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Abstract

Recent studies have shown that multilingual
pretrained language models can be effectively
improved with cross-lingual alignment infor-
mation from Wikipedia entities. However, ex-
isting methods only exploit entity information
in pretraining and do not explicitly use enti-
ties in downstream tasks. In this study, we
explore the effectiveness of leveraging entity
representations for downstream cross-lingual
tasks. We train a multilingual language model
with 24 languages with entity representations
and show the model consistently outperforms
word-based pretrained models in various cross-
lingual transfer tasks. We also analyze the
model and the key insight is that incorporat-
ing entity representations into the input allows
us to extract more language-agnostic features.
We also evaluate the model with a multilingual
cloze prompt task with the mLAMA dataset.
We show that entity-based prompt elicits cor-
rect factual knowledge more likely than using
only word representations. Our source code
and pretrained models are available at https:
//github.com/studio-ousia/luke.

1 Introduction

Pretrained language models have become crucial
for achieving state-of-the-art performance in mod-
ern natural language processing. In particular, mul-
tilingual language models (Conneau and Lample,
2019; Conneau et al., 2020a; Doddapaneni et al.,
2021) have attracted considerable attention particu-
larly due to their utility in cross-lingual transfer.

In zero-shot cross-lingual transfer, a pretrained
encoder is fine-tuned in a single resource-rich lan-
guage (typically English), and then evaluated on
other languages never seen during fine-tuning. A
key to solving cross-lingual transfer tasks is to ob-
tain representations that generalize well across lan-
guages. Several studies aim to improve multilin-
gual models with cross-lingual supervision such as

∗ Work done as an intern at Studio Ousia.

bilingual word dictionaries (Conneau et al., 2020b)
or parallel sentences (Conneau and Lample, 2019).

Another source of such information is the cross-
lingual mappings of Wikipedia entities (articles).
Wikipedia entities are aligned across languages via
inter-language links and the text contains numer-
ous entity annotations (hyperlinks). With these
data, models can learn cross-lingual correspon-
dence such as the words Tokyo (English) and 東
京 (Japanese) refers to the same entity. Wikipedia
entity annotations have been shown to provide rich
cross-lingual alignment information to improve
multilingual language models (Calixto et al., 2021;
Jiang et al., 2022). However, previous studies only
incorporate entity information through an auxiliary
loss function during pretraining, and the models do
not explicitly have entity representations used for
downstream tasks.

In this study, we investigate the effectiveness
of entity representations in multilingual language
models. Entity representations are known to en-
hance language models in mono-lingual settings
(Zhang et al., 2019; Peters et al., 2019; Wang et al.,
2021; Xiong et al., 2020; Yamada et al., 2020)
presumably by introducing real-world knowledge.
We show that using entity representations facili-
tates cross-lingual transfer by providing language-
independent features. To this end, we present a
multilingual extension of LUKE (Yamada et al.,
2020). The model is trained with the multilingual
masked language modeling (MLM) task as well
as the masked entity prediction (MEP) task with
Wikipedia entity embeddings.

We investigate two ways of using the entity rep-
resentations in cross-lingual transfer tasks: (1) per-
form entity linking for the input text, and append
the detected entity tokens to the input sequence.
The entity tokens are expected to provide language-
independent features to the model. We evaluate
this approach with cross-lingual question answer-
ing (QA) datasets: XQuAD (Artetxe et al., 2020)
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and MLQA (Lewis et al., 2020); (2) use the entity
[MASK] token from the MEP task as a language-
independent feature extractor. In the MEP task,
word tokens in a mention span are associated with
an entity [MASK] token, the contextualized rep-
resentation of which is used to train the model to
predict its original identity. Here, we apply similar
input formulations to tasks involving mention-span
classification, relation extraction (RE) and named
entity recognition (NER): the attribute of a mention
or a pair of mentions is predicted using their con-
textualized entity [MASK] feature. We evaluate
this approach with the RELX (Köksal and Özgür,
2020) and CoNLL NER (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003) datasets.

The experimental results show that these entity-
based approaches consistently outperform word-
based baselines. Our analysis reveals that entity
representations provide more language-agnostic
features to solve the downstream tasks.

We also explore solving a multilingual zero-shot
cloze prompt task (Liu et al., 2021) with the entity
[MASK] token. Recent studies have shown that we
can address various downstream tasks by querying
a language model for blanks in prompts (Petroni
et al., 2019; Cui et al., 2021). Typically, the answer
tokens are predicted from the model’s word-piece
vocabulary but here we incorporate the prediction
from the entity vocabulary queried by the entity
[MASK] token. We evaluate our approach with the
mLAMA dataset (Kassner et al., 2021) in various
languages and show that using the entity [MASK]
token reduces language bias and elicits correct fac-
tual knowledge more likely than using only the
word [MASK] token.

2 Multilingual Language Models with
Entity Representations

2.1 Model: mulitlingual LUKE

To evaluate the effectiveness of entity representa-
tions for cross-lingual downstream tasks, we in-
troduce a new multilingual language model based
on a bidirectional transformer encoder: Multilin-
gual LUKE (mLUKE), a multilingual extension of
LUKE (Yamada et al., 2020). The model is trained
with the masked language modeling (MLM) task
(Vaswani et al., 2017) as well as the masked entity
prediction (MEP) task. In MEP, some of the input
entity tokens are randomly masked with the spe-
cial entity [MASK] token, and the model is trained
to predict the original entities. Note that the entity

[MASK] token is different from the word [MASK]
token for MLM.

The model takes as input a tokenized text
(w1, w2, ..., wm) and the entities appearing in the
text (e1, e2, ..., en), and compute the contextualized
representation for each token (hw1 ,hw2 , ...,hwm

and he1 ,he2 , ...,hen). The word and entity tokens
equally undergo self-attention computation (i.e., no
entity-aware self-attention in Yamada et al. (2020))
after embedding layers.

