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Abstract

We investigate what kind of structural knowl-
edge learned in neural network encoders is
transferable to processing natural language. We
design artificial languages with structural prop-
erties that mimic natural language, pretrain
encoders on the data, and see how much per-
formance the encoder exhibits on downstream
tasks in natural language. Our experimental
results show that pretraining with an artificial
language with a nesting dependency structure
provides some knowledge transferable to natu-
ral language. A follow-up probing analysis in-
dicates that its success in the transfer is related
to the amount of encoded contextual informa-
tion and what is transferred is the knowledge
of position-aware context dependence of lan-
guage. Our results provide insights into how
neural network encoders process human lan-
guages and the source of cross-lingual transfer-
ability of recent multilingual language models.

1 Introduction

Pretrained language models (Devlin et al., 2019;
Yang et al., 2019; Raffel et al., 2020) have demon-
strated strong empirical performance not only
within a language but also across languages. Lan-
guage models pretrained with a mix of monolingual
corpora, such as multilingual BERT, exhibit a de-
cent zero-shot cross-lingual transfer capability, i.e.,
a model fine-tuned in a single source language (L1)
can solve the task in another language (L2) (Con-
neau et al., 2020a; Xue et al., 2021). Surprisingly,
the transfer happens without lexical overlaps be-
tween L1 and L2 (Karthikeyan K and Roth, 2020;
Conneau et al., 2020b) or even without joint pre-
training (Artetxe et al., 2020): an encoder only
pretrained on L1 can be transferred to L2 without
any parameter updates. These results suggest that,
whether the encoder is trained on single or multiple
languages, it learns some transferable knowledge
about language.
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Figure 1: Transfer from artificial language to natural
language. The artificial language encodes some struc-
tural properties (e.g., token distributions, dependency
structures) and we study how the learning of such prop-
erties can be transferred to natural language.

However, the characteristics of such transferable
knowledge are still underexplored. Recent stud-
ies with the probing methodology (Hupkes and
Zuidema, 2018; Conneau et al., 2018) have re-
vealed that multilingual BERT captures language-
independent linguistic structures such as universal
dependency relations (Chi et al., 2020) and subject-
hood (Papadimitriou et al., 2021), but it remains
unknown whether learning such linguistic proper-
ties actually contributes to the performance, and
whether there exists more abstract knowledge trans-
ferred across languages.

In this study, we try to shed light on these ques-
tions with the framework of the Test for Inductive
Bias via Language Model Transfer (Papadimitriou
and Jurafsky, 2020), focusing on designing arti-
ficial languages with natural-language-like struc-
tural properties (Figure 1). We pretrain encoders
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with artificial languages and transfer the encoders
to natural language tasks with their parameters
frozen. This enables us to see how learning the
specific structural properties of the artificial lan-
guage affects the downstream performance.

Specifically, we explore whether it is beneficial
for the encoder to know the following two char-
acteristics of natural language: word distributions
and latent dependency structures. We design arti-
ficial languages that represent such characteristics
and perform an extensive study with different en-
coder architectures (LSTM and Transformer) pre-
training objectives (causal and masked language
modelings).

The contribution is summarized as follows:

* We first start by complementing the study
in Papadimitriou and Jurafsky (2020). We
train LSTM and Transformer encoders with
the sentence-level causal language modeling
task and evaluate the encoders in English. We
show that an artificial language that models
simple statistical dependency within a sen-
tence provides decent transferable knowledge
on natural language modeling. Furthermore,
we find that the inductive bias of a nesting
head-to-tail dependency structure is more use-
ful than a flat one.

* We then proceed to investigate transfer learn-
ing in masked language modeling (Devlin
et al., 2019), one of the current dominant pre-
training paradigms. We evaluate pretrained
Transformer encoders with dependency pars-
ing and confirm that the nesting dependency
structure is important to learn the structure of
natural language.

* We hypothesize that the transfer performance
of pretrained encoders is related to the way
the encoder preserves the input contextual in-
formation in the output vectors. We perform a
probing experiment and find that the artificial
language with the nesting dependency struc-
ture trains encoders to encode the information
on adjacent tokens into the output vector of
each token. We conclude this paper with the
hypothesis that a part of transferable knowl-
edge in language models could be explained
by the knowledge of position-aware context
dependence of language.

