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Abstract

In this paper, we propose SkipBERT to accel-
erate BERT inference by skipping the compu-
tation of shallow layers. To achieve this, our
approach encodes small text chunks into inde-
pendent representations, which are then mate-
rialized to approximate the shallow representa-
tion of BERT. Since the use of such approx-
imation is inexpensive compared with trans-
former calculations, we leverage it to replace
the shallow layers of BERT to skip their run-
time overhead. With off-the-shelf early exit
mechanisms, we also skip redundant computa-
tion from the highest few layers to further im-
prove inference efficiency. Results on GLUE
show that our approach can reduce latency
by 65% without sacrificing performance. By
using only two-layer transformer calculations,
we can still maintain 95% accuracy of BERT.1

1 Introduction

Pre-trained language models, such as ELMo (Pe-
ters et al., 2018), GPT (Radford et al., 2018), BERT
(Devlin et al., 2019), XLNet (Yang et al., 2019),
and RoBERTa (Liu et al., 2019), have yielded sig-
nificant improvements to NLP tasks. Despite the
gain in accuracy, these models have significant de-
mands in computation and inference time, limit-
ing their use in resource-constrained or latency-
sensitive applications. Therefore, it is desirable to
reduce the computational overhead of these models
while retaining acceptable accuracy.

Knowledge distillation (KD, Hinton et al. 2015)
facilitates the transfer of knowledge embedded in
pre-trained language models into small student
models (Sanh et al., 2019; Sun et al., 2019; Jiao
et al., 2020), which usually reduces the redundant
parameters of BERT in a uniform manner. Early
exit mechanisms (Xin et al., 2020; Zhou et al.,

∗ Corresponding author
1Source code is available at https://github.com/

LorrinWWW/SkipBERT.
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Figure 1: Comparison of inference between BERT and
SkipBERT. The computation of shallow (lower) layers
of SkipBERT are skipped by searching PLOT.

2020; Liu et al., 2020) then use an adaptive num-
ber of transformer layers during inference, aiming
to reduce redundant calculations from the highest
few layers. However, since they build the sequence
representation from scratch for each forward pass,
they require a certain number of lower layers to
capture basic syntactic and semantic information,
making it difficult to further reduce inference costs.
This naturally raises a question: Can we reduce the
computation at the lower transformer layers?

In this paper, we propose SkipBERT, a novel
scheme that skips the computation at the shallow
transformer layers of BERT. As revealed by Jawa-
har et al. (2019); Rogers et al. (2020), the lower
layers of BERT mainly focus on short-distance
context, while the higher layers are able to capture
long-range dependencies. Therefore, it is reason-
able to assume that, at lower layers, even if distant
tokens are masked, the representation for each to-
ken will not vary dramatically. Here, by sweeping
over the input text, we get short chunks (n-grams)
and use their representations to approximate the
hidden states of BERT’s lower layers. We then pre-
compute and store representations of text chunks in
a precomputed lookup table (PLOT). Thus, during
inference we only need to access PLOT to get the
representations of short chunks, which is inexpen-
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sive compared with transformer computation.
Fig. 1 compares the inference procedure be-

tween vanilla BERT and our proposed SkipBERT.
In BERT, the input text needs to be processed by
a large number of transformer layers in turn, lead-
ing to high latency in inference. In comparison,
SkipBERT precomputes the hidden states of lower
transformer layers, which are accessed via table
lookups, rather than computed in inference-time.

Moreover, SkipBERT exhibits effective compati-
bility with early exit mechanisms: Since the initial
sequence representation in our work is partially
contextualized (thanks to PLOT) rather than indi-
vidual word embeddings, SkipBERT allows exiting
from a relatively earlier layer than typical BERT
variants, while maintaining good accuracy. We em-
pirically verify this in Section 4.5. Therefore, our
approach can skip the calculations of lower and
higher layers for the same input, thereby further
improving the inference speed.