The word and entity embeddings are computed
as the summation of the following three embed-
dings: token embeddings, type embeddings, and
position embeddings (Devlin et al., 2019). The
entity tokens are associated with the word tokens
through position embeddings: the position of an
entity token is defined as the positions of its cor-
responding word tokens, and the entity position
embeddings are summed over the positions.
Model Configuration. The model configurations
of mLUKE follow the base and large configura-
tions of XLM-RoBERTa (Conneau et al., 2020a), a
variant of BERT (Devlin et al., 2019) trained with
CommonCrawl data from 100 languages. Before
pretraining, the parameters in common (e.g., the
weights of the transformer encoder and the word
embeddings) are initialized using the checkpoint
from the Transformers library.1

The size of the entity embeddings is set to 256
and they are projected to the size of the word em-
beddings before being fed into the encoder.

2.2 Training Corpus: Wikipedia
We use Wikipedia dumps in 24 languages (Ap-
pendix A) as the training data. These languages
are selected to cover reasonable numbers of lan-
guages that appear in downstream cross-lingual
datasets. We generate input sequences by splitting
the content of each page into sequences of sen-
tences comprising ≤ 512 words with their entity
annotations (i.e., hyperlinks). During training, data
are sampled from each language with ni items with
the following multinomial distribution:

pi =
nαi∑N
k=1 n

α
k

, (1)

where α is a smoothing parameter and set to 0.7
following multilingual BERT.2

1https://huggingface.co/transformers/
2https://github.com/google-research/

bert/blob/master/multilingual.md
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Figure 1: How to use entity representations in downstream tasks. The input entity embeddings are associated with
their mentions (indicated by dotted lines) via positional embeddings.

Entity Vocabulary. Entities used in mLUKE are
defined as Wikipedia articles. The articles from dif-
ferent languages are aligned through inter-language
links3 and the aligned articles are treated as a sin-
gle entity. We include in the vocabulary the most
frequent 1.2M entities in terms of the number of hy-
perlinks that appear across at least three languages
to facilitate cross-lingual learning.
Optimization. We optimize the models with
a batch size of 2048 for 1M steps in total us-
ing AdamW (Loshchilov and Hutter, 2019) with
warmup and linear decay of the learning rate. To
stabilize training, we perform pretraining in two
stages: (1) in the first 500K steps, we update only
those parameters that are randomly initialized (e.g.,
entity embeddings); (2) we update all parameters
in the remaining 500K steps. The learning rate
scheduler is reset at each training stage. For further
details on hyperparameters, see Appendix A.

2.3 Baseline Models
We compare the primary model that we investi-
gate, multilingual LUKE used with entity repre-
sentations (mLUKE-E), against several baselines
pretrained models and an ablation model based on
word representations:
mBERT (Devlin et al., 2019) is one of the earliest
multilingual language models. We provide these
results as a reference.
XLM-R (Conneau et al., 2020a) is the model that
mLUKE is built on. This result indicates how our
additional pretraining step and entity representa-

3https://en.wikipedia.org/wiki/Help:
Interlanguage_links. We build an inter-language
database from the wikidatawiki dump from November 30,
2020.

tion impact the performance. Since earlier studies
(Liu et al., 2019; Lan et al., 2020) indicated longer
pretraining would simply improve performance,
we train another model based on XLM-Rbase with
extra MLM pretraining following the same config-
uration of mLUKE.
mLUKE-W is an ablation model of mLUKE-E.
This model discards the entity embeddings learned
during pretraining and only takes word tokens as
input as with the other baseline models. The results
from this model indicate the effect of MEP only
as an auxiliary task in pretraining, and the com-
parison with this model will highlight the effect of
using entity representations for downstream tasks
in mLUKE-E.

The above models are fine-tuned with the same
hyperparameter search space and computational
budget as described in Appendix B.

We also present the results of XLM-K (Jiang
et al., 2022) for ease of reference. XLM-K is based
on XLM-Rbase and trained with entity information
from Wikipedia but does not use entity representa-
tions in downstream tasks. Notice that their results
are not strictly comparable to ours, because the
pretraining and fine-tuning settings are different.

3 Adding Entities as Language-Agnostic
Features in QA

We evaluate the approach of adding entity embed-
dings to the input of mLUKE-E with cross-lingual
extractive QA tasks. The task is, given a question
and a context passage, to extract the answer span
from the context. The entity embeddings provide
language-agnostic features and thus should facili-
tate cross-lingual transfer learning.

https://en.wikipedia.org/wiki/Help:Interlanguage_links
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XQuAD en es de el ru tr ar vi th zh hi avg.

mBERT 84.5 76.1 73.1 59.0 70.2 53.2 62.1 68.5 40.7 58.3 57.0 63.9
XLM-Rbase 84.0 76.5 76.4 73.9 74.4 67.8 68.1 74.2 66.8 61.5 68.7 72.0
+ extra training 86.1 76.9 76.5 73.7 74.7 66.3 68.2 74.5 67.7 64.7 66.6 72.4
mLUKE-Wbase 85.7 78.0 77.4 74.7 75.7 68.3 71.7 75.9 67.1 65.1 69.9 73.6
mLUKE-Ebase 86.3 78.9 78.9 73.9 76.0 68.8 71.4 76.4 67.5 65.9 72.2 74.2

XLM-Rlarge 88.5 82.4 82.0 81.4 81.2 75.5 75.9 80.7 72.3 67.6 77.2 78.6
mLUKE-Wlarge 89.0 83.1 82.4 81.3 81.3 75.3 77.9 81.2 75.1 71.5 77.3 79.6
mLUKE-Elarge 88.6 83.0 81.7 81.4 80.8 75.8 77.7 81.9 75.4 71.9 77.5 79.6

MLQA en es de ar hi vi zh avg. G-XLT avg.

mBERT 79.1 65.9 58.6 48.6 44.8 58.5 58.1 59.1 40.9
XLM-Rbase 79.7 67.7 62.2 55.8 59.9 65.3 62.5 64.7 33.4
+ extra training 81.3 69.8 65.0 54.8 59.3 65.6 64.2 65.7 50.2
mLUKE-Wbase 81.3 69.7 65.4 60.4 63.2 68.3 66.1 67.8 54.0
mLUKE-Ebase 80.8 70.0 65.5 60.8 63.7 68.4 66.2 67.9 55.6

XLM-K (Jiang et al., 2022) 80.8 69.2 63.8 60.0 65.3 70.1 63.8 67.7 -

XLM-Rlarge 83.9 74.7 69.9 64.9 69.9 73.3 70.3 72.4 65.3
mLUKE-Wlarge 84.0 74.3 70.3 66.2 70.2 74.2 69.7 72.7 67.4
mLUKE-Elarge 84.1 74.5 70.5 66.2 71.4 74.3 70.5 73.1 67.7

Table 1: F1 scores on the XQuAD and MLQA dataset in the cross-lingual transfer settings. The scores without
reference are from the best model tuned with the English development data.

3.1 Main Experiments

Datasets. We fine-tune the pretrained models with
the SQuAD 1.1 dataset (Rajpurkar et al., 2016), and
evaluate them with the two multilingual datasets:
XQuAD (Artetxe et al., 2020) and MLQA (Lewis
et al., 2020). XQuAD is created by translating a
subset of the SQuAD development set while the
source of MLQA is natural text in Wikipedia. Be-
sides multiple monolingual evaluation data splits,
MLQA also offers data to evaluate generalized
cross-lingual transfer (G-XLT), where the question
and context texts are in different languages.
Models. All QA models used in this experiment
follow Devlin et al. (2019). The model takes the
question and context word tokens as input and pre-
dicts a score for each span of the context word to-
kens. The span with the highest score is predicted
as the answer to the question.

mLUKE-E takes entity tokens as additional fea-
tures in the input (Figure 1) to enrich word repre-
sentations. The entities are automatically detected
using a heuristic string matching based on the orig-
inal Wikipedia article from which the dataset in-
stance is created. See Appendix C for more details.
Results. Table 1 summarizes the model’s F1 scores
for each language. First, we discuss the base mod-
els. On the effectiveness of entity representations,
mLUKE-Ebase performs better than its word-based
counterpart mLUKE-Wbase (0.6 average points im-
provement in the XQuAD average score, 0.1 points
in MLQA) and XLM-K (0.2 points improvement

in MLQA), which indicates the input entity tokens
provide useful features to facilitate cross-lingual
transfer. The usefulness of entities is demonstrated
especially in the MLQA’s G-XLT setting (full re-
sults available in Appendix F); mLUKE-Ebase ex-
hibits a substantial 1.6 point improvement in the
G-XLT average score over mLUKE-Wbase. This
suggests that entity representations are beneficial
in a challenging situation where the model needs
to capture language-agnostic semantics from text
segments in different languages.

We also observe that XLM-Rbase benefits from
extra training (0.4 points improvement in the av-
erage score on XQuAD and 2.1 points in MLQA).
The mLUKE-Wbase model further improves the
average score from XLM-Rbase with extra training
(1.2 points improvement in XQuAD and 2.1 points
in MLQA), showing the effectiveness of the MEP
task for cross-lingual QA.

By comparing large models, we still observe
substantial improvements from XLM-Rlarge to the
mLUKE models. Also we can see that mLUKE-
Elarge overall provides better results than mLUKE-
Wlarge (0.4 and 0.3 points improvements in the
MLQA average and G-XLT scores; comparable
scores in XQuAD), confirming the effectiveness of
entity representations.

3.2 Analysis

How do the entity representations help the model
in cross-lingual transfer? In the mLUKE-E model,



the input entity tokens annotate mention spans on
which the model performs prediction. We hypothe-
size that this allows the encoder to inject language-
agnostic entity knowledge into span representa-
tions, which help better align representations across
languages. To support this hypothesis, we compare
the degree of alignment between span representa-
tions before and after adding entity embeddings in
the input, i.e., mLUKE-W and mLUKE-E.
Task. We quantify the degree of alignment as
performance on the contextualized word retrieval
(CWR) task (Cao et al., 2020). The task is, given
a word within a sentence in the query language, to
find the word with the same meaning in the context
from a candidate pool in the target language.
Dataset. We use the MLQA dev set (Lewis et al.,
2020). As MLQA is constructed from parallel sen-
tences mined from Wikipedia, some sentences and
answer spans are aligned and thus the dataset can
be easily adapted for the CWR task. As the query
and target word, we use the answer span4 anno-
tated in the dataset, which is also parallel across
the languages. We use the English dataset as the
query language and other languages as the target.
We discard query instances that do not have their
parallel data in the target language. The candidate
pool is all answer spans in the target language data.
Models. We evaluate the mLUKE-Wbase and
mLUKE-Ebase models without fine-tuning. The
retrieval is performed by ranking the cosine simi-
larity of contextualized span representations, which
is computed by mean-pooling the output word vec-
tors in the span.
Results. Table 2 shows the retrieval performance
in terms of the mean reciprocal rank score. We
observe that the scores of mLUKE-Ebase are higher
than mLUKE-Wbase across all the languages. This
demonstrates that adding entities improves the de-
gree of alignment of span representations, which
may explain the improvement of mLUKE-E in the
cross-lingual QA task.

ar de es hi vi zh avg.

mLUKE-Wbase 55.6 66.1 68.4 60.4 69.7 56.1 62.7
mLUKE-Ebase 56.9 68.1 70.4 61.5 71.2 60.0 64.7

Table 2: The mean reciprocal rank score of the CWR
task with the MLQA dev set.

4Answer spans are not necessarily a word, but here we
generalize the task as span retrieval for our purpose.

4 The Entity MASK Token as Feature
Extractor in RE and NER

In this section, we evaluate the approach of using
the entity [MASK] token to extract features from
mLUKE-E for two entity-related tasks: relation
extraction and named entity recognition.

We formulate both tasks as the classification of
mention spans. The baseline models extract the
feature of spans as the contextualized representa-
tions of word tokens, while mLUKE-E extracts the
feature as the contextualized representations of the
special language-independent entity tokens associ-
ated with the mentions (Figure 1). We demonstrate
that this approach consistently improves the perfor-
mance in cross-lingual transfer.

4.1 Relation Extraction

Relation Extraction (RE) is a task to determine the
correct relation between the two (head and tail) enti-
ties in a sentence. Adding entity type features have
been shown to be effective to cross-lingual transfer
in RE (Subburathinam et al., 2019; Ahmad et al.,
2021), but here we investigate an approach that
does not require predefined entity types but utilize
special entity embeddings learned in pretraining.
Datasets. We fine-tune the models with the En-
glish KBP-37 dataset (Zhang and Wang, 2015) and
evaluate the models with the RELX dataset (Köksal
and Özgür, 2020), which is created by translating
a subset of 502 sentences from KBP-37’s test set
into four different languages. Following Köksal
and Özgür (2020), we report the macro average of
F1 scores of the 18 relations.
Models. In the input text, the head and tail enti-
ties are surrounded with special markers (<ent>,
<ent2>). The baseline models extract the feature
vectors for the entities as the contextualized vector
of the first marker followed by their mentions. The
two entity features are concatenated and fed into a
linear classifier to predict their relation.

For mLUKE-E, we introduce two special enti-
ties, [HEAD] and [TAIL], to represent the head
and tail entities (Yamada et al., 2020). Their em-
beddings are initialized with the entity [MASK]
embedding. They are added to the input sequence
being associated with the entity mentions in the
input, and their contextualized representations are
extracted as the feature vectors. As with the word-
based models, the features are concatenated and
input to a linear classifier.



RE NER

en de es fr tr avg. en de nl es avg.

mBERT 65.0 57.3 61.6 58.9 56.2 59.8 89.7 70.0 75.2 77.1 78.0
XLM-Rbase 66.5 60.8 62.9 60.9 57.7 61.7 91.5 74.3 80.7 79.8 81.6
+ extra training 67.0 61.3 62.9 64.3 61.9 63.5 91.8 75.7 80.3 79.8 81.9
mLUKE-Wbase 68.7 64.3 65.8 62.1 65.0 65.2 91.6 75.1 80.2 79.2 81.5
mLUKE-Ebase 69.3 64.5 65.2 64.7 68.7 66.5 93.6 77.2 81.8 77.7 82.6

XLM-K (Jiang et al., 2022) - - - - - - 90.7 73.3 80.0 76.6 80.1

XLM-Rlarge 68.0 65.3 65.0 63.3 64.1 65.1 92.5 75.1 82.9 80.5 82.8
mLUKE-Wlarge 66.2 65.3 68.1 66.5 64.7 66.2 92.3 76.5 82.6 80.7 83.0
mLUKE-Elarge 68.1 65.8 67.8 66.4 64.4 66.5 94.0 78.3 83.5 81.4 84.3

Table 3: F1 scores on relation extraction (RE) and named entity recognition (NER).

4.2 Named Entity Recognition

Named Entity Recognition (NER) is the task to
detect entities in a sentence and classify their type.
We use the CoNLL-2003 English dataset (Tjong
Kim Sang and De Meulder, 2003) as the training
data, and evaluate the models with the CoNLL-
2003 German dataset and the CoNLL-2002 Span-
ish and Dutch dataset (Tjong Kim Sang, 2002).
Models. We adopt the model of Sohrab and Miwa
(2018) as the baseline model, which enumerates all
possible spans in a sentence and classifies them into
the target entity types or non-entity type. In this
experiment, we enumerate spans with at most 16
tokens. For the baseline models, the span features
are computed as the concatenation of the word
representations of the first and last tokens. The span
features are fed into a linear classifier to predict
their entity type.

The input of mLUKE-E contains the entity
[MASK] tokens associated with all possible spans.
The span features are computed as the contextual-
ized representations of the entity [MASK] tokens.
The features are input to a linear classifier as with
the word-based models.

4.3 Main Results

The results are shown in Table 3. The mLUKE-E
models outperform their word-based counterparts
mLUKE-W in the average score in all the compara-
ble settings (the base and large settings; the RE and
NER tasks), which shows entity-based features are
useful in cross-lingual tasks. We also observe that
XLM-Rbase benefits from extra training (1.8 aver-
age points improvement in RE and 0.3 points in
NER), but mLUKE-E still outperforms the results.

4.4 Analysis

The performance gain of mLUKE-E over mLUKE-
W can be partly explained as the entity [MASK]

de es fr tr

mLUKE-Wbase 0.71 0.74 0.74 0.84
mLUKE-Ebase 0.25 0.28 0.24 0.36

Table 4: The modularity of word and entity features
computed with the same mLUKE model. The data are
from pairs of English and the other languages in the
RELX dataset.

token extracts better features for predicting entity
attributes because it resembles how mLUKE is pre-
trained with the MEP task. We hypothesize that
there exists another factor for the improvement in
cross-lingual performance: language neutrality of
representations.

The entity [MASK] token is shared across lan-
guages and their contextualized representations
may be less affected by the difference of input
languages, resulting in features that generalize
well for cross-lingual transfer. To find out if the
entity-based features are actually more language-
independent than word-based features, we evaluate
the modularity (Fujinuma et al., 2019) of the fea-
tures extracted for the RELX dataset.

Modularity is computed for the k-nearest neigh-
bor graph of embeddings and measures the degree
to which embeddings tend to form clusters within
the same language. We refer readers to Fujinuma
et al. (2019) for how to compute the metric. Note
that the maximum value of modularity is 1, and 0
means the embeddings are completely randomly
distributed regardless of language.

We compare the modularity of the word fea-
tures from mLUKE-Wbase and entity features from
mLUKE-Ebase before fine-tuning. Note that the
features here are concatenated vectors of head and
tail features. Table 4 shows that the modularity of
mLUKE-Ebase is much lower than mLUKE-Wbase,



ar en fi fr id ja ru vi zh avg.

mBERT 17.1 36.8 24.0 24.3 42.9 14.3 19.5 39.4 26.2 27.2
XLM-Rbase 14.2 27.2 16.2 14.9 28.2 11.9 11.7 25.1 17.6 18.5
+ extra training 21.2 35.0 23.0 22.2 46.8 19.6 17.5 34.4 30.7 27.8
mLUKE-Wbase 22.3 31.3 18.4 19.6 46.7 18.4 16.7 31.9 29.3 26.1
mLUKE-Ebase ([Y]) 27.8 37.5 30.4 28.4 44.2 28.9 25.8 42.1 33.4 33.2
mLUKE-Ebase ([X] & [Y]) 42.4 47.5 44.2 35.9 56.2 40.3 35.5 55.2 46.7 44.9

Table 5: The top-1 accuracies from 9 languages from the mLAMA dataset.

demonstrating that entity-based features are more
language-neutral. However, with entity-based fea-
tures, the modularities are still greater than zero. In
particular, the modularity computed with Turkish,
which is the most distant language from English
here, is significantly higher than the others, indi-
cating that the contextualized entity-based features
are still somewhat language-dependent.

5 Cloze Prompt Task with Entity
Representations

In this section, we show that using the entity repre-
sentations is effective in a cloze prompt task (Liu
et al., 2021) with the mLAMA dataset (Kassner
et al., 2021). The task is, given a cloze template
such as “[X] was born in [Y]” with [X] filled
with an entity (e.g., Mozart), to predict a correct
entity in [Y] (e.g., Austria). We adopt the typed
querying setting (Kassner et al., 2021), where a
template has a set of candidate answer entities and
the prediction becomes the one with the highest
score assigned by the language model.
Model. As in Kassner et al. (2021), the word-based
baseline models compute the candidate score as the
log-probability from the MLM classifier. When
a candidate entity in [Y] is tokenized into multi-
ple tokens, the same number of the word [MASK]
tokens are placed in the input sequence, and the
score is computed by taking the average of the log-
probabilities for its individual tokens.

On the other hand, mLUKE-E computes the log-
probability of the candidate entity in [Y] with
the entity [MASK] token. Each candidate entity
is associated with an entity in mLUKE’s entity
vocabulary via string matching. The input sequence
has the entity [MASK] token associated with the
word [MASK] tokens in [Y], and the candidate
score is computed as the log-probability from the
MEP classifier. We also try additionally appending
the entity token of [X] to the input sequence if the
entity is found in the vocabulary.

To accurately measure the difference between

word-based and entity-based prediction, we restrict
the candidate entities to the ones found in the en-
tity vocabulary and exclude the questions if their
answers are not included in the candidates (results
with full candidates and questions in the dataset are
in Appendix G).
Results. We experiment in total with 16 languages
which are available both in the mLAMA dataset
and the mLUKE’s entity vocabulary. Here we only
present the top-1 accuracy results from 9 languages
on Table 5, as we can make similar observations
with the other languages.

We observe that XLM-Rbase performs notably
worse than mBERT as mentioned in Kassner et al.
(2021). However, with extra training with the
Wikipedia corpus, XLM-Rbase shows a significant
9.3 points improvement in the average score and
outperforms mBERT (27.8 vs. 27.2). We conjec-
ture that this shows the importance of the training
corpus for this task. The original XLM-R is only
trained with the CommonCrawl corpus (Conneau
et al., 2020a), text scraped from a wide variety of
web pages, while mBERT and XLM-R + training
are trained on Wikipedia. The performance gaps
indicate that Wikipedia is particularly useful for
the model to learn factual knowledge.

The mLUKE-Wbase model lags behind XLM-
Rbase + extra training by 1.7 average points but we
can see 5.4 points improvement from XLM-Rbase

+ extra training to mLUKE-Ebase ([Y]), indicating
entity representations are more suitable to elicit
correct factual knowledge from mLUKE than word
representations. Adding the entity corresponding
to [X] to the input (mLUKE-Ebase ([X] & [Y]))
further pushes the performance by 11.7 points to
44.9 %, which further demonstrates the effective-
ness of entity representations.
Analysis of Language Bias. Kassner et al. (2021)
notes that the prediction of mBERT is biased by
the input language. For example, when queried in
Italian (e.g., “[X] e stato creato in [MASK].”), the
model tends to predict entities that often appear in
Italian text (e.g., Italy) for any question to answer



en ja fr

mBERT The Bahamas, 41% (355/870) Japan, 82% (361/439) Pays-Bas, 71% (632/895)
XLM-Rbase London, 78% (664/850) Japan, 99% (437/440) Allemagne, 96% (877/916)
+ extra training Australia, 27% (247/899) Japan, 99% (437/442) Allemagne, 93% (854/917)
mLUKE-Wbase Germany, 22% (198/895) Japan, 97% (428/442) Allemagne, 99% (906/918)
mLUKE-Ebase ([Y]) London, 37% (310/846) Japan, 56% (241/430) Suède, 40% (362/908)
mLUKE-Ebase ([X] & [Y]) London, 27% (213/797) Japan, 44% (176/401) Suède, 30% (266/895)

Table 6: The top incorrect predictions in three languages for the template “[X] was founded in [Y].” for each
model. The predictions in the original language are translated into English.

location. We expect that using entity representa-
tions would reduce language bias because entities
are shared among languages and less affected by
the frequency in the language of questions.

We qualitatively assess the degree of language
bias in the models looking at their incorrect pre-
dictions. We show the top incorrect prediction for
the template “[X] was founded in [Y].” for each
model in Table 6, together with the top-1 incor-
rect ratio, that is, the ratio of the number of the
most common incorrect prediction to the total false
predictions, which indicates how much the false
predictions are dominated by few frequent entities.

The examples show that the different models ex-
hibit bias towards different entities as in English
and French, although in Japanese the model consis-
tently tends to predict Japan. Looking at the degree
of language bias, mLUKE-Ebase ([X] & [Y]) ex-
hibits lower top-1 incorrect ratios overall (27% in
fr, 44% in ja, and 30% in fr), which indicates us-
ing entity representations reduces language bias.
However, lower language bias does not necessarily
mean better performance: in French (fr), mLUKE-
Ebase ([X] & [Y]) gives a lower top-1 incorrect
ratio than mBERT (30% vs. 71%) but their num-
bers of total false predictions are the same (895).
Language bias is only one of several factors in the
performance bottleneck.

6 Related Work

6.1 Multilingual Pretrained Language
Models

Multilingual pretrained language models have re-
cently seen a surge of interest due to their effective-
ness in cross-lingual transfer learning (Conneau
and Lample, 2019; Liu et al., 2020). A straight-
forward way to train such models is multilingual
masked language modeling (mMLM) (Devlin et al.,
2019; Conneau et al., 2020a), i.e., training a single
model with a collection of monolingual corpora
in multiple languages. Although models trained

with mMLM exhibit a strong cross-lingual abil-
ity without any cross-lingual supervision (K et al.,
2020; Conneau et al., 2020b), several studies aim
to develop better multilingual models with explicit
cross-lingual supervision such as bilingual word
dictionaries (Conneau et al., 2020b) or parallel sen-
tences (Conneau and Lample, 2019). In this study,
we build a multilingual pretrained language model
on the basis of XLM-RoBERTa (Conneau et al.,
2020a), trained with mMLM as well as the masked
entity prediction (MEP) (Yamada et al., 2020) with
entity representations.

6.2 Pretrained Language Models with Entity
Knowledge

Language models trained with a large corpus con-
tain knowledge about real-world entities, which is
useful for entity-related downstream tasks such as
relation classification, named entity recognition,
and question answering. Previous studies have
shown that we can improve language models for
such tasks by incorporating entity information into
the model (Zhang et al., 2019; Peters et al., 2019;
Wang et al., 2021; Xiong et al., 2020; Févry et al.,
2020; Yamada et al., 2020).

When incorporated into multilingual language
models, entity information can bring another ben-
efit: entities may serve as anchors for the model
to align representations across languages. Multi-
lingual knowledge bases such as Wikipedia often
offer mappings between different surface forms
across languages for the same entity. Calixto et al.
(2021) fine-tuned the top two layers of multilin-
gual BERT by predicting language-agnostic en-
tity ID from hyperlinks in Wikipedia articles. As
our concurrent work, Jiang et al. (2022) trained
a model based on XLM-RoBERTa with an entity
prediction task along with an object entailment pre-
diction task. While the previous studies focus on
improving cross-lingual language representations
by pretraining with entity information, our work in-
vestigates a multilingual model not only pretrained



with entities but also explicitly having entity repre-
sentations and how to extract better features from
such model.

7 Conclusion

We investigated the effectiveness of entity repre-
sentations in multilingual language models. Our
pretrained model, mLUKE, not only exhibits strong
empirical results with the word inputs (mLUKE-W)
but also shows even better performance with the
entity representations (mLUKE-E) in cross-lingual
transfer tasks. We also show that a cloze-prompt-
style fact completion task can effectively be solved
with the query and answer space in the entity vocab-
ulary. Our results suggest a promising direction to
pursue further on how to leverage entity represen-
tations in multilingual tasks. Also, in the current
model, entities are represented as individual vec-
tors, which may incur a large memory footprint in
practice. One can investigate an efficient way of
having entity representations.
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Appendix for “mLUKE: The Power of Entity Representations in Multilingual Pretrained
Language Models”

A Details of Pretraining

Dataset. We download the Wikipedia dumps from December 1st, 2020. We show the 24 languages
included in the dataset on Table 7, along with the data size and the number of entities in the vocabulary.

Language Code Size # entities in vocab Language Code Size # entities in vocab

ar 851M 427,460 ko 537M 378,399
bn 117M 62,595 nl 1.1G 483,277
de 3.5G 540,347 pl 1.3G 489,109
el 315M 135,277 pt 1.0G 537,028
en 6.9G 613,718 ru 2.5G 529,171
es 2.1G 587,525 sv 1.1G 390,313
fi 480M 300,333 sw 27M 30,129
fr 3.1G 630,355 te 66M 14,368
hi 90M 54,038 th 153M 100,231
id 327M 217,758 tr 326M 297,280
it 1.9G 590,147 vi 516M 263,424
ja 2.3G 369,470 zh 955M 332,970

Total 31.4G 8,374,722

Table 7: Training Data Statistics: the size of training data, and the number of entities found in the 1.2M entity
vocabulary.

Optimization. We optimize the mLUKE models for 1M steps in total using AdamW (Loshchilov and
Hutter, 2019) with learning rate warmup and linear decay of the learning rate. The pretraining consists
of two stages: (1) in the first 500K steps, we update only those parameters that are randomly initialized
(e.g., entity embeddings); (2) we update all parameters in the remaining 500K steps. The learning rate
scheduler is reset at each training stage. The detailed hyper-parameters are shown in Table 8.

Maximum word length 512 Mask probability for entities 15%
Batch size 2048 The size of word token embeddings 768
Peak learning rate 1e-4 The size of entity token embeddings 256
Peak learning rate (first 500K steps) 5e-4 Dropout 0.1
Learning rate decay linear Weight decay 0.01
Warmup steps 2500 Adam β1 0.9
Mask probability for words 15% Adam β2 0.999
Random-word probability for words 10% Adam ε 1e-6
Unmasked probability for words 10% Gradient clipping none

Table 8: Hyper-parameters used to pretrain mLUKE.

Computing Infrastructure. We run the pretraining on NVIDIA’s PyTorch Docker container 19.02 hosted
on a server with two Intel Xeon Platinum 8168 CPUs and 16 NVIDIA Tesla V100 GPUs. The training
takes approximately 2 months.



B Details of Downstream Experiments

Hyperparameter Search. For each downstream task, we perform hyperparameter searching for all the
models with the same computational budget to ensure a fair comparison. For each task, we use the final
evaluation metric on the validation split of the training English corpus as the validation score. The models
are optimized with the AdamW optimizer (Loshchilov and Hutter, 2019) with the weight decay term set
to 0.01 and a linear warmup scheduler. The learning rate is linearly increased to a specified value in the
first 6 % of training steps, and then gradually decreased to zero towards the end. Table 9 summarizes the
task-specific hyperparameter search spaces.

QA
(SQuAD)

Relation Classification
(KBP37)

NER
(CoNLL 2003)

Learning rate 2e-5 2e-5 2e-5
Batch size {16, 32} {4, 8, 16} {4, 8, 16}
Epochs 2 5 5
# of random seeds 3 3 3
Validation metric F1 F1 F1

Table 9: The hyperparameters search spaces and other details of downstream experiments.

Computing Infrastructure. We run the fine-tuning on a server with a Intel(R) Core(TM) i7-6950X CPU
and 4 NVIDIA GeForce RTX 3090 GPUs.

C Detecting Entities in the QA datasets

For each question–passage pair in the QA datasets, we first create a mapping from the entity mention
strings (e.g., “U.S.”) to their referent Wikipedia entities (e.g., United States) using the entity hyperlinks on
the source Wikipedia page of the passage. We then perform simple string matching to extract all entity
names in the question and the passage and treat all matched entity names as entity annotations for their
referent entities. We ignore an entity name if the name refers to multiple entities on the page. Further, to
reduce noise, we also exclude an entity name if its link probability, the probability that the name appears
as a hyperlink in Wikipedia, is lower than 1%.

The XQuAD datasets are created by translating English Wikipedia articles into target languages. For
each translated article, we create the mention-entity mapping from the source English article by the
following procedure: for all the entities found in the source article, we find the corresponding entity in the
target language through inter-language links, and then collect its possible mention strings (i.e., hyperlinks
to the entity) from a Wikipedia dump of the target language; the entity and the collected mention strings
form the mention-entity mapping for the translated article.



D The Model Size

# of layers hidden size # of heads vocabulary size # of parameters

mBERT 12 768 12 120K 177M
XLM-Rbase 12 768 8 250K 278M
mLUKE-Ebase 12 768 8 250K 585M
XLM-Rlarge 24 1024 16 250K 559M
mLUKE-Elarge 24 1024 16 250K 867M

Table 10: The model sizes of the pretrained models.

E Ablation Study of Entity Embeddings

In Section 3 and 4, we have shown that using entity representations in mLUKE improves the cross-
lingual transfer performance in QA, RE, and NER. Here we conduct an additional ablation study to
investigate whether the learned entity embeddings are crucial to the success of our approach. We train an
ablated model of mLUKE-E whose entity embeddings are re-initialized randomly before fine-tuning (-
ablation). Table 11 and Table 12 show that the ablated model performs significantly worse than the full
model (mLUKE-E), indicating that using pretrained entity embeddings is crucial rather than applying our
approach during fine-tuning in an ad-hoc manner without entity-aware pretraining.

XQuAD en es de el ru tr ar vi th zh hi avg.

mLUKE-E 86.3 78.9 78.9 73.9 76.0 68.8 71.4 76.4 67.5 65.9 72.2 74.2
- ablation 84.3 76.8 76.4 71.9 74.3 67.4 70.2 75.3 67.1 64.4 68.4 72.4

MLQA en es de ar hi vi zh avg. G-XLT avg.

mLUKE-Ebase 80.8 70.0 65.5 60.8 63.7 68.4 66.2 67.9 55.6
- ablation 80.3 69.4 64.5 59.1 59.2 66.5 63.6 66.1 50.7

Table 11: F1 scores on the XQuAD and MLQA datasets in the cross-lingual transfer settings.

RE NER

en de es fr tr avg. en de du es avg.
mLUKE-Ebase 69.3 64.5 65.2 64.7 68.7 66.5 93.6 77.2 81.8 77.7 82.6
- ablation 62.5 59.3 60.7 61.0 60.5 50.8 93.0 76.3 80.8 76.1 81.6

Table 12: F1 scores on relation extraction (RE) and named entity recognition (NER).



F Full Results of MLQA

c/q en es de ar hi vi zh

en 79.1 65.4 63.4 37.9 29.7 47.1 43.2
es 67.7 65.9 58.2 38.2 24.4 43.6 39.5
de 61.7 55.9 58.6 32.3 29.7 38.4 36.8
ar 49.9 43.2 44.6 48.6 23.4 29.4 27.1
hi 47.0 37.8 39.1 26.2 44.8 28.0 23.0
vi 59.9 49.4 48.6 26.7 25.6 58.5 40.7
zh 55.3 44.2 45.3 28.3 22.7 38.7 58.1

Table 13: MLQA full results of mBERT
.

c/q en es de ar hi vi zh

en 79.6 52.3 59.6 30.8 43.2 40.0 36.0
es 67.0 67.7 52.0 25.2 31.8 32.9 31.5
de 59.5 41.7 62.1 22.2 27.8 29.2 29.5
ar 49.6 23.2 30.9 55.8 10.6 11.6 10.3
hi 58.5 34.6 42.3 17.8 59.8 22.4 23.0
vi 61.1 28.1 39.5 17.0 27.5 65.2 26.5
zh 55.2 22.7 28.1 9.26 21.1 17.5 62.4

Table 14: MLQA full results of XLM-Rbase

c/q en es de ar hi vi zh

en 81.3 71.2 70.1 40.6 52.3 54.8 48.2
es 70.6 69.8 66.2 43.3 47.9 52.8 49.0
de 64.4 60.4 64.9 36.8 42.3 44.3 42.9
ar 59.3 52.3 52.2 54.8 30.3 37.1 31.5
hi 65.0 56.5 56.8 33.8 59.3 43.0 39.9
vi 67.0 57.1 58.2 31.7 43.8 65.5 44.0
zh 62.4 53.7 54.2 33.3 40.2 44.8 64.2

Table 15: MLQA full results of XLM-Rbase + train-
ing

c/q en es de ar hi vi zh

en 81.2 69.5 69.1 53.6 60.8 60.4 58.4
es 70.3 69.6 65.5 52.1 52.9 56.1 56.4
de 64.7 59.8 65.3 45.4 48.9 49.9 49.3
ar 60.4 52.3 54.3 60.3 34.0 43.4 41.3
hi 65.5 56.9 58.3 35.4 63.1 49.0 44.6
vi 66.8 54.4 57.1 39.7 49.3 68.3 52.4
zh 63.2 55.1 56.6 39.8 43.3 49.6 66.1

Table 16: MLQA full results of mLUKE-Wbase

c/q en es de ar hi vi zh

en 80.8 71.3 69.9 55.9 61.9 62.8 62.1
es 70.6 69.9 66.4 52.6 53.7 57.6 58.0
de 65.2 61.2 65.4 47.2 49.3 51.8 51.7
ar 61.1 54.6 56.9 60.7 39.5 47.0 44.8
hi 65.1 58.4 59.2 38.3 63.7 50.5 46.2
vi 66.7 56.5 59.5 44.3 51.1 68.4 54.2
zh 62.7 56.3 56.2 41.1 44.3 51.7 66.2

Table 17: MLQA full results of mLUKE-Ebase

c/q en es de ar hi vi zh

en 83.9 79.6 79.0 62.0 70.6 70.5 69.5
es 75.2 74.7 73.0 60.3 63.4 66.6 65.9
de 69.4 69.0 69.9 58.9 59.7 62.0 60.6
ar 67.0 63.6 66.2 64.9 54.5 58.9 57.7
hi 72.1 67.3 67.2 56.1 69.9 61.0 62.1
vi 73.5 69.6 70.7 57.1 63.0 73.3 64.5
zh 69.1 64.0 65.7 53.4 58.2 62.7 70.3

Table 18: MLQA full results of XLM-Rlarge
.

c/q en es de ar hi vi zh

en 84.0 80.1 79.9 71.5 74.2 72.8 72.8
es 74.6 74.3 74.6 65.5 64.3 66.0 66.0
de 70.1 69.5 70.3 63.9 60.8 61.7 62.6
ar 67.9 65.0 67.9 66.2 58.6 60.2 58.7
hi 72.9 69.7 70.3 60.8 70.2 63.1 62.6
vi 73.9 69.5 72.2 65.5 64.9 74.2 67.3
zh 69.6 66.5 68.5 61.5 58.3 64.5 69.7

Table 19: MLQA full results of mLUKE-Wlarge

c/q en es de ar hi vi zh

en 84.1 80.5 80.2 70.0 75.0 75.0 73.5
es 75.2 74.5 74.8 62.4 65.3 67.6 66.5
de 71.1 70.2 70.5 62.2 61.0 63.5 62.3
ar 68.4 65.6 68.4 66.2 57.7 62.3 58.0
hi 72.9 70.9 71.6 59.1 71.4 65.6 62.1
vi 74.7 71.0 73.1 61.7 64.7 74.3 66.8
zh 70.1 66.1 68.8 59.2 60.9 66.3 70.5

Table 20: MLQA full results of mLUKE-Elarge



G Full Results of mLAMA

Table 5 shows the results from the setting where the entity candidates not in the mLUKE’s entity vocabulary
are excluded. Here we provide in Table 21 the results with the full candidate set provided in the dataset
for ease of comparison with other literature. When the candidate entity is not found in the mLUKE’s
entity vocabulary, the log-probability from the word [MASK] tokens are used instead.

ar bn de el en es fi fr

mBERT 15.1 12.7 28.6 19.4 34.8 30.2 19.2 27.1
XLM-Rbase 14.9 7.5 18.4 12.7 24.2 18.5 14.5 16.1
+ extra training 20.7 14.0 29.3 18.2 31.6 26.4 19.2 25.0
mLUKE-Wbase 21.3 12.9 25.7 17.5 27.1 23.3 15.9 23.0
mLUKE-Ebase ([Y]) 25.6 21.6 32.9 25.2 34.9 28.5 24.7 27.7
mLUKE-Ebase ([X] & [Y]) 37.3 32.3 43.7 34.4 43.2 36.4 35.3 34.2

id ja ko pl pt ru vi zh avg.

mBERT 37.4 14.2 17.8 21.9 32.0 17.4 36.5 24.2 24.3
XLM-Rbase 24.6 11.4 10.9 16.6 22.2 12.6 23.0 15.5 16.5
+ extra training 38.2 19.1 21.4 20.5 29.6 20.6 33.8 28.1 24.7
mLUKE-Wbase 36.6 18.0 17.9 20.2 29.4 19.6 31.0 26.9 22.9
mLUKE-Ebase ([Y]) 35.3 27.2 26.3 25.7 34.7 23.8 39.1 29.5 28.9
mLUKE-Ebase ([X] & [Y]) 47.6 37.7 41.6 37.7 44.8 31.4 50.1 41.6 39.3

Table 21: The average of Top-1 accuracies from 16 languages from the mLAMA dataset.