2 Related Work

2.1 Transferable Structural Knowledge in
Pretrained Encoders

Multilingual language models trained with masked
language modeling objective (Devlin et al., 2019;
Doddapaneni et al., 2021) have demonstrated a
surprisingly strong cross-lingual transfer capability
(Liu et al., 2020), given the model is only trained
with a mix of monolingual corpora. This leads
to several studies investigating the source of the
cross-lingual capability of multilingual models.

An early common hypothesis was that the mod-
els take advantage of a common word-piece vo-
cabulary across languages (Wu and Dredze, 2019;
Pires et al., 2019), which provides cross-lingual
alignment signals to learn useful multilingual rep-
resentations. However, this hypothesis has been
questioned by recent studies (Karthikeyan K and
Roth, 2020; Conneau et al., 2020b) which show
that shared word-pieces only play a minor role in
the performance. These studies suggest that the
model can exploit abstract structures of languages
to learn shared multilingual representations.

Another line of research suggests that the learn-
ing of transferable knowledge happens even in
monolingual pretraining. Artetxe et al. (2020)
showed that a Transformer encoder pretrained only
on L1 exhibits strong cross-lingual transfer perfor-
mance simply by aligning the L2 embeddings to
the encoder. Papadimitriou and Jurafsky (2020)
pretrained LSTM encoders with natural languages
and non-linguistic data (e.g., code, music, and arti-
ficial data) to demonstrate that the encoders achieve
reasonable performance in Spanish language mod-
eling. These studies provide additional evidence
for the existence of transferable linguistic knowl-
edge learned in the model.

Then what is such knowledge? Probing studies
(Hupkes and Zuidema, 2018; Conneau et al., 2018)
have revealed that the model captures language-
independent structures such as universal depen-
dency relations (Chi et al., 2020) and subjecthood
(Papadimitriou et al., 2021). However, the probing
methodology does not answer whether such lin-
guistic knowledge contributes to the performance
in cross-lingual transfer.

In this study, we shed light on this question
by studying transfer learning from artificial lan-
guage with the Test for Inductive Bias via Lan-
guage Model Transfer (TILT) (Papadimitriou and
Jurafsky, 2020). This framework enables us to
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assess if abstract features generalizable to L2 (nat-
ural language) are encoded in L1. Here we explic-
itly design artificial languages with some structural
properties as L1 to investigate their transferability.

2.2 Studying Language Models with Artificial
Language

To study the behavior of language models, sev-
eral studies have employed a specific type of ar-
tificial language: artificial variants of natural lan-
guages. A typical experimental framework is as
follows: (1) create an artificial language that dif-
fers from a natural language in one linguistic prop-
erty, such as word orders (Sinha et al., 2021b;
Dufter and Schiitze, 2020; Sinha et al., 2021a),
scripts (Karthikeyan K and Roth, 2020; Dufter and
Schiitze, 2020; Conneau et al., 2020b), or morphol-
ogy (Ravfogel et al., 2019); (2) train or evaluate
the natural/artificial language models and compare
the performance to analyze the model’s sensitivity
to the linguistic property.

However, this methodology is limited to study-
ing linguistic properties that are easily editable
to create artificial variants and also offers limited
control over the experiments. To overcome this
problem, White and Cotterell (2021) created artifi-
cial languages by defining their own probabilistic
context-free grammars (PCFG). As the concurrent
work, Chiang and yi Lee (2022) trained Trans-
former encoders on artificial data with token de-
pendencies in the sequences and showed that they
perform reasonably well on the GLUE benchmark
(Wang et al., 2019). In this research, we design
artificial languages with certain structural proper-
ties from scratch to study knowledge transferable
to natural language.

3 Approach

3.1 Experimental Framework

We first describe the experimental framework used
throughout this paper, the Test for Inductive Bias
via Language Model Transfer (TILT) introduced by
Papadimitriou and Jurafsky (2020). TILT consists
of pretraining and transfer steps:

1. Pretrain an encoder with a pretraining task in
the source language (L1). We explore pretrain-
ing with causal language modeling in §4 and
masked language modeling in §5.

