using ColBERTv2+CQ for re-ranking with uni-
COIL sparse retrieval is fairly strong, achievable
with a reasonable latency and limited computing
resource. Its embedding space size is 2.8x smaller
than the 29GB space cost in the standalone Col-
BERTv2 (Santhanam et al., 2021) for MS MARCO
passages. Our future work is to investigate the
above issue further and study the use of CQ in the
other late-interaction re-ranking methods.
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A Details on Retrieval Choices, Numbers
Cited, and Model Implementations

First-stage retrieval models considered. To re-
trieve top results before re-ranking, we have consid-
ered the recent work in sparse and dense retrieval
that outperforms BM25. For sparse retrieval with
inverted indices, DeepCT (Dai and Callan, 2020)
uses deep learning to assign more sophisticated
term weights for soft matching. The docT5query
work (Nogueira et al., 2019b) uses a neural model
to pre-process and expand documents. The recent
work on sparse representations includes DeepIm-
pact (Mallia et al., 2021), uniCOIL (Lin and Ma,
2021; Gao et al., 2021), and SPLADE (Formal
et al., 2021b,a), for learning neural contextualized
term weights with document expansion. Instead
of using a sparse inverted index, an alternative re-
trieval method is to use a dense representation of
each document, e.g. (Lin et al., 2021; Zhan et al.,
2021a; Xiong et al., 2021; Gao and Callan, 2021;
Zhan et al., 2021b; Ren et al., 2021). We use BM25
because it is a standard reference point. We have
also used uniCOIL for passage re-ranking because
a uniCOIL-based sparse retriever is fairly efficient
and its tested relevance result is comparable to that
of the end-to-end ColBERT as a dense retriever
and other learned sparse representations mentioned
above. Certainly CQ is applicable for re-ranking
with any of dense or sparse retrievers or their hybrid
combination.

Model numbers cited from other papers. As
marked in Tables 3 and 4, for DeepCT, JPQ and
TILDEv2, we copy the relevance numbers reported
in their papers. For TCT-ColBERT(v2), DeepIm-
pact and uniCOIL, we obtain their performance
using the released checkpoints of Pyserini 1. For
PreTTR (MacAvaney et al., 2020) on the passage
task and BERT-base on the document task, we cite
the relevance performance reported in Hofstätter
et al. (2020a). There are two reasons to list the
relevance numbers from other papers. One reason
is that for some chosen algorithms, the running of
our implementation version or their code delivers
a performance lower than what has been reported
in the authors’ original papers, perhaps due to the
difference in training setup. Thus, we think it is
fairer to report the results from the authors’ papers.
Another reason is that for some algorithms, the
authors did not release code and we do not have
implementations.

1https://github.com/castorini/pyserini/

In storage space estimation of Table 5, for BECR,
we use the default 128 bit LSH footprint with 5 lay-
ers. For PreTTR we uses 3 layers with dimension
768 and two bytes per number following Hofstätter
et al. (2020a). For TILDEv2, we directly cite the
space cost from its paper.

Model implementation and training. For base-
line model parameters, we use the recommended
set of parameters from the authors’ original pa-
pers. For ColBERT, we use the default version that
the authors selected for fair comparison. The Col-
BERT code follows the original version released 2

and BERT implementation is from Huggingface 3.
For BERT-base and ColBERT, training uses pair-
wise softmax cross-entropy loss over the released
or derived triples in a form of (q,d+,d−) for the
MS MARCO passage task. For the MS MARCO
document re-ranking task, we split each positive
long document into segments with 400 tokens each
and transfer the positive label of such a document
to each divided segment. The negative samples are
obtained using the BM25 top 100 negative docu-
ments. The above way we select training triples
for document re-ranking may be less ideal and can
deserve an improvement in the future.

When training ColBERT, we use gradient accu-
mulation and perform batch propagation every 32
training triplets. All models are trained using Adam
optimizer (Kingma and Ba, 2015). The learning
rate is 3e-6 for ColBERT and 2e-5 for BERT-base
following the setup in its original paper. For Col-
BERT on the document dataset, we obtained the
model checkpoint from the authors.

Our CQ implementation leverages the open
source code 4 for Shu and Nakayama (2018). For
PQ, OPQ, RQ, and LSQ, we uses off-the-shelf im-
plementation from Facebook’s faiss5 library (John-
son et al., 2017). To get training instances for
each quantizer, we generate the contextual embed-
dings of randomly-selected 500,000 tokens from
passages or documents using ColBERT.

When using the MSE loss, learning rate is
0.0001, batch size is 128, and the number of train-
ing epochs is 200,000. When fine-tuning with
PairwiseCE or MarginMSE, we freeze the encoder
based on the MSE loss, set the learning rate to
be 3e-6, and then train for additional 800 batch
iterations with 32 training pairs per batch.

2https://github.com/stanford-futuredata/ColBERT
3https://huggingface.co/transformers/model_doc/bert.html
4github.com/mingu600/compositional_code_learning.git
5https://github.com/facebookresearch/faiss
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