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Abstract

Automated simplification models aim to make
input texts more readable. Such methods have
the potential to make complex information
accessible to a wider audience, e.g., provid-
ing access to recent medical literature which
might otherwise be impenetrable for a lay
reader. However, such models risk introducing
errors into automatically simplified texts, for
instance by inserting statements unsupported
by the corresponding original text, or by omit-
ting key information. Providing more readable
but inaccurate versions of texts may in many
cases be worse than providing no such access
at all. The problem of factual accuracy (and
the lack thereof) has received heightened atten-
tion in the context of summarization models,
but the factuality of automatically simplified
texts has not been investigated. We introduce
a taxonomy of errors that we use to analyze
both references drawn from standard simplifi-
cation datasets and state-of-the-art model out-
puts. We find that errors often appear in both
that are not captured by existing evaluation
metrics, motivating a need for research into en-
suring the factual accuracy of automated sim-
plification models.

1 Introduction

Simplification methods aim to make texts more
readable without altering their meaning. This may
permit information accessibility to a wide range of
audiences, e.g., non-native speakers (Yano et al.,
1994), children (De Belder and Moens, 2010), as
well as individuals with aphasia (Carroll et al.,
1998) and dyslexia (Rello et al., 2013). Simpli-
fication may also help laypeople digest technical
information that would otherwise be impenetra-
ble (Damay et al., 2006; Devaraj et al., 2021).

Recent work has made substantial progress by
designing sequence-to-sequence neural models that
“translate” complex sentences into simplified ver-
sions (Xu et al., 2016; Alva-Manchego et al., 2020).

(1) [Original] There was no difference in operating time or
perioperative complication rates.
[Model simplified] However, there was not enough evi-
dence to determine if there was an important difference
in operative time or complication rates when compared
to conventional surgery.

(2) [Original] All studies were associated with methodolog-
ical limitations.
[Model simplified] All studies were of poor quality and
had limitations in the way they were conducted.

(3) [Original] On June 24 1979 (the 750th anniversary of
the village), Glinde received its town charter.
[Model simplified] On June 24 1979, the 750th anniver-
sary of the village was renamed.

(4) [Original] Others agreed with the federal court; they
started marrying people in the morning.
[Model simplified] Others agreed with the federal court;
they started trying in morning.

(5) [Original] In 2014, Mary Barra became CEO of General
Motors, making her the first female CEO of a major
automobile company.
[Model simplified] Also, just one woman leads a major
automobile company. Omitted main subject.

Table 1: Original texts from the Wiki, news, and medi-
cal domains with corresponding outputs from simplifi-
cation systems. Models introduce factual errors.

An important but mostly overlooked aspect of au-
tomated simplification—especially in the condi-
tional text generation regime—is whether outputs
are faithful to the inputs that they are simplifying.
Consider, for example, automatically simplifying
medical texts (Devaraj et al., 2021): Presenting in-
dividuals with readable medical information that
contains factual errors is probably worse than pro-
viding no such access at all.

Recent work has acknowledged factuality and
faithfulness as key issues to be addressed in
other conditional generation tasks like summariza-
tion (Kryscinski et al., 2020a; Maynez et al., 2020;
Pagnoni et al., 2021; Goyal and Durrett, 2021), yet
so far little research has thoroughly studied the
kinds of errors that simplification datasets and sys-
tem outputs exhibit. This work seeks to close this
research gap.
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Table 1 shows examples of generated outputs
from existing simplification systems, and these
clearly illustrate that factuality is an issue. We
conduct multi-dimensional analyses based on the
edit nature of simplification (Xu et al., 2015; Dong
et al., 2019) and define a small typology of (poten-
tial) factual errors in the context of simplification.
Inserting information can be useful to define jargon
and provide explanatory content, but introducing
irrelevant or erroneous content (“hallucinating”) is
bad (e.g., examples 1-2 in Table 1). Omitting in-
formation related to the main entity or event could
lead to a change in how the text is understood (e.g.,
example 5 in Table 1). Finally, making inappropri-
ate substitutions can result in inconsistencies (e.g.,
examples 3-4 in Table 1). Together these dimen-
sions represent the precision, recall, and accuracy
of information conveyed in simplified texts.

We collect human ratings of factuality for these
aspects on two widely used simplification cor-
pora: Wikilarge (Zhang and Lapata, 2017) and
Newsela (Xu et al., 2015). Automatically aligned
sentences from these two datasets are typically used
to train and evaluate supervised simplification sys-
tems. We find that errors occur frequently in the
validation and test sets of both datasets, although
they are more common in Newsela (Section 6).

We then evaluate outputs from several modern
simplification models (Zhang and Lapata, 2017;
Dong et al., 2019; Martin et al., 2020; Maddela
et al., 2021), as well as a fine-tuned T5 (Raffel
et al., 2020) model. Compared to RNN-based mod-
els, Transformer-based ones tend to have less se-
vere deletion and substitution errors; however, the
pre-trained T5 produced more hallucinations on
the more abstractive Newsela dataset. We find that
existing quality metrics for simplification such as
SARI (Xu et al., 2016) correlate poorly with fac-
tuality. Although deletion errors correlate with
existing semantic similarity measures, they fail to
capture insertion and substitution.

As an initial step towards automatic factuality as-
sessment in simplification, we train RoBERTa (Liu
et al., 2019)-based classification models using our
annotated data, and use synthetically generated
data to supplement training. We demonstrate that
this is a challenging task.

Our code and data can be found at
https://github.com/AshOlogn/Evaluating-
Factuality-in-Text-Simplification.

2 Related Work

Factuality (and the lack thereof) has been iden-
tified as critical in recent work in unsupservised
simplification (Laban et al., 2021) and medical sim-
plification (Devaraj et al., 2021). Guo et al. (2018)
incorporated textual entailment into their simpli-
fication task via an auxillary loss. They showed
that this improved simplifications with respect to
standard metrics and human assessments of out-
put fluency, adequacy, and simplicity, but they did
not explicitly evaluate the resultant factuality of
outputs, which is our focus.