2. Transfer the encoder to the target language
(L2) in a downstream task. As we are inter-

ested in structural prior knowledge learned
in the encoder, we discard the learned L1
word embeddings and initialize the embed-
ding layer with the L2 vocabulary. We then
train the model with the encoder parameters
frozen and evaluate the task performance.

TILT reveals how transferrable the computation
induced to solve the L1 pretraining task is to pro-
cessing L2. In this study, we are interested in the
transferability of certain types of structures to nat-
ural language, and thus we primarily use hand-
designed artificial languages with the structural
properties as L1 and natural language as L2.

3.2 Designing Artificial Languages

Artificial languages are designed to mimic a certain
property of natural language. After providing a for-
mal definition of artificial language, we introduce
several languages used in this paper.

3.2.1 Formulation of Artificial Language

A artificial language refers to a set of a vocabu-
lary and algorithms to generate sequential data for
pretraining. Each language has a sentence-length
distribution pye;, (1), token vocabulary {w|w € V},
and sentence-sampling function f(1) : I — V.
The training data is generated sentence by sen-
tence as follows: we first sample a sentence length
(I ~ pien (1)) and then sample a sequence of tokens
of that length ([wy, ..., w;] ~ f(1)).

In this study, the token vocabulary V' simply con-
sists of integers (or integers with a special symbol)
and is not intended to correspond to a vocabulary
of any natural language. Also the sentence-length
distribution pye,, (1) is fitted with a baseline dataset
in each experiment. The focus is how to design the
sentence-sampling function (7). This determines
what kind of characteristics we want to encode in
the artificial dataset.

3.2.2 Modeling Word Distribution

Words in natural language are distributed in non-
trivial fashions. We will study whether prior knowl-
edge of token distribution facilitates learning from
natural language. We first present the simplest arti-
ficial language that serves as a baseline.

Uniform language samples each token in a sen-
tence independently and uniformly. Specifically,
the probability of a token w being sampled is

1

= . 1
v M

p(w)
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However, this deviates from the token distri-
bution of natural language. Natural language is
empirically known to follow the Zipf’s law (Zipf,
1949), i.e., the relation between the frequency of
a word and its rank is given by frequency(w) o
rank(w)~%. The coefficient « is typically around
1, although the coefficient shows some variation
according to the corpus domain (Zanette and Mon-
temurro, 2005).

Zipf language captures this property and samples
each token w from the following probability distri-
bution assuming o = 1:

1

rank(w)’ @

p(w) o
The two languages introduced so far generate to-
kens in a sentence independently. However, words
within a sentence of natural language are known to
have statistical dependencies, i.e., specific cooccur-
rence patterns (Church and Hanks, 1989). Consider
the sentence “The cat and dog are fighting over
food.” The words the and cat would cooccur much
more often than by chance because cat (noun) is
dependent on the (determinant); so would dog and
cat because they are topically related. The words in
a sentence are usually coherent according to some
syntactic and semantic dependencies.
Log-linear language is designed to capture this
property. Inspired by the log-linear model in Arora
et al. (2016), tokens in a sentence s are drawn from
the following probability distribution:

p(w\s) X eXp(Es : 17w)7 3)

where Cy is the discourse vector of the sentence and
Uy 1S the word vector of the token w. Intuitively, we
can imagine that the discourse vector represents the
topic of the sentence and determines the unigram
distribution over the vocabulary (Blei et al., 2003).
Sampling tokens this way, non-trivial cooccurrence
patterns within sentences emerge in the language.

We speculate that pretraining with the Log-linear
language will endow the model with an inductive
bias to aggregate the context in a sentence to predict
the identity or property of tokens, which is likely
to benefit natural language processing.

In the experiments, the word vectors 7, are ini-
tialized with the normal distribution, and the dis-
course vector ¢ is also drawn from the normal
distribution each time we generate a sentence. We

set the dimension of the word and discourse vec-
tor to 10 as we empirically find that this makes
the entire token distribution close to the Zipfian
distribution.

3.2.3 Modeling Latent Dependency Structure

Sentences in natural language are known to have la-
tent structures, which are often described in the
form of trees (Chomsky, 1957) or dependency
graphs (Mel’Cuk, 1988). Now we consider how
to endow the sampled tokens with such structures.