Our contributions are listed as follows:

• We present SkipBERT to avoid computation at
BERT’s lower layers during inference. Instead,
we construct PLOT and use it to approximate
their hidden states.

• We incorporate early exit mechanisms as an
enhancement to skip redundant computation,
leading to further network acceleration.

• We conduct extensive experiments on GLUE.
Compared with BERT, SkipBERT is capable
of accelerating inference by up to 65% without
compromising GLUE score, or accelerating by
82% while retaining 95% accuracy.

2 Related Work

Knowledge Distillation (Hinton et al., 2015) pro-
vides an effective way to transfer the knowl-
edge embedded in a teacher network to a student
network. The student network is usually more
lightweight than the teacher network and thus more
computationally efficient. The student network can
be structurally identical to the teacher but contains
fewer layers or hidden units, e.g. BERT-PKD (Sun
et al., 2019), DistilBERT (Sanh et al., 2019), Tiny-
BERT (Jiao et al., 2020), MiniLM (Wang et al.,
2020), and BERT-EMD (Li et al., 2020). Mean-
while, some work adopts specifically designed net-
works, e.g. SqueezeBERT (Iandola et al., 2020)
and MobileBERT (Sun et al., 2020), to reduce the
computation per layer.
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Figure 2: The overview of our system during inference.
PLOT stores hidden states of the local transformer lay-
ers. The global transformer layers are enhanced with
early exit mechanisms.

Input-adaptive inference allows models to
choose different computational paths according to
the input during inference. In this way, simpler
input samples usually require less calculation to
make predictions. Recently, DeeBERT (Xin et al.,
2020) adapts confidence-based BranchyNet (Teer-
apittayanon et al., 2016), which uses entropy as an
early-exit criterion. FastBERT (Liu et al., 2020)
uses self-distillation to train the branch classifiers.
RightTool (Schwartz et al., 2020) leverages the
same early-exit criterion as in the Shallow-Deep
Network (Kaya et al., 2019), i.e., softmax scores of
predictions. PABEE (Zhou et al., 2020) stops infer-
ence when the intermediate predictions of the inter-
nal classifiers remain unchanged consecutively.

Precomputation has also been studied in infor-
mation retrieval, where documents are assumed to
be stored at local database so their representation
can be precomputed (Gao et al., 2020). However,
this method may not be suitable for other tasks
where the input text is unknown before inference.

3 Model

During training, SkipBERT consists of two groups
of transformer layers, local transformer layers for
encoding short-distance context, and global trans-
former layers for leveraging the full context. Once
pre-training finishes, our approach will replace lo-
cal transformer layers with PLOT, which stores the
hidden states of local transformer layers; we also
enhance global transformer layers with early exit
mechanisms to further accelerate inference speed.
Fig. 2 presents the overview of our system.
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3.1 Preparing Inputs

We define the input text as a sequence of tokens
x = [xi]0≤i<n in BERT’s input style, where n is
the number of input tokens.

As shown in Fig. 3, we sweep over the input
text to get three-token chunks (tri-grams, Xi =
[xi−1, xi, xi+1]), which will also be taken as the
index entries of PLOT later. We let cross-border
tokens be padding tokens, i.e. x−1 = xn = x[PAD].

We show in Section 4.8.2 that using longer text
chunks (e.g. 5-grams) will improve accuracy since
they can bring more context information than tri-
grams. However, the number of 5-grams is too
large to be enumerated and stored, and thus it is
hard to use them in actual applications.

3.2 Leveraging Local Context

Fig. 3 illustrates our procedure to leverage local
context. By mapping each word to a d-dimensional
embedding, we denote the chunk embeddings by
X̃i ∈ R3×d. For local transformer layers, we inject
position embeddings P ∈ R3×d, and define the
initial chunk representations as follows:

H
(0)
i = LN(X̃i + P ) (1)

where LN(·) is layer normalization.
We use Lloc transformer layers to leverage the

local context of each text chunk. For layer 0 ≤
m < Lloc, we have:

H
(m+1)
i = Transformer(m)(H

(m)
i ). (2)

Note that since each chunk is short enough, it
would be possible to precompute these represen-
tations before inference. More importantly, these
representations are good approximations of those
produced by the respective shallow layers of BERT.
Thus, given a tri-gram, the embedding produced
from (Lloc − 1)-th layer is taken as its respective
data entry stored in PLOT. We also precompute
bi-grams and uni-grams following the same proce-
dure of tri-grams. When a lookup of tri-gram fails
(out-of-vocabulary, OOV), the system will resort to
bi-grams or uni-grams as an alternative.

Specifically, we randomly replace δ% of tri-
grams by bi-grams during training. On the one
hand, such random replacement allows the model
to encounter bi-grams during training, so as to bet-
ter handle OOVs in inference; on the other hand, it
can also be considered a variant of Dropout (Srivas-
tava et al., 2014), which drops tokens rather than

Transformer LayerTransformer LayerTransformer Layer

Transformer LayerTransformer LayerTransformer Layer

Transformer LayerTransformer LayerTransformer Layer

... ...

Figure 3: Illustration of how we leverage the local
context for token xi. Yellow-bordered boxes indicate
embeddings that interact with token xi; grey-bordered
boxes are independent of xi.

hidden units, thereby improving the robustness of
our approach. Section 4.7 shows δ = 10% works
well with different OOV rates. We also show in
Section 4.8.2 that even bi-grams have a clear ad-
vantage over the baseline, which can be seen as an
extreme case when all tri-gram lookups fail.

3.3 Aggregating Text Chunks
Now we get a list of contextualized chunk embed-
dings. Here we aggregate them to form a feature
sequence corresponding to the original input text.

Each token occurs at three consecutive tri-grams,
as shown in Fig. 3. By calculating a weighted sum
of embeddings that correspond to the same token,
we can leverage its context of five tokens:

h̃i =
∑

j=−1,0,1

H
(Lloc)
i+j,1−j · Gate(H(Lloc)

i+j,1−j), (3)

where Gate(·) is a sigmoid-based gating mecha-
nism such that Gate(x) = σ(vG · x + bG), where
vG is a learnable vector and bG is a learnable scalar.

Note that these embeddings do not have a sense
of the order of the sequence. So we need to inject
position and segment embeddings before sending
them to the subsequent transformer layers:

h
(0)
i =

{
LN(h̃i + p̃i + s̃A), if xi ∈ A,
LN(h̃i + p̃i + s̃B), if xi ∈ B,

(4)

where p̃i and s̃A/B are position and segment em-
beddings respectively as in Devlin et al. (2019).

3.4 Leveraging Global Context

We denote by h(0) = [h
(0)
i ]0≤i<n the aggregated

sequence representation. We use Lglo transformer
layers to further contextualize it. For layer 0 ≤
m < Lglo, we have:

h(m+1) = Transformer(m+Lloc)(h(m)). (5)
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Since we focus on text classification and regres-
sion tasks, we use the representation corresponding
to token x[CLS] to compute logit scores:

z = Classifier(h(Lglo)
[CLS]) (6)

where Classifier(·) is a two-layer feedforward neu-
ral network.

When an early exit mechanism is activated, we
compute logit scores for each global transformer
layer as follows:

z(m) = Classifier(m)(h
(m)
[CLS]) (7)

We adopt a simple confidence-based early exit
mechanism, i.e., once the prediction’s maximum
logit score is higher than a pre-defined threshold,
the result will be returned without passing through
the next transformer layers.

3.5 Training
We mainly adopt the two-stage learning proce-
dure proposed in TinyBERT (Jiao et al., 2020). It
includes general distillation (GD) conducted on
large-scale unlabeled corpora, and task-specific dis-
tillation (TD) to learn from fine-tuned BERT.