Given the paucity of prior work investigating fac-
tuality in the context of automated simplification,
the most relevant thread of research to the present
effort is work on measuring (and sometimes im-
proving) the factuality in outputs from neural sum-
marization systems. Falke et al. (2019a) proposed
using textual entailment predictions as a means to
identify errors in generated summaries. Elsewhere,
Kryscinski et al. (2020a) used weak supervision—
heuristic transformations used to intentionally in-
troduce factual errors—to train a model to identify
inaccuracies in outputs.

Maynez et al. (2020) enlisted humans to evaluate
hallucinations (content found in a summary but not
in its corresponding input) in automatically gener-
ated outputs. They report that for models trained
on the XSUM dataset (Narayan et al., 2018), over
70% of summaries contain hallucinations. This
corroborates other recent work (Falke et al., 2019a;
Wallace et al., 2021), which has also found that
ROUGE is a weak gauge of factuality. Wang et al.
(2020a) proposed QAGS, which uses automated
question-answering to measure the consistency be-
tween reference and generated summaries. Else-
where, Xu et al. (2020) proposed evaluating textual
factuality independent of surface realization via Se-
mantic Role Labeling (SRL). Finally, Pagnoni et al.
(2021) introduced the FRANK (meta-)benchmark
for evaluating factuality metrics for summarization.
While FRANK is tailored towards summarization-
specific error categories including discourse, our
ontology broadly reflects the goal of simplification
(retaining content with simpler language) from the
perspective of information precision, recall, and
accuracy.

3 Information Errors in Simplification

Above we reviewed various recently proposed
frameworks and methods for assessing the factual
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0: There is no new information included in the 
simplified text, or the new information is trivial (e.g., a 
single insignificant word).

1: New information is introduced in the simplified text, 
but this information does not introduce a new main 
idea. Instead, this information merely supports the 
same main idea expressed in the complex sentence 
(e.g., elaboration, example).

2: A new main idea is introduced in the simplified text.

0: No information is removed from the 
complex sentence, or what is removed is very 
minor and insignificant to the main idea of the 
complex sentence.

1: Information is removed from the complex 
text, but its removal does not obfuscate the 
main idea of the complex text.

2: Information critical to the main idea of the 
complex text is removed.

0: There is no altered information in 
the simplified text at all.

1: There exists a piece of altered 
information in the simplified 
sentence, but the main idea is still 
intact.

2: The main idea of the complex 
text is altered in the simplified text.

-1: Either the 
complex or 
simplified 
sentence is 
malformed (i.e., 
is a sentence 
fragment or 
gibberish 
characters) and 
cannot be 
understood.
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Figure 1: The full annotation scheme: 0: no/trivial change; 1: nontrivial but preserves main idea; 2: does not
preserve main idea; -1: gibberish. The -1 label is applicable to all three categories.

accuracy of automatically-generated summaries.
We aim in this work to similarly codify content
errors in simplification.

Below we describe broad categories of errors1

we observed in simplification datasets and system
outputs, and then use these to design annotation
guidelines that formalize accuracy assessment (Sec-
tion 5). Our analysis revealed three broad cate-
gories, illustrated in Table 2:

(1) Information Insertion: This occurs when
information not mentioned in the complex sentence
is inserted into—or hallucinated in—its simpli-
fied counterpart. The insertion may be as small
as mentioning a proper noun not in the complex
sentence, or as large as introducing a new main
idea. This category is similar to extrinsic hallucina-
tion in the summarization literature (Maynez et al.,
2020; Goyal and Durrett, 2021).

(2) Information Deletion: This is when infor-
mation in the complex sentence is omitted from the
simplified sentence. A minor example of this is the
reverse of the insertion case above, where an entity
is mentioned by name in the complex sentence but
only by pronoun in the simplified sentence.

(3) Information Substitution: This is when in-
formation in the complex sentence is modified in
the simplified sentence such that it changes the
meaning. This category is broad, encompassing
both alterations to the simplified sentence that di-
rectly contradict information in the complex sen-
tence, and those that do not.

Because errors can co-occur, we adopt a multi-
dimensional labeling scheme that requires a differ-
ent label to be provided for each category. Each
category label specifies the severity of the error:
0–no/trivial change; 1–nontrivial but preserves
main idea; 2–doesn’t preserve main idea; -1–
gibberish, specified in Figure 1. Table 1 shows

1We adapt a graded labeling scheme based on content and
meaning preservation. For brevity, we use the word “error” as
a generic term to refer to all the phenomena captured by our
labeling scheme, even those that may be considered acceptable
in some simplification systems.

Category Original/Simplified Sentences

Insertion I went on a trip last week.
I went on a trip to Alaska last week.

Deletion Yesterday I bought a bagel.
I bought it.

Substitution The shelter houses 100 cats and 200 dogs.
The shelter houses 200 cats and 200 dogs.

Table 2: Illustrative examples of the three categories of
information errors. Not from a real dataset.

level-2 examples from system outputs for inser-
tion (examples 1-2), substitution (examples 3-4),
and deletion (example 5). Reference examples are
discussed in Section 6.

Interpretation as Precision and Recall In sim-
plification one attempts to rewrite a given complex
sentence to be simpler while preserving most of
the information that it contains. The categories
above can be interpreted as errors in information
precision (the fraction of content that also appears
in the complex sentence) and recall (the fraction of
content in the complex sentence preserved during
simplification). With this interpretation, a “false
positive” (affecting precision) occurs when the sim-
plified sentence contains information not present in
the source, i.e., introduces a “hallucination”. And
a “false negative” (hindering recall) is where the
simplified sentence omits key information in the
source.

4 Data and Models

We annotate data from the simplification datasets
themselves (we will call these reference examples),
as well as from model-generated text. Thus we
assess how the distribution of errors in the refer-
ences compares to that of errors in system outputs
and glean insights that might relate model archi-
tecture and training choices to the kinds of errors
produced.

Datasets. We annotated examples from the Wik-
ilarge and Newsela (Xu et al., 2015; Zhang and
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Lapata, 2017) datasets. These are commonly used
in the literature, and so results have been reported
on these corpora for a diverse collection of mod-
els. Wikilarge comprises 296K roughly-aligned
sentences pairs from English Wikipedia and Sim-
ple English Wikipedia. Newsela (Xu et al., 2015)
consists of 96K sentence pairs extracted from a
dataset of news stories rewritten at 4 reading levels
by professionals. To make analysis tractable in this
work, we examine the simplest level for Newsela.

We annotated 400 pairs of (complex, simplified)
sentences each from the validation and test sets for
Newsela. For Wikilarge, we annotated 400 pairs
from the validation set and 359 from the test set
(this constitutes the entire test set).

Simplification Models. We annotated outputs
generated by a collection of models on the same
validation and test examples from Wikilarge and
Newsela, respectively. We selected a set of models
intended to be representative of different architec-
tures and training methods.

More specifically, for RNN-based models we
considered Dress (Zhang and Lapata, 2017) and
EditNTS (Dong et al., 2019). Dress is an LSTM
model trained using REINFORCE (Williams,
1992) to minimize a reward function consisting
of meaning preservation, simplicity, and fluency
terms. EditNTS represents each sentence pair as
a sequence of edit operations and directly learns
these operations to perform simplification.

For Transformer-based architectures we evalu-
ated two previously proposed models: Access
(Martin et al., 2020) and ControlTS (Mad-
dela et al., 2021). Access trains a randomly-
initialized Transformer to generate simplifications
parametrized by control tokens influencing traits
like lexical complexity and length compression.
ControlTS is a hybrid method that generates
simplification candidates using grammatical rules
and then applies a BERT-based (Devlin et al., 2019)
paraphrasing model. In addition, we also fine-tuned
T5 (Raffel et al., 2020) for the simplification task,
detailed in Appendix A. T5 is a Transformer-based
model jointly pretrained both on unsupervised lan-
guage modeling objectives and a host of supervised
tasks including summarization and translation, all
framed as text-to-text problems.

5 Labeling with Mechanical Turk

Annotation Procedure We use Amazon Me-
chanical Turk to acquire labels for reference exam-

% Majority % Majority
Category Agreement Agr. (non-zero)

Insertion 96 77
Deletion 96 92
Substitution 95 74

Table 3: Percentage of examples with majority anno-
tator agreement for each category and percentage of
examples with a majority nonzero label in which the
majority of annotators agreed on the specific label.

ples from datasets, and for model-generated sim-
plifications. To ensure that only annotators who
understood our labeling scheme would be included,
we released a qualification task consisting of 10
sentence pairs with perfect agreement among two
of the authors, with detailed explanation of the la-
beling scheme, and required that annotators achieve
at least 75% accuracy on this set.

After worker qualification, examples were re-
leased to only qualified workers, and each exam-
ple was annotated by 3 workers. The final label
for each category (insertion, deletion, substitution)
was set to the majority label if one existed. If ev-
ery annotator provided a different label for a given
category, we removed this example for purposes of
this category. For example, if annotators provided
insertion labels of {1, 1, 2} and deletion labels of
{2, 1, 0} for a specific instance, then this would not
be assigned a deletion label, but would receive a
“final” insertion label of 1. Workers were compen-
sated $10.00 per hour on the annotation task.
Inter-annotator Agreement. We quantified the
degree of inter-annotator agreement using 3 met-
rics, each capturing a different dimension of label-
ing consistency for each category: First, we report
the percentage of examples that had a well-defined
majority label for each category. Most annotators
agreed on labels for the majority of examples (first
column in Table 3), meaning that very few annota-
tions had to be discarded for any category.

Because 0 was the most common label for all 3
categories, especially for the reference examples
from the datasets, we also recorded the percentage
of examples with majority non-zero annotations
that also have a well-defined majority label. For
example, the labels {0, 1, 2} are majority non-zero
but do not correspond to a well-defined majority
label, while {0, 1, 1} satisfies both conditions. Ta-
ble 3 (column 2) indicates that even among exam-
ples where most annotators agree that there is an
error, the majority agree on a specific label of 1, 2,
or -1.
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Category Dataset 0 1 2 -1

Insertion Wikilarge 91.1 6.3 0.3 2.3
Newsela 68.2 20.2 11.1 0.5

Deletion Wikilarge 76.2 18.0 3.5 2.3
Newsela 15.8 40.8 42.9 0.5

Substitution Wikilarge 90.1 6.7 0.9 2.3
Newsela 94.9 3.8 0.8 0.5

Table 4: Insertion, deletion, and substitution error dis-
tributions (%) in Wikilarge and Newsela test datasets.

We also measured Krippendorff’s alpha (Krip-
pendorff, 1970) with an ordinal level of measure-
ment (assigning the -1 label a value of 3 to indicate
maximum severity). Dataset annotations for in-
sertion enjoy moderate agreement (α = 0.425),
those for deletion imply substantial agreement
(α = 0.639), and those for substitution exhibit
fair agreement (α = 0.200) (Artstein and Poesio,
2008). The latter is possibly due to the clear major-
ity label of 0 among substitution labels.

The % majority agreement scores indicate that
although the annotation scheme involves a degree
of subjectivity in distinguishing between minor and
major errors, with proper screening crowdsource
workers can label text pairs with our annotation
scheme consistently enough so that a well-defined
label can be assigned to the vast majority of exam-
ples.

6 Factuality of Reference Examples

Quantitative Analysis Table 4 reports distribu-
tions of acquired labels for information insertion,
deletion, and substitution errors over the anno-
tated reference examples. Deletion errors are far
more common than insertion errors in both datasets,
though Wikilarge has fewer of both than Newsela.
This is unsurprising, as one of the motivations for
introducing the Newsela dataset was that it contains
shorter and less syntactically-complex simplifica-
tions. Reassuringly, there were very few substitu-
tion errors found in either dataset.

Table 5 shows a clear positive correlation be-
tween length reduction and the severity of deletion
errors present. As expected, sentences are short-
ened more substantially in Newsela than in Wiki-
large. One the other hand, while Table 5 indicates
that the examples with nonzero insertion labels col-
lectively see a greater increase in length than those
with no insertion errors, the mean length increase
for level 2 examples is smaller than that for level 1.

Simplifications in Newsela are more abstrac-
tive (Xu et al., 2015), i.e., simplified sentences

copy fewer phrases verbatim from inputs. This can
be quantified via normalized edit distance (Lev-
enshtein, 1965), which yielded a median of 0.46
for Newsela examples compared to the 0.38 for
Wikilarge (after noise filtering described in Ap-
pendix B). Table 5 indicates that on average the
more erroneous the insertion or deletion, the greater
the normalized edit distance between the original
and simplified sentences.

These results suggest that while reducing sen-
tence length and rewording can be beneficial (Klare,
1963), too much can negatively impact factuality.

Qualitative Analysis We also manually in-
spected insertion and deletion errors in both
datasets, revealing clear patterns of deletion errors.
Label 1 deletions by definition involve omissions
of nonsalient details that do not much affect the
meaning of the sentence, e.g.:

Original: Mayfield wrote and sang on a string of
message-oriented records, including “Keep on Push-
ing" and “People Get Ready."
Simplified: Mayfield wrote and sang on records that
had a message. (Newsela, deletion-1)

Label 2 deletions have two common manifesta-
tions across the datasets. The first involves deletion
of the main clause and subsequent promotion of a
secondary clause:

Original: “Until you know how the sausage is made,
you don’t know how expensive it is to make that
sausage,” said Josh Updike, creative director of Rethink
Leisure & Entertainment, which is working on several
projects in China and elsewhere in Asia.
Simplified: The company is working on several
projects in China and Asia. (Newsela, deletion-2)

Another common type of label 2 deletion involves
removing a key (though often small) phrase that
effectively reframes the entire sentence, e.g.:

Original: You may add a passage of up to five words as
a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version.
Simplified: You may add a passage of up to five words
as a Front-Cover Text and a passage of up to 25 words
as a Back-Cover Text to the end of the list of Cover
Texts. (Wikilarge, deletion-2)

By deleting in the Modified Version (emphasis
ours), the simplified sentence erroneously states
that one may add front- and back-cover passages
to the list of cover texts to the unmodified version,
which is implicitly forbidden in the original.

Because of the small number of insertion errors
on Wikilarge, we were unable to identify any mean-
ingful trends. However, we observed patterns in
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% length change Normalized edit distance
Level 0 Level 1 Level 2 Level 0 Level 1 Level 2

Insertion Wikilarge -5.0 (17.0) 22.4 (36.9) 7.1 (0.0) 0.20 (0.20) 0.55 (0.40) 0.58 (0.0)
Newsela -39.4 (23.8) -19.0 (36.9) -38.3 (29.0) 0.41 (0.17) 0.51 (0.21) 0.54 (0.04)

Deletion Wikilarge 2.8 (15.8) -22.3 (18.9) -35.9 (15.9) 0.19 (0.23) 0.35 (0.18) 0.39 (0.14)
Newsela 1.5 (27.6) -34.8 (23.1) -49.6 (22.8) 0.34 (0.31) 0.46 (0.13) 0.53 (0.10)

Table 5: % length change (left) and normalized edit distances (right) in simplified sentences in each insertion and
deletion error category (mean ± standard deviation).

Newsela for both levels 1 and 2 of insertions, per-
taining to quotative phrases (e.g., inserting “experts
said” to the beginning of a sentence even though
the original sentence did not mention an expert),
and temporal phrases, e.g.:

Original: They could not afford to pay their son’s
roughly $10,000 cost for classes at the University of
Texas at Austin.
Simplified: When he grew up, they could not afford to
pay $10,000 for him to go to the University of Texas at
Austin. (Newsela, insertion-1)

Another error trend pertains to a change in speci-
ficity:

Original: Mutanabbi Street has always been a hotbed
of dissent.
Simplified: Mutanabbi Street has always been a place
where protest marches are held. (Newsela, insertion-2)

We observed more contextually related errors
for Newsela due to its style and its simplification
process. Newsela documents were edited by pro-
fessionals who rewrote the entire original docu-
ment, and so information inserted or deleted could
move from or to adjacent sentences. This pre-
serves information for the whole document but
causes problems at the sentence level. Also, com-
pared to Wikilarge, Newsela’s news articles natu-
rally involve more complex discourse (Van Dijk,
2013). These factors lead to relatively underspeci-
fied sentences (Li et al., 2016) in the simplified text
when they are taken out-of-context during train-
ing and evaluation. This observation calls for the
inclusion of document context during simplifica-
tion (Sun et al., 2020), or performing decontextual-
ization (Choi et al., 2021) before simplifying.

7 Factuality of System Outputs

Table 6 shows the distributions of insertion, dele-
tion, and substitution errors annotated in system
outputs.2 It also shows the standard simplification
evaluation metric—SARI scores (Xu et al., 2016)—
for the annotated set. For the three models that

2DRESS only released their Wikilarge outputs;
ControlTS had different data splits for Newsela. We could
not successfully reproduce their results for Newsela.

reported both Wikilarge and Newsela outputs, the
relative frequency of deletion errors between the
two datasets appears to be preserved in model out-
puts, though for the RNN models errors are milder
on Newsela and amplified on Wikilarge.

A clear relationship between dataset and system
output distributions does not exist for insertion and
substitution errors. For Dress and EditNTS, this
is due to the fact that the minor differences in inser-
tion errors are dwarfed by the larger number of -1
(gibberish) labels assigned to Newsela outputs. In-
terestingly, outputs from the T5 model were rarely
labeled as -1 errors, so the difference in insertion
errors is more apparent. In the case of substitution,
the Newsela outputs for Dress and T5 models
show much higher rates of substitution errors than
the Wikilarge outputs, despite the opposite being
true for the datasets themselves. EditNTS does
not show the same pattern, but again, the high rate
of -1 errors subsumes every other trend. One pos-
sible reason for this phenomenon could be that
the higher abstractiveness of Newsela encourages
models to rewrite the input sentence to a greater
extent and destroy the original meaning in the pro-
cess. In general the models produce substitution
errors more frequently than are found in the dataset,
meaning that they are introduced by the models
themselves and not merely learned from the data.

Model comparisons There are a few differences
in error distributions between the RNN-based
and Transformer-based models, and between pre-
trained vs. non-pretrained Transformer models. All
three Transformer models have less severe dele-
tion errors than the RNN models on Wikilarge, and
in addition T5 has lower deletion error rates on
Newsela. Perhaps the most striking trend is that
the Transformer models have far lower -1 gibber-
ish errors than RNN-based models, even Access,
which is not pre-trained on the language model-
ing task. T5—which has been pre-trained on large
amounts of data—produced more insertion errors,
while Access produced more substitution errors.

7336



Insertion Deletion Substitution

Model Dataset SARI 0 1 2 -1 0 1 2 -1 0 1 2 -1

Dress Wikilarge 34.9 91.9 0.8 0.8 6.5 42.6 24.6 26.2 6.6 84.4 4.1 4.9 6.6
Newsela 34.5 90.5 0.0 0.0 9.5 29.9 29.2 32.1 9.7 67.4 6.5 15.9 10.1

EditNTS Wikilarge 40.4 94.3 4.9 0.8 0.0 55.0 24.2 20.8 0.0 88.5 4.1 7.4 0.0
Newsela 36.3 69.4 0.7 2.7 27.2 9.5 19.0 44.2 27.2 64.4 2.1 6.2 27.4

T5 Wikilarge 34.9 96.8 1.6 0.8 0.8 81.6 14.4 3.2 0.8 97.6 1.6 0.0 0.8
Newsela 38.6 81.7 9.6 7.0 1.7 27.7 43.7 26.9 1.7 92.4 5.9 0.0 1.7

Access Wikilarge 49.7 89.1 8.2 0.9 1.8 57.5 34.9 5.7 1.9 71.1 18.6 8.2 2.1
ControlTS Wikilarge 42.3 88.8 7.8 1.7 1.7 47.8 39.1 11.3 1.7 81.5 15.1 1.7 1.7

Table 6: SARI and error distributions in system outputs manually evaluated.

Quantitative Analysis We explore the relation-
ships between the factuality annotations of system
outputs and both length reduction and normalized
edit distance. We briefly describe our findings here
and defer numerical details to Appendix C.

For every model except Access, there is a clear
positive correlation between the severity of dele-
tion errors and the degree of length reduction be-
tween the complex input and generated simplifica-
tion. This is consistent with the trend observed for
the datasets. No consistent relationships between
length change and levels of insertion and substi-
tution errors are exhibited by the system outputs.
As in the case of length reduction, mean edit dis-
tances increase with the severity of deletion error
with no consistent trends found for insertion and
substitution labels.

Qualitative analysis We also manually inspect
model outputs, detailed in Appendix D, and sum-
marize main observations here. As in the data,
models also produce deletions ranging from sin-
gle words and short phrases to clauses. For the
two RNN models, DRESS and EditNTS, level 1
errors primarily consist of shorter deletion errors,
which include pronoun errors and modifiers. Level
2 errors are almost always longer deletions, yet
we did not observe the promotion of a subordinate
clause to a main one as in the references, suggest-
ing that models tend to follow syntactic rules more
strictly. For T5, we additionally observe level 2
errors in which the model deletes a semantically
critical word. We observed more error variability
in the other two transformer models, Access and
ControlTS. Models introduced varying numbers
of insertion and substitution errors, but in inspec-
tion we did not observe any clear properties of
these as a function of model type.

Model Dataset I D S

Dress Wikilarge 0.038 −0.041 0.156
Newsela 0.105 0.267 0.258

EditNTS Wikilarge 0.011 −0.275 0.034
Newsela −0.144 −0.103 −0.183

T5 Wikilarge −0.050 0.134 0.027
Newsela −0.020 −0.124 0.078

Access Wikilarge 0.035 −0.026 0.057
ControlTS Wikilarge 0.002 −0.054 0.262

Table 7: Spearman’s rank correlation coefficients for
SARI vs. each information error category (Insertion,
Deletion, Substitution).

8 Comparison with Existing Metrics

Relationship to SARI. SARI is the most popu-
lar metric used to evaluate text simplification mod-
els (Xu et al., 2016). For each model, we report
Spearman’s rank correlation coefficient (Spearman,
1904) between SARI and each error category. As
Table 7 reports, there is only a weak correlation
between SARI and the prevalence of information
errors, and both the direction and magnitude of
the correlation are highly dependent on model and
dataset. This lack of correlation is unsurprising
since SARI uses lexical overlap between the gen-
erated text with the reference text pair to judge
simplification quality. This parallels the case with
ROUGE in summarization (Falke et al., 2019a;
Maynez et al., 2020; Wallace et al., 2021).

Measures of Semantic Similarity. Many exist-
ing text simplification systems attempt to address
the problem of meaning preservation by using a
semantic similarity score either directly in their
loss/reward function or in a candidate ranking
step (Zhang and Lapata, 2017; Kriz et al., 2019;
Zhao et al., 2020; Maddela et al., 2021). Addi-
tionally, some of these metrics have been included
in recent factuality evaluation platforms in sum-
marization (Pagnoni et al., 2021). We explore the
extent to which existing similarity methods detect
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Similarity Measure I D S

Jaccard Similarity −0.385 −0.695 −0.101
Cosine (GloVe) −0.315 −0.620 −0.066
Cosine (ELMo) −0.325 −0.582 −0.065
Cosine (Sentence BERT) −0.375 −0.724 −0.182
BERTScore −0.400 −0.748 −0.125

Table 8: Spearman’s rank correlation coefficients for se-
mantic similarity measures vs. each information error
category (Insertion, Deletion, Substitution).

information errors as outlined in our annotation
scheme. We consider: (1) Jaccard similarity; (2)
cosine similarity between averaged GloVe (Pen-
nington et al., 2014) or ELMo (Peters et al., 2018)
embeddings of the original and simplified sen-
tences; (3) cosine similarity between Sentence-
BERT (Reimers and Gurevych, 2019) embeddings;
and (4) BERTScore (Zhang et al., 2019).

As Table 8 indicates, the semantic similarity
measures explored capture deletion errors quite
well, while being a moderate indicator of insertion
errors and a very weak one for substitution errors.
Since deletion and substitution errors are common
in most of the models we evaluated, the results
indicate that better methods are needed to detect
unacceptable deletions and intrinsic hallucinations
in simplification outputs.

Measures of Factuality. As in text simplifica-
tion, the most common evaluation metrics used
in text summarization like ROUGE do not ade-
quately account for the factuality of model gener-
ations with respect to the input texts (Kryscinski
et al., 2019). For this reason, recent works have
proposed model-based metrics to automatically as-
sess factuality (Falke et al., 2019b; Durmus et al.,
2020; Wang et al., 2020b; Kryscinski et al., 2020b;
Goyal and Durrett, 2020). We consider the follow-
ing systems: (1) FACT-CC, which is a BERT-based
model trained on a synthetic dataset to classify text
pairs as being factually inconsistent or not (Kryscin-
ski et al., 2020b), and (2) DAE, which is another
BERT-based model that classifies each dependency
arc in the model output as entailing the source text
or not (Goyal and Durrett, 2020). More specifically,
for FACT-CC we use the model’s probability that
each simplification example is inconsistent. For
DAE we use the average of the lowest k probabil-
ities that a dependency arc in the target sentence
does not entail the source for k = 1, 3, 5.

As Table 9 indicates, both FACT-CC and DAE’s
outputs correlate less with insertion and deletion
annotations than even surface-level measures of

Factuality Measure I D S
FACT-CC 0.311 0.418 0.165
DAE, k = 1 0.109 0.217 0.277
DAE, k = 3 0.110 0.213 0.271
DAE, k = 5 0.115 0.217 0.271

Table 9: Spearman’s rank correlation coefficients for
factuality measures vs. each information error category
(Insertion, Deletion, Substitution).

semantic similarity like Jaccard similarity, though
DAE scores correlate better with substitution errors
than do FACT-CC and all evaluated measures of
semantic similarity.

9 Automatic Factuality Assessment

Since manual annotation is costly and time-
consuming, as a first step towards large-scale eval-
uation, we present an initial attempt at automating
factuality assessment by training a model on human
annotations. To supplement training, we explore
methods of generating synthetic data to improve
model performance.

We framed automatic factuality assessment as a
classification task in which a separate classifier is
trained for each category (Insertion, Deletion, and
Substitution), for each of the levels 0, 1, and 2. We
treat the annotations used in our previous analyses
as the test set and have additional data annotated to
function as the training set for this task. We there-
fore collected a total of 1004 additional examples
annotated across Wikilarge, Newsela, Access out-
puts on Wikilarge, and T5 outputs on Newsela and
Wikilarge. We fine-tuned RoBERTa (Liu et al.,
2019) with a classification head.

Synthetic Data Generation As Table 10 indi-
cates, the validation dataset is both small and highly
imbalanced, with very few level 2 insertion and
substitution errors. To alleviate this issue, we ex-
perimented with a few methods of generating syn-
thetic insertion and substitution errors on which
to pretrain the model. We accomplished this by
modifying each of the complex sentences in the
validation set. To generate insertion errors, we re-
place names with pronouns and remove phrases
from the source text to create target texts (informa-
tion deletions) and then swap the source and target
to produce information insertions. To generate sub-
stitutions, we change numbers in the source text,
negate statements, and used BERT masking to per-
turb information in the sentence. We generated 10K
examples in total; Appendix E.1 describes these
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Level 0 Level 1 Level 2
Category # F1 # F1 # F1

Insertion 823 87.9 104 36.6 40 30.4
Deletion 413 84.2 356 57.1 204 52.1

Substitution 810 82.7 110 19.8 33 9.5

Table 10: Annotated label counts in the training set, and
F1 on the test set.

methods in greater detail.

Training and Evaluation The model is evalu-
ated using the F1-scores with respect to each class
(0,1,2), and when selecting checkpoints during
training, the average of the label 1 and 2 F1 scores
is used. The deletion model was trained directly
on its training data, whereas the insertion and sub-
stitution models were initially pretrained on the
synthetic datasets. Training details are provided in
Appendix E.3.

Results Table 10 shows the test F1 scores
achieved by the three classifiers. As expected,
the deletion classifier achieved the best 1 and 2
F1 scores, likely due to the fact that the training
dataset had plenty of level 1 and 2 deletion errors.
Although the insertion and substitution datasets are
similarly skewed, the insertion classifier signifi-
cantly outperforms the substitution one. We found
that using synthetic data is useful: without it, F1s
for levels 1 and/or 2 are near 0 for insertion and sub-
stitution. Even with data augmentation, however,
detecting errors is a challenging task.

10 Conclusion

We have presented an evaluation of the factual-
ity of automated simplification corpora and model
outputs, using an error typology with varied de-
grees of severity. We found that errors appear fre-
quently in both references and generated outputs.
In the datasets, deletion errors are quite frequent,
with Newsela containing more than Wikilarge. The
system outputs indicate that the models also tend
to delete information, which is likely a behavior
learned from the training data. Model outputs con-
tain more substitution errors than the datasets, so
that behavior is probably a model bias rather than
something picked up from the data.

Although we examined the two commonly used
sentence-level datasets, factuality errors do extend
to other domains and larger units of text. Our ini-
tial analysis of factuality in medical text simplifica-
tion (Devaraj et al., 2021) found errors of all three
types, an indication that factual simplification is an

open problem in such high-stake areas. The details
of our analysis are in Appendix F.

We also found that factuality errors are not well
captured by existing metrics used in simplification
such as SARI (Xu et al., 2016). While semantic
similarity metrics correlate with deletion errors,
they poorly correlate with insertion or substitution.
We further present an initial model for automatic
factuality assessment, which we demonstrate is a
challenging task.
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A Training details for the T5
simplification model

We used the T5 base architecture, which contains
around 220M parameters. For both Newsela and
Wikilarge, we trained the T5 model for 5 epochs
with a batch size of 6 and constant learning rate of
3e-4. We prefixed each input text with the summa-
rization prefix summarize:, since that was the
task closest to simplification that the T5 model was
pretrained on. Newsela simplifications were gener-
ated using nucleus sampling with p = 0.9 (Holtz-
man et al., 2020), and Wikilarge simplifications
were generated using beam search with 6 beams.

B Noise filtering on Wikilarge

To filter out noisy alignments in the Wikilarge
test set (when comparing the normalized edit dis-
tances between complex and simplified sentences
in Newsela and Wikilarge), we employed the same
method as used by Xu et al. (2015) to pro-
duce sentence-level alignments from the Newsela
dataset, that is, we only keep sentence pairs if they
have a Jaccard similarity of at least 0.4 if the simpli-
fication is one sentence long and 0.2 if it is longer
than one sentence.

C Numerical Details for System Output
Results

Table 11 shows the relationship between mean %
length reduction from input text to model output
and the level of factuality errors present in the ex-
ample. Table 12 likewise shows the relationship
between normalized edit distance between inputs
and model outputs and factuality annotations.

D Qualitative Analysis of System
Outputs

We also manually examined system outputs for
error trends. Despite output variability for every
model, two primary trends were observed in dele-
tion errors across the models for both Wikilarge
and, where available, Newsela. No trends could be
drawn for insertion and substitution errors because
of their infrequency. The first type of deletion error,
hence referred to as a “short”, is the deletion or
change of a single word or short phrase, usually a
modifier (such as an adjective, adverb, or serialized
noun), but occasionally a noun, noun phrase, or
verb. For example:

Original: The equilibrium price for a certain type of
labor is the wage.
Simplified: The price of a certain type of labor is the
wage. (ControlTS, Wikilarge, deletion-1)

When the word is changed rather than deleted, the
replacing word is often less descriptive but can also
be lateral. Shorts include pronoun errors, where
a noun phrase is replaced with a pronoun. Note
also that multiple, independent shorts may occur
in an output and still receive a level 1 for deletion.
The second type of error, hence referred to as a
“long”, is the deletion of a phrase, most commonly
a prepositional phrase, or a subordinate or coordi-
nate clause. For example:

Original: For Rowling, this scene is important because
it shows Harry’s bravery, and by retrieving Cedric’s
corpse, he demonstrates selflessness and compassion.
Simplified: For Rowling, this scene is important be-
cause it shows Harry’s bravery. (Dress, Wikilarge,
deletion-2)

Importantly, longs concerning clauses differ
from the clause promotion error found in the
datasets in that longs delete a subordinate or coordi-
nate clause of the original while clause promotion
errors delete the main clause of the original. Multi-
ple, independent longs rarely occur in one output;
that is, if multiple secondary clauses are deleted,
they are usually nested (likely because a sentence
where this could happen would have a very com-
plex structure, at least in English.)
Access and ControlTS had notable variabil-

ity in the errors. Despite this, shorts were the most
common error for label 1, with no notable pres-
ence of longs. These shorts were often not pronoun
errors. Additionally, no trends could be noted for la-
bel 2 errors in these models. By contrast, nearly all
of Dress’s errors fit into these two trends. Label
1 output errors primarily consisted of shorts, espe-
cially pronoun errors, though longs also occurred.
Label 2 output errors were almost entirely longs.
EditNTS and T5 errors closely follow the trends
found in Dress, though T5 notably had several label
2 errors that were shorts, deleting a semantically-
critical word.

E Automatic Factuality Assessment

Here we describe the details of generating synthetic
data and training the three annotation classifiers.

E.1 Synthetic Data Generation
Name Insertion. Each name of a person in the
source text is replaced one at a time with a pronoun
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Insertion Deletion Substitution
Model Dataset 0 1 2 0 1 2 0 1 2
Dress Wikilarge -20.7 6.3 -26.3 0.11 -26.8 -47.4 -21.0 -10.5 -15.1

Newsela -29.4 — — -1.4 -35.4 -51.0 -31.1 -21.8 -27.8
EditNTS Wikilarge -16.4 40.8 72.7 3.4 -25.0 -42.4 -13.0 -3.1 -15.6

Newsela -41.6 33.3 -38.9 0.8 -39.4 -51.9 -40.2 -57.9 -32.7
T5 Wikilarge -4.1 -4.6 -21.4 -0.04 -22.2 -30.5 -4.5 0.0 —

Newsela -25.1 -8.6 -25.4 1.5 -27.5 -46.3 -26.5 1.3 —
Access Wikilarge -2.2 4.4 0.0 0.7 -5.2 1.7 -1.8 -0.6 -1.2
ControlTS Wikilarge -10.6 -5.9 -23.5 -1.5 -16.2 -28.2 -11.1 -5.5 -22.3

Table 11: % length change in system outputs (mean).

Insertion Deletion Substitution
Model Dataset 0 1 2 0 1 2 0 1 2
Dress Wikilarge 0.23 0.06 0.42 0.03 0.32 0.49 0.23 0.22 0.17

Newsela 0.29 — — 0.07 0.38 0.48 0.28 0.30 0.33
EditNTS Wikilarge 0.18 0.46 — 0.10 0.25 0.43 0.20 0.17 0.18

Newsela 0.36 0.33 — 0.10 0.37 0.46 0.37 0.42 0.25
T5 Wikilarge 0.08 0.53 — 0.04 0.30 0.56 0.09 0.09 —

Newsela 0.30 0.36 0.56 0.13 0.39 0.13 0.33 0.13 —
Access Wikilarge 0.20 0.31 0.14 0.17 0.23 0.42 0.22 0.20 0.21
ControlTS Wikilarge 0.24 0.43 0.52 0.12 0.38 0.50 0.27 0.24 0.52

Table 12: Normalized edit distances in system outputs (mean).

to create a target text. Then the source and target
texts are swapped to simulate the insertion of a
name in place of a pronoun. This text pair is labeled
with a level 1 insertion.
Phrase Insertion. Each phrase in the source text
is deleted one at a time to create a shorter target
text, and the source and target texts are swapped
to simulate the insertion of a phrase. The insertion
is labeled as a level 1 if the BERTScore of the
texts is between 0.6 and 0.8, and it is labeled as
2 if it is between 0.2 and 0.4. If the score is not
in either interval, the example is discarded. These
thresholds were determined by manual inspection
of the distribution of scores computed in Section 8.
Number Alteration. We replace each number
found in the source sentence one at a time with
a random number of the same order of magnitude
(e.g., 3 → 7, 99 → 74). This modification is
labeled as a level 1 substitution.
Statement Negation. Each auxiliary verb in the
source text is negated one at a time to generate
target texts. This modification is labeled as a level
1 substitution.
BERT Masking. To generate level 1 substitutions,
we randomly mask 2 tokens in the source text, pass
the masked text through a BERT model, and fill
the masked tokens with the third highest probabil-
ity token in the output logits. To generate level 2
substitutions, we instead mask every fifth token in
the source text and fill them with the fifth highest

Category Level 0 Level 1 Level 2 Total

Insertion 823 1167 1167 3157
Substitution 810 4572 2008 7390

Table 13: Sizes and label distributions of synthetic
datasets.

probability token indicated by the logits.
Once synthetic examples were generated, all the

label 0 examples from the original training dataset
were added. In the insertion synthetic dataset, level
1 labels significantly outnumbered level 2 labels,
so only a random sample of them was included in
the final dataset. Table 13 shows the sizes and label
distributions of the synthetic datasets. Some class
imbalance was tolerated here since the number of
examples for all levels was much larger than in
the original training set and minority classes were
oversampled during training.

E.2 Model

We fine-tune the pretrained base RoBERTa model
architecture with a classification head. The model
contains 12 hidden layers, a hidden size of 768, and
12 attention heads.

E.3 Training Details

The insertion and substitution models were pre-
trained on an 80-20 train/dev split of their synthetic
datasets for 10 epochs with a batch size of 64 and
learning rate of 1e-4 and evaluated on the validation
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split every 100 steps.
The best checkpoint was selected and then

trained on an 80-20 split of its original dataset for
50 epochs with the same batch size and learning
rate and evaluated every 10 steps. The best model
from this round was finally fine-tuned on the entire
training dataset for 1 epoch with the same batch
size but a learning rate of 3e-5 before being evalu-
ated on the test set.

The deletion classifier was trained similarly, ex-
cept that the pretraining step was omitted.

In every stage of training, minority classes were
oversampled in the training split until they matched
the frequency of the most populous class.

F Case Study: Medical Texts

We present an initial analysis of factuality in the
context of medical text simplification (Devaraj
et al., 2021), a case where information accuracy
is paramount. This task presents unique chal-
lenges given the complex, jargon-laden texts to
be simplified. We evaluate a model proposed in
recent work for medical text simplification (De-
varaj et al., 2021). This was trained by fine-tuning
BART (Lewis et al., 2020) on aligned paragraphs
of technical abstracts—plain English summaries
from the Cochrane library, a database of system-
atic reviews of clinical trials. We annotated 10
randomly selected outputs from this model with
respect to the original paragraphs.3 Because the
original texts are difficult to understand, we en-
list a trained annotator (a senior in Linguistics and
co-author of this work) to perform this evaluation.

Table 14 reports the number of error types ob-
served across paragraphs. The error rate here is
disconcerting: Out of the 10 paragraphs evaluated,
we found 3 with at least one level-2 error, and 5
with more than one error. We provide examples
or errors below. These findings further stresses
the critical importance of factuality evaluation and
improvement in simplification systems.

Insertion
Original: [...] All studies were associated with method-
ological limitations. [...]
Simplified: [...] All studies were of poor quality and
had limitations in the way they were conducted. [...]

Substitution
Original: [...] There was no difference in operating
time or perioperative complication rates. [...]

3Note that while so far we have applied our annotation
framework with respect to sentences, it is not tied to any
specific linguistic unit.

Category Level 0 Level 1 Level 2

Insertion 5 4 1
Deletion 0 8 2

Substitution 8 1 1

Table 14: Error judgments of the 10 example outputs
from Devaraj et al. (2021).

Simplified: [...] However, there was not enough evi-
dence to determine if there was an important difference
in operative time or complication rates when compared
to conventional surgery. [...]

Deletion
Original: Two trials with a total population of 1300
amyotrophic lateral sclerosis patients who were random-
ized to treatment with subcutaneous injections of re-
combinant human ciliary neurotrophic factor or placebo
were examined in this review. [...]
Simplified: In this review, we found two randomised-
controlled trials with a total population of 1300 patients
who were randomized to treatment with subcutaneous
injections of recombinant human ciliary neurotrophic
factor or placebo. [...]
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