In this study, we adopt a dependency-based la-
tent structure. Words in sentences of natural lan-
guage often have dependency relations and the exis-
tence of a certain word can be predictive of another
word (e.g., the verb am always cooccurs with /). We
hypothesize that, pretrained on such data, language
models may acquire inductive bias towards finding
relations between tokens in the input, which is pre-
sumably important in processing natural language.

Inspired by Papadimitriou and Jurafsky (2020),
we design algorithms that generate structured sen-
tences given a set of tokens sampled with any of
the strategies described in §3.2.2. The general idea
is that half of the tokens (heads) in the vocabulary
are all paired with another half of tokens (tails). A
pair of head and tail can be represented in right and
left brackets with the same integer (e.g., “<123”,
“123>”). The pairs always appear together in a
sentence and express simple dependency relations.
After determining the sentence length [ ~ f(I),
we first sample % (rounded to an integer) pairs of
head and tail and then arrange them with one of the
following structures.

Flat Dependency structure simply arranges the
tokens randomly while keeping the right order of
the brackets (e.g., [“<5”, “<84”, “5>7, “<123”,
“123>7, “84>7]). The dependency arcs are al-
lowed to be crossed and thus often result in a non-
projective dependency structure.

Nesting Dependency language, by contrast, does
not allow any dependency arcs to be crossed, and
the brackets are nested hierarchically (e.g., [“<5”,
“<847,484>”, “5>7,“<123”,“123>"]). The sen-
tences are generated from the stack-based algo-
rithm described in Appendix A.

These structures are similar to the Parenthe-
sis languages used to study the inductive bias of
language models in Papadimitriou and Jurafsky
(2020). However, our Dependency languages differ
from them in how to represent the head and tail
tokens. In the Parenthesis language, the head and
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tail are represented with the same token (e.g., [“5”,
“847, %847, 5”7, “123”,“123"]), which we argue
deviates from the dependency structure in natural
language, because in natural language, dependency
relations usually hold between different words (e.g.,
I and am). We will show that this difference is in
fact crucial and draw a different conclusion from
Papadimitriou and Jurafsky (2020) on the impor-
tance of the nested structure (§4.2).

4 Causal Language Model Pretraining
with Artificial Language

In this section, we complement the study of Pa-
padimitriou and Jurafsky (2020). While they stud-
ied the inductive bias learned in LSTM encoders
with some artificial languages, here we provide
additional studies with the newly introduced Log-
linear and Dependency artificial languages, and the
Transformer encoder.

4.1 Experimental Setups

Task. We study sentence-level causal (left-to-right)
language modeling (CLM), where the model needs
to predict the next word given the previous con-
text in the sentence. Note that, Papadimitriou and
Jurafsky (2020) experiment with language model-
ing across sentences, but we adopt sentence-level
modeling because we would like to focus on the
learning of sentence structures here. As we will see
in §4.2, we observe the same tendency in regard to
the effect of artificial pretraining where we share
the setups. The task performance is measured by
the average perplexity scores for each token.
Model. We study two encoder architectures:
LSTM (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017). These archi-
tectures are known to exhibit different abilities in
capturing the underlying hierarchical structure of
sequential data (Tran et al., 2018).

The size of word embeddings is set to 300. For
both LSTM and Transformer encoders, the number
of layers is set to 3, and the number of parameters
is configured to be the same (6.9M parameters) to
enable a fair comparison between architectures (for
further details, see Appendix B).

Pretraining Data. We generate artificial corpora
with three unstructured languages, which randomly
arrange the tokens sampled from Uniform, Zipf,
and Log-linear languages, and four structured lan-
guages which combine the Zipf sampling strategy
with the structures of Flat Parenthesis, Nesting

Parenthesis, Flat Dependency, and Nesting Depen-
dency.

We also experiment with natural language cor-
pora. We create training corpora from Wikipedia
dumps of English, Japanese, and Spanish. The sen-
tences are tokenized with the Moses tokenizer!
for English and Spanish and MeCab? for Japanese.

The sentence lengths of artificial data were sam-

pled from the empirical distribution of the English
Wikipedia corpus. The size of the vocabulary |V| is
set to 32,000 for both artificial and natural corpora,
and out-of-vocabulary words in natural language
are replaced with the OOV token. For each corpus,
we sample 12.8 M sentences and train the model
with one iteration over the corpus.
Evaluation Data. We evaluate the pretrained en-
coders on the Penn Treebank (PTB) corpus (Mar-
cus et al., 1993) with preprocessing from Mikolov
et al. (2010). Note that, when we train language
models with the pretrained encoders, the parame-
ters of the encoder are not updated and only the
English word embeddings are learned from scratch
(optimization details in Appendix B.2).

4.2 Results

We provide two baseline models trained on the
L2 training corpus from scratch and trained with
frozen random weights in the encoder to compare
with pretrained encoders. For each configuration,
we pretrain three encoders with different random
seeds, and for each encoder fine-tuned three mod-
els, which results in nine models in total. We sum-
marize the average scores and standard deviations
in Figure 2.

The Transformer encoder is more flexible
than LSTM. We start by discussing overall trends.
We observe that the Transformer encoders give
lower perplexity scores compared to LSTM regard-
less of pretraining language. This tendency is in
line with the observations on the surprisingly good
transferability or pretrained Transformer encoders
to other languages (Conneau et al., 2020a), or even
other modalities (Lu et al., 2021; Reid et al., 2022).
We think that this is because Transformer encoders
are better at aggregating and preserving the context
information at each time step, as we will see in §6,
presumably because the Transformer architecture
has self-attention and residual connections.

'nttps://github.com/moses—smt/
mosesdecoder
http://taku910.github.io/mecab/
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Figure 2: The perplexity scores (the lower the better) on the sentence-level causal language modeling task with the
English Penn Treebank dataset. The two baselines (From scratch and Random weights) are not pretrained, and the

others are the results of pretrained encoders.

Natural languages are better than the artifi-
cial languages. As expected, pretraining with natu-
ral languages (English, Spanish and Japanese) pro-
vides better encoders for language modeling than
the artificial languages both with LSTM and Trans-
former. However, the performance differences be-
tween natural languages seem to be negligible, in-
dicating that there is not much difference in the
way the encoders process these different languages,
conforming with the observation of cross-lingual
transferability of pretrained encoders (Artetxe et al.,
2020).

The Uniform and Zipf languages degrade the
encoders. Looking at the difference among un-
structured languages (Figure 2a), Uniform and Zipf
languages give higher perplexities than the Ran-
dom weights baseline particularly with LSTM. In
hindsight, it is natural that encoders would be de-
graded even from random weights when trained
with sequences where tokens are drawn indepen-
dently from each other because the encoders are
not incentivized to use contextual information and
will even learn to discard the input information.
We will demonstrate this with a follow-up probing
experiment in §6.

The Log-linear language provides a useful
inductive bias to language modeling. On the

contrary, the Log-linear language gives reasonably
lower perplexities compared to Random weights
(Figure 2a). This indicates that knowing the exis-
tence of statistical dependency within a sentence,
or learning to predict tokens from the cooccurrence
information, is a useful inductive bias even though
the cooccurrence statistics is not necessarily in line
with L2.

We do not observe the importance of the
nested structure in the Parenthesis languages.
Papadimitriou and Jurafsky (2020) showed that
LSTM encoders trained on the Flat Parenthesis and
Nesting Parenthesis structures do not provide a sig-
nificant difference in perplexity, and concluded that
simple non-hierarchical head-dependent-type rela-
tions are important in LSTM language processing.
A similar observation can be made in Figure 2b:
although the Nesting Parenthesis exhibits the lower
average score, there is no significant difference
between Flat Parenthesis and Nesting Parenthesis
(232.9£30.0 vs. 203.8+ 7.7, p > 0.01 in Welch’s
t-test) with the unstable results of Flat Parenthesis.
Also, the trend of the average scores is reversed in
Transformer: the Nesting Parenthesis exhibits the
higher average score (212.4 £ 8.8) than Flat Paren-
thesis (191.9 4 11.8), which makes it difficult to
draw a consistent conclusion from here.
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However, the Dependency languages suggest
that the nested structure is actually important
in language modeling. While the Parenthesis lan-
guage represents dependency relations with two
identical tokens (e.g., “4543” and “4543”), our
Dependency language represents relations with two
different tokens (e.g., “<4543” and “4543>").
We expect that expressing dependency relations
with two different tokens is closer to natural lan-
guage and thus provides more viable insights into
natural language. When we compare the scores of
the Dependency languages, Nesting Dependency
provides the lower and more stable perplexity than
Flat Dependency with LSTM (175.7 & 4.3 vs.
187.2410.7) and the significantly lower score with
Transformer (160.6+1.6 vs. 175.7+4.3,p > 0.01
in Welch’s t-test). Overall, Nesting Dependency
performs best among other artificial languages, in-
dicating our Dependency language is closer to nat-
ural language and the nested structure is useful for
language modeling.

S Masked Language Model Pretraining
with Artificial Language

We proceed to investigate transfer learning from
artificial languages in one of the most successful
pretraining paradigms, masked language modeling
(MLM) (Devlin et al., 2019) to see if we can ob-
serve similar trends to what we see in the CLM
experiment (§4).

5.1 Experimental Setups

Pretraining. To allow for fast experimentation, we
train small Transformer encoders. The size of word
embeddings is set to 300 and the encoders have
three layers (further details in Appendix C). The
pretraining datasets are the same as in §4.1.
Downstream Task. We evaluate the pretrained en-
coders with dependency parsing to see if the struc-
tural knowledge learned with artificial language is
beneficial to predict the structure of natural lan-
guage. We use the English EWT dataset from
Universal Dependencies (UD) v2.8 (Nivre et al.,
2020)°.

Model. We adopt the biaffine graph-based parser
(Dozat and Manning, 2017) with the Transformer
encoder. The input word representations are the
concatenation of word embeddings and charac-
ter features computed by a character-level bi-
directional LSTM encoder (Ling et al., 2015). For

*https://universaldependencies.org/
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Figure 3: The downstream performance on two syntactic
tasks with the English EWT dataset. The two baselines
(From scratch and Random weights) are not pretrained,
and the others are the results of encoders pretrained with
masked language modeling.

the details on fine-tuning these models, please refer
to Appendix C.

5.2 Results

We provide two baseline models trained from
scratch and trained with random encoder weights.
For each pretraining language, we again train three
encoders and fine-tune three models for each, and
take the mean and standard deviation of the nine
models. Figure 3 shows the results.

The unstructured languages do not provide
useful transferable knowledge for dependency
parsing. The Uniform, Zipf, and Log-linear en-
coders perform comparably to or worse than the
Random weights baseline. This is in contrast with
the causal language modeling task, where the Log-
linear language at least outperforms the Random
weights baseline (§4.2).

On the other hand, learning from structured
languages seems to be important in dependency
parsing. The Dependency encoders outperform the
Random weights baseline, and also we can observe
that learning from the nesting structure is more
effective than the flat structure, and Dependency
languages outperform Parenthesis languages, as
observed in the CLM in §4.

6 How much contextual information do
the pretrained encoders capture?

In the previous sections, we have seen that the en-
coders pretrained with different artificial languages
exhibit various degrees of transferability to natural
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language. In this section, we try to explain why
pretraining with some artificial languages is bet-
ter or worse for the transfer to natural language
from the perspective of the amount of contextual
information in the encoder outputs.

The intuition is, for example, if a pretrained en-
coder has learned to discard the input information,
we cannot expect the encoder to perform well when
transferred to any tasks. Also, existing studies show
that neural language models assign more impor-
tance to local context when they make predictions
(Khandelwal et al., 2018; Lai et al., 2020). Can
we observe that encoders pretrained with artificial
languages exhibit similar patterns to natural lan-
guages regarding how they encode the contextual
information?

6.1 Experimental Setups

We investigate how much contextual information
can be extracted from the outputs of the pretrained
encoders by setting up a simple probing task. In
this task, the encoder is asked to recover the identity
of the contextual words given the contextualized
vector of a target word.

Specifically, we first randomly generate 100K
sequences of integers with the length of 15 ~ 25
(close to most frequent sequence lengths in the
pretrained corpus) with the vocabulary size 100 and
split them into training (90K sequences), validation
(5K) and test (5K) sets.

Then we simultaneously train several linear clas-
sifiers, each of which predicts the ID of the context
word at a fixed relative position to the target word
in the sequence, on top of a frozen pretrained en-
coder. For the encoders pretrained with CLM in §4,
the target word is the last word in sequences and
the classifiers predict the words at the positions of
[-9, -4, -3, -2, -1, 0]; for the encoders pretrained
with MLM in §5, the target word is the middle
word and the classifiers predict the words at [-6, -3,
-2,-1,0,1,2,3,6].

After training, we measure the accuracy of pre-
dicting the words at each position on the test set
and interpret this as how much information on each
contextual word the encoder preserves.

6.2 Results

Figure 4 summarizes the results of the encoders
trained in §4 and §5.

The amount of the encoded contextual infor-
mation can explain the transfer performance in
some obvious cases. In the experiment of CLM

(Figure 2a), we observed that the Uniform and Zipf
encoders tend to perform worse even than Ran-
dom weights. Figure 4a and 4d demonstrate that
their poor performance is because the encoders
are trained to discard the input information. The
Uniform and Zipf encoders tend to preserve less
contextual information even than Random weights
because capturing the contextual information does
not lead to solving the pretraining task in these
languages.

On the other hand, if words are predictable from
the context, encoders are encouraged to learn to
preserve the contextual information. The Log-
linear encoders trained with CLM encode a de-
cent amount of the contextual information (Fig-
ure 4a and 4d) and also performed best among the
unstructured artificial languages in CLM (Figure
2a). Moreover, encoders trained with natural lan-
guages (Figure 4c, 4f and 41) capture not only the
local context well (at distance 0 ~ 2) but also a
modest amount of the farther context (at distance
3 ~), which is consistent with the existing obser-
vation that LSTM encoders trained with natural
language are better at memorizing the inputs than
ones trained with randomly sampled data (Liu et al.,
2018). In these cases, the downstream performance
and the amount of the encoded contextual informa-
tion seem to be correlated.

However, this trend is not as clear when compar-
ing the structured artificial languages. For exam-
ple, the Nesting Dependency encoders perform the
best for the downstream tasks among the structured
artificial languages but do not necessarily in the
probing task (Figure 4b and 4e).

The nesting structure seems to facilitate en-
coders to remember the local context with MLM.
The difference between the Nesting and Flat lan-
guages is striking in Figure 4f. The Nesting en-
coders are consistently better at capturing the lo-
cal contextual information (at positions —2 ~ 2)
than their flat counterparts, which may explain the
better performance of the Nesting encoders in de-
pendency parsing (Figure 3), given that the local
contextual information is particularly important to
predict the syntactic characteristics of words (Levy
and Goldberg, 2014; Ri and Tsuruoka, 2020).

7 Discussion and Future Work

In this paper, we studied what kind of structural
properties in pretraining data is useful to train en-
coders for natural language tasks. We have found
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Figure 4: The accuracy of the task of recovering the contextual words from the encoder output of target words.

that to achieve decent results, L1 needs at least sta-
tistical dependency in a sentence (§4), and having
the head-to-tail dependency with the nesting struc-
ture is further beneficial (§4 and §5). The probing
experiment in §6 suggests that the encoders trained
with languages with the above characteristics are
good at capturing the positions and identities of the
context words.

From these observations, we suggest a tentative
answer to the initial research question: what knowl-
edge in pretrained encoders are transferred across
different languages? That is position-aware context
dependence of language, in other words, “tokens
in a sequence can be characterized by its neigh-
bor tokens at specific positions”.

We think that it can explain the success of trans-
ferring the encoder across languages to some extent.
To solve natural language tasks, it is often useful
to characterize words in a sentence by the words
around them. For example, to understand the se-
mantics of a sentence, it would be useful to look
for the subject by looking for a noun that precedes

the word is; to parse a sentence, a word can be iden-
tified as a noun because it follows the article the.
If the encoder computes the output representation
of a word in a sentence by aggregating the infor-
mation from its surrounding words, that should be
a useful inductive bias to solve most NLP tasks
in any language. Also, it is easy to imagine that
the knowledge of position-aware context depen-
dence gives a reasonable prior for solving sequence
modeling problems in other domains, which may
explain the success of cross-modality transfer of
language models (Lu et al., 2021; Reid et al., 2022).

Of course, we do not expect that the knowledge
of position-aware context dependence explains ev-
ery aspect of the success of cross-lingual transfer.
As future work, we need further investigation for
a more fine-grained view of the transferred knowl-
edge. Important questions include how much the
model size affects the transferability of the encoder
or if there is any difference in the knowledge trans-
ferred among different downstream tasks.
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Appendix for “Pretraining with Artificial
Language: Studying Transferable
Knowledge in Language Models”

A Generating the Nesting Structure

In the Nesting languages introduced in §3.2.3, to-
kens are ordered in a way that any dependency arcs
in a sequence are not crossed. This is realized by
the stack-based algorithm in Algorithm 1. We set
the probability of closing a dependency pair to 0.4
following Papadimitriou and Jurafsky (2020).

Algorithm 1 Generating a sentence from the Nest-
ing Dependency language.

Input: input_pairs: Stack[(w, w)]]
Output: sentence: List[w]
1: closing_stack =[]
2: while not input_pairs.is_empty() do
3: Uniform sampling p ~ [0, 1]

4 if closing_stack.is_empty() or p < 0.4 then
5 head, tail = input_pairs.pop()

6: sentence.append(head)

7 closing_stack.push(tail)

8 else

9 tail = closing_stack.pop()
10: sentence.append(tail)
11: end if

12: end while

13: while not closing_stack.is_empty() do
14: tail = closing_stack.pop()

15: sentence.append(tail)

16: end while

17: return sentence

B Details of Causal Language Modeling
Task

B.1 Model configuration

For the experiment with causal language modeling
(§4), we set the number of layers of the LSTM and
Transformer encoders to 3 and configure them so
that they have the same number of parameters (2.1
M parameters without the embedding and output
projection layers). The details of configuration are
shown in Table 1 and Table 2.

The weights of the output projection layer are
tied with the word embedding layer (Press and
Wolf, 2017). Note that, to enable this, the LSTM
encoder has an additional linear layer to project the
hidden vector (294 dim) to the input size (300 dim),
which the Transformer encoder does not have.

# of layers 3
input size 300
hidden size 294

Table 1: Configuration of the LSTM encoder.

# of layers 3
size 300
feedforward size 600
# of attention heads 4

Table 2: Configuration of the Transformer encoder.

B.2 Optimization

We optimize the pretrained models for 10k steps
with 12.8 M sentences and the batch size of 128
using AdamW (Loshchilov and Hutter, 2019). We
use the the Noam Learning rate scheduler described
in Vaswani et al. (2017) with the warmup steps
of 4000, and the other hyper-parameter details
are shown in Table 3. We use the same hyper-
parameters for fine-tuning with the L2 language.

Name Value
Pretraining minimum sentence length 6
Pretraining maximum sentence length 60
Dropout 0.1
Weight decay 0.01
Adam (3 0.9
Adam (5 0.98
Adam € le-9
Gradient clipping 0.25

Table 3: Hyper-parameters for pretraining.

C Details of Masked Language Modeling
Task

C.1 Model configuration

For the experiment with masked language model-
ing (§5), we set the number of layers of the Trans-
former encoders to 3. The details of configuration
are shown in Table 4 (2.1 M parameters without
the embedding and output projection layers).

The hyper-parameters for the masked language
modeling task is shown in Table 5. For optimiza-
tion, we used the same hyper-parameters as in Ap-
pendix B.2.
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# of layers 3
size 300
feedforward size 600
# of attention heads 4

Table 4: Model configuration of the Transformer en-
coder.

Mask probability for words 15%
Random-word probability for words 10%
Unmasked probability for words 10%

Table 5: The hyper-parameters for masked language
modeling.

D Computing Infrastructure

We ran the experiments on a server with a Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPU and
10 NVIDIA TITAN Xp GPUs. Each pretraining
and finetuning were run with a single GPU.
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