General Distillation We perform distillation on
the hidden states and attention scores. We com-
pute loss on the chunk aggregation layer and global
transformer layer. The local transformer layers are
trained with supervision signals from upper layers.
The loss is defined as follows:

LGD = Latt + Lhid (8)

and we define Latt and Lhid as the mean-squared
error (MSE) of attention scores and hidden states
between the teacher (T) and student (S):

Latt =

Lglo∑
m=1

MSE(a(m)
S ,a

(gatt(m))
T ) (9)

Lhid =

Lglo∑
m=0

MSE(h(m)
S W hid,h

(ghid(m))
T ) (10)

where a(m+1) and h(m+1) represent the attention
score matrix and hidden states of the m-th trans-
former layer; h(0) is the outputs of chunk aggrega-
tion layer; W hid is a learnable matrix to transform
the hidden states of the student into the same space
as the teacher; gatt(·) and ghid(·) define the layer
mapping function between the student and teacher.

For attention-based distillation, we use the uni-
form mapping strategy to leverage the heteroge-
neous attention patterns across different layers. For
hidden states-based distillation, we use top map-
ping strategy since the initial sequence represen-
tation (outputs of chunk aggregation) are already
partially contextualized. The detailed illustration
of layer mapping is presented at Appendix E.

Task-Specific Distillation We start from the
generally distilled SkipBERT, and use fine-tuned
BERT as the teacher for task-specific distillation.
The loss is defined as follows:

LTD = β(Latt + Lhid) + Lpred (11)

where β is a factor to control the loss weight; Lpred
is the prediction loss that will be defined below.

For classification, the loss function Lpred is cal-
culated via cross entropy:

Lpred = CE(zS/τ, zT/τ) (12)

where zS are the logits predicted by the student;
zT are the logits predicted by the teacher; τ is the
temperature to smooth the probability distribution
to facilitate distillation training. For regression, the
loss is instead calculated by MSE, i.e., Lpred =
MSE(zS, zT).

Early Exit Specifically, when SkipBERT enables
early exit mechanisms, we need to train internal
classifiers to predict based on the hidden states of
their respective layers. Overall, we train the model
to minimize a weighted average loss as follows:

Lpred =

∑Lglo
m=1mL

(m)
pred∑Lglo

m=1m
(13)

where L(m)
pred is the loss between the predictions of

the teacher and the m-th intermediate classifier of
the student.

3.6 Constructing PLOT
Considering that the local transformer layers
mostly capture generalized knowledge, which do
not vary significantly across different tasks, we
do not update the local transformer layers during
fine-tuning. Therefore, once general distillation
is finished, we can compute their hidden states to
construct PLOT.

To ensure fast response, PLOT should ideally be
loaded in the server’s RAM during inference. How-
ever, such a table could be too large to fully fit into
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Model MACs Latency GLUE CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI
Score (8.5k) (67k) (3.5k) (5.7k) (364k) (393k) (108k) (2.5k) (0.6k)

BERT12 10.9G 100% 78.3 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 65.1

BERT6-PKD 5.4G -49% - 43.5 92.0 85.0 -/81.6 70.7/- 81.5/81.0 89.0 65.5 -
DistilBERT6 5.4G -49% - 49.0 92.5 86.9 -/81.3 70.1/- 82.6/81.3 88.9 58.4 -
BERT-of-Theseus6 5.4G -49% 77.1 47.8 92.2 87.6/83.2 85.6/84.1 71.6/89.3 82.4/82.1 89.6 66.2 65.1
TinyBERT6v2 5.4G -49% - 46.1 92.6 88.0/- -/83.9 71.3/- 84.4/83.1 89.8 69.7 -
BERT-EMD6 5.4G -49% 78.7 47.5 93.3 89.8/86.4 87.6/86.8 72.0/89.3 84.7/83.5 90.7 71.7 65.1
SkipBERT6+6 5.4G -49% 78.9 52.7 93.3 88.9/85.0 87.0/85.8 71.9/89.2 84.3/84.2 90.6 70.6 65.1

w/ exit 3.7G -65% 78.3 50.8 91.9 88.6/84.8 86.7/85.4 71.8/89.0 83.8/83.8 90.2 69.8 65.1

BERTmini4 0.4G -66% 65.8 0.0 85.9 81.1/71.8 75.4/73.3 66.4/86.2 74.8/74.3 84.1 57.9 62.3
BERTsmall4 1.6G -66% 71.2 27.8 89.7 83.4/76.2 78.8/77.0 68.1/87.0 77.6/77.0 86.4 61.8 62.3
DistilBERT4 3.6G -66% - 32.8 91.4 82.4/- -/76.1 68.5/- 78.9/78.0 85.2 54.1 -
BERT4-PKD 3.6G -66% - 24.8 89.4 82.6/- -/79.8 70.2/- 79.9/79.3 85.1 62.3 -
TinyBERT4v2 0.6G -66% - 25.3 90.0 85.4/- -/80.4 68.9/- 81.2 80.3 86.2 63.9 -
BERT-EMD4 0.6G -66% 73.6 25.6 91.0 87.6/82.4 83.6/82.3 69.3/87.9 82.1/80.6 87.2 66.2 65.1
SkipBERT6+4 0.6G -66% 75.6 39.8 91.3 87.7/82.7 84.1/82.8 70.4/88.3 82.0/81.6 88.5 66.1 65.1

w/ exit 0.5G -74% 75.1 36.0 91.2 87.6/83.5 84.1/82.8 70.4/88.3 81.9/81.3 88.5 64.8 65.1
SkipBERT6+2 1.8G -82% 74.0 36.0 90.9 85.9/80.5 82.0/80.6 70.2/88.6 80.2/79.9 86.6 63.6 65.1

Table 1: Results on the GLUE benchmark. MACs are multiply–accumulate operations of text with 128 tokens. The
results of DistilBERT4, BERT-PKD, TinyBERTv2 are taken from Li et al. (2020). The results of BERTmini4/small4
are taken from google-research/bert. The result of DistilBERT6 is taken from (Jiao et al., 2020). Others are taken
from the official GLUE website. “w/ exit”: enabling the early exit mechanism.

RAM. Hence we propose to adopt memory-mapped
files (mmap), which allows for file access via the
virtual memory mechanism. By using mmap, the
frequently used chunk embeddings reside in RAM
for fast lookup, while the rare chunks can be stored
on SSD, and will be loaded to RAM only when the
system demand-pages them. Appendix D presents
a simple implementation of PLOT.

4 Experiments

4.1 Data

We use the corpora of Wikipedia2 and BooksCor-
pus3 (Zhu et al., 2015) to perform general distil-
lation. For task-specific distillation, we mainly
evaluate SkipBERT and compare it with other base-
lines on the GLUE benchmark (Wang et al., 2018).
Appendix F provides some details.

4.2 Setup

We denote by SkipBERT6+6 the scheme with 6 lo-
cal transformer layers (converted to PLOT) and 6
global transformer layers, each having a hidden
size of 768 and intermediate size of 3072. For di-
rect comparisons with 4-layer baselines, we instan-
tiate SkipBERT6+4 with 4 thin global transformer
layers (hidden size of 312 and intermediate size of
1200). We also instantiate SkipBERT6+2 with only

2https://dumps.wikimedia.org/
3https://yknzhu.wixsite.com/mbweb

2 global transformer layers to further reduce the
latency. Appendix C presents detailed settings.

Training For general distillation, we randomly
initialize SkipBERT, and pre-train it with Lamb
optimizer (You et al., 2019). We use linear learning
rate decay with the peak learning rate of 1e-3 and a
batch size of 2048 for around 80k steps, including
4000 warm-up steps.

For task-specific distillation, under the super-
vision of a fine-tuned BERT, we use AdamW
(Kingma and Ba, 2015) to train 20 epochs with
a learning rate of 2e-5. We slightly tune the hyper-
parameters across different tasks, and the details
can be found in Appendix B. We do not use any
data augmentation strategies.

Inference Following prior work, we evaluate la-
tency by performing inference on a per-instance
basis, i.e. the batch size for inference is set to 1.
This is a common latency-sensitive scenario when
processing individual requests from different users.
We note that latency on modern GPUs is not sensi-
tive to the hidden size, but mainly depends on the
number of sequential operations, i.e. the number of
network layers. We report the median performance
over 5 runs with different random seeds.

4.3 Results on GLUE

We submitted our model predictions to the official
GLUE evaluation server4 to obtain results on the

4https://gluebenchmark.com/
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test set, as summarized in Table 1. We present the
results of TinyBERT v2 reported by Li et al. (2020)
as the v2 model employs more training corpora
than v1, and they eliminate the data augmentation
strategy for a fair comparison.

By comparing with baselines (we compare with
6-layer models and 4-layer models separately), we
can see that SkipBERT outperforms all compared
approaches in terms of GLUE score. Compared
with TinyBERT, as we mainly follow their distilla-
tion process, our approach shows clear advantages
on all tasks. BERT-EMD employs a more sophis-
ticated task-specific distillation process based on
general-distilled TinyBERT, and further improves
the overall performance. Nevertheless, SkipBERT
still maintains an advantage in the overall score.

Specifically, SkipBERT6+4 has a similar infer-
ence speed to the 4-layer baselines, but achieves
higher accuracy on most tasks. We consider that
a 4-layer model is somewhat too shallow to cap-
ture complex dependencies from scratch. In con-
trast, SkipBERT effectively compensates by adding
“more layers” in effect, even though their computa-
tion is skipped by PLOT search during inference.
These layers are useful to capture the basic linguis-
tic information, thereby reducing the burden on
subsequent layers. Moreover, our method can fur-
ther reduce the latency with only a slight loss in
accuracy. SkipBERT6+2 which performs only two-
layer transformer calculations maintains accuracy
comparable to 4-layer models.

For the 6-layer track, TinyBERT and BERT-
EMD both achieve performance comparable to the
teacher model. However, SkipBERT6+6 also shows
competitive results, especially for the challenging
CoLA task (predicting linguistic acceptability judg-
ments), on which previous methods do not work
well. The local transformer layers of SkipBERT
can effectively capture the short-distance grammat-
ical knowledge, e.g. subject-verb-object word order
and verbal argument structure, etc., which is con-
sidered crucial to CoLA (Warstadt et al., 2019).

The early exit mechanism, tagged by “w/ exit” in
Table 1, provides a flexible way to tune the speed-
accuracy tradeoff. With early exit enabled, both
SkipBERT6+6 and SkipBERT6+4 achieve further
improvements on inference speed with only a mi-
nor decrease in accuracy. More exploration will be
done in Section 4.5.

Model EM F1

BERT12 80.9 88.3

BERT4-PKD 70.1 79.5
DistilBERT4 71.8 81.2
TinyBERT4v1 72.7 82.1
TinyBERT4v2† 73.9 82.6
SkipBERT6+4 76.2 84.5

BERT6-PKD 77.1 85.3
DistilBERT6 78.1 86.2
TinyBERT6v1 79.7 87.5
TinyBERT6v2† 81.6 88.8
SkipBERT6+6 82.1 89.1

Table 2: Development results on SQuaD v1.1. Results
of BERT-PKD, DistilBERT and TinyBERTv1 are taken
from Jiao et al. (2020). † denotes our reproduction.

Figure 4: Accuracy-latency curve on the development
set of MRPC and SST-2. Both models are equipped
with the same early exit mechanism.

4.4 Results on SQuAD

We also investigate the effectiveness of SkipBERT
on the reading comprehension task, SQuAD v1.1
(Rajpurkar et al., 2016a). Following previous work,
we treat this task as sequence labeling and predict
the possibility of each token as the start or end of
answer span. Table 2 shows that SkipBERT out-
performs all the baselines with large margins. This
experiment shows that our approach also works
well for relatively complicated task forms.

4.5 Accuracy-Latency Curve

Here we investigate the compatibility between early
exit mechanisms and SkipBERT. We draw the
accuracy-latency curve by tuning the early exit
threshold. The goal is to enlarge the area un-
der the curve – so the model can maintain good
accuracy when the average exit layer is small.
Fig. 4 compares the results of TinyBERT4 v2 and
SkipBERT6+4, both using the same early exit mech-
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Operation MACs Latency
d = 768 / 312 d = 768 / 312

Retrieve Text Chunks - 155 µs / 114 µs
- Chunks to IDs - 31.4 µs
- Retrieve from mmap* - 22.8 µs / 18.4 µs
- Send to GPU - 101 µs / 64.1 µs

Aggregate Text Chunks - 48.4 µs / 42.7 µs
Each Transformer Layer 906M / 146M 1.22 ms / 1.18 ms
Each Classifier 591K / 98K 116 µs / 112 µs

Table 3: Breakdown of computation and average la-
tency of text with 128 tokens (including padding to-
kens). * varies depending on the input and cache mem-
ory, and we report the average value here.

Figure 5: Latency distribution of reading from mmap.
We evaluate on GLUE training sets, which include text
from various sources, to simulate realistic workloads.
We zoomed in on the long tail with RAM size of 64GB.

anism. We observe that SkipBERT consistently
outperforms TinyBERT on both MRPC and SST-
2. Specifically, the curve of SkipBERT is “flatter”
than that of TinyBERT, which indicates that even
if SkipBERT is forced to exit at a relatively shal-
low layer, it can still maintain a desirable accuracy.
Compared with baselines, our approach starts infer-
ence based on PLOT search results rather than from
scratch, so even at a lower layer, the representation
is well-learned for making predictions.

4.6 Breakdown of Computation and Latency

Table 3 presents the breakdown of computation and
average latency of SkipBERT. Detailed hardware
information can be found at Appendix A. We can
observe that the transformer layers account for the
majority of inference time.

We note that there may be some variation in the
latency of retrieving data from mmap, depending
on the cache memory managed by the operating
system. Fig. 5 presents the latency distribution of
retrieving chunks contained in a text sequence with

OOV: 0% 11.2% 14.5% 24.7%
PLOT size: - 168G 59.2G 12.1G

δ = 0% 88.0/91.4 87.0/90.6 86.3/90.1 85.8/89.6
δ = 5% 88.2/91.4 88.2/91.7 88.0/91.3 87.3/91.0
δ = 10% 88.2/91.6 88.0/91.4 88.0/91.4 88.0/91.2
δ = 20% 88.0/91.4 87.7/91.2 88.0/91.3 88.0/91.2

Table 4: Influence of space costs on the model accuracy.
An OOV here means a tri-gram which can not be found
at PLOT. We randomly replace δ% of tri-grams with
bi-grams during training. We evaluate on MRPC.

128 tokens under different RAM sizes. We perform
experiments in Docker containers to limit the RAM
size; more results can be found in Appendix G.
The upper half of Fig. 5 shows that with enough
RAM, the system can directly collect chunk em-
beddings from RAM, yielding latencies clustered
around 20 µs. Meanwhile, with a smaller RAM
as shown in the lower half of Fig. 5, most of the
latency is still around 20 µs but a small portion of
items take several hundred µs due to cache misses.
We also observe that the long tail of latency is
distributed in several clusters, mainly due to I/O
queuing. However, even under heavy I/O load, re-
trieving data from mmap takes less time than the
computation of a single transformer layer.

4.7 Space Costs and OOV

The previous sections prioritize accuracy and ef-
ficiency by sacrificing space. Reducing the space
costs (by dropping less frequent chunks) allows
users to use more economical hardware, but it will
lead to OOV issues which may compromise accu-
racy. Here we only count OOV for tri-grams, since
OOVs for bi-grams rarely occur (<0.5%) and have
little impact on the final performance.

We collect tri-grams on news corpora5 and train-
ing sets of GLUE to construct PLOT.

Table 4 shows results by reducing the space costs.
δ = 0% means that the model does not see any bi-
grams during training. In this case, if the model
encounters a tri-gram lookup failure and reverts
to bi-grams, the performance will suffer to some
extent. When we randomly replace δ% of tri-grams
with bi-grams during training, the model becomes
more robust to OOVs, and can even slightly im-
prove accuracy. We find δ = 10% works well for
all cases, and thus we use it as the default value.

Generally, our method can maintain the advan-

5The monolingual data from WMT 2011, http://www.
statmt.org/wmt11/translation-task.html
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Figure 6: Distribution of cosine similarity between tri-
grams and bi-grams.

Model CoLA MRPC MNLI

BERT4 23.7 85.0/89.6 79.8/79.6
FFN+BERT4 25.4 85.3/89.9 79.7/79.8
Conv+BERT4 24.1 84.6/89.6 79.6/79.7

SkipBERT2+4 28.6 86.0/90.0 80.5/81.0
SkipBERT4+4 31.4 86.0/90.2 80.9/81.1
SkipBERT6+4 32.9 86.3/90.4 80.9/81.1
SkipBERT8+4 32.4 85.0/89.5 81.0/81.2

Table 5: Effect of the number/type of skipped layers.

tage even if the OOV rate is at a moderate level. As
we will see later at Section 4.8.2, if we only use
bi-gram embeddings, i.e. the OOV rate is 100%,
our approach is still better than the baseline that
does not apply PLOT.

To understand why the backoff strategy, namely
to replace tri-grams with bi-grams for OOVs, does
not hurt accuracy, we investigate the similarity be-
tween them. As shown in Fig. 6, most of them are
similar, confirming the feasibility of our backoff
strategy; but there is also a long tail where bi-grams
cannot well compensate for the missing tri-grams.
Fig. 6 also shows some examples with different
similarities. Generally, auxiliary tokens that do
not contain much meaning by themselves tend to
rely more on context. Meanwhile, tokens rich in
semantics, e.g. noun phrases, do not vary much in
embedding under different ranges of context.

4.8 Ablation Study

We conduct an ablation study in this subsection.
We only pre-train SkipBERT on the Wikipedia cor-
pus for 1 epoch for fast validation. We also prepare
a generally distilled small BERT4 (the model archi-
tecture is identical to TinyBERT4) with the same
setup and corpus as a baseline. We report the re-
sults on the development set.

4.8.1 Tuning the Number of Skipped Layers
Table 5 compares the results with different num-
bers of local transformer layers. BERT4 is a base-

Model r.f. CoLA MRPC MNLI

BERT4 - 23.7 85.0/89.6 79.8/79.6

SkipBERT6+4
w/ 1-gram 1 23.5 85.3/89.5 79.8/79.5
w/ 2-gram 3 29.1 86.3/90.1 80.8/81.0
w/ 3-gram ctr. only 3 32.3 86.0/90.0 80.7/81.1
w/ 3-gram 5 32.9 86.3/90.4 80.9/81.1
w/ 5-gram ctr. only 5 31.9 87.5/91.2 81.2/81.4
w/ 5-gram 9 34.5 86.8/90.7 81.1/81.3

Table 6: Effect of short context. r.f.: receptive field
of local layers; ctr. only: only use the embedding of
the center token of each chunk; 5-gram results are com-
puted on the fly without using PLOT.

line that does not employ any skipping mechanism.
We can see that all settings that use additional
local transformer layers have better performance
than BERT4, indicating the effectiveness of our
approach. In general, the performance increases
when we gradually enlarge the number of local
transformer layers. CoLA benefits most from the
local transformer layers due to better modeling of
short-distance context. However, when it reaches
a certain number of local transformer layers, the
improvement becomes minimal. We believe that
since each token only has the context of five tokens,
too many layers may increase the risk of overfitting,
which harms the performance. Thus we adopt 6
layers as our default setting.

We also construct variants that replace local
transformer layers with a single-layer FFN or CNN,
which are computationally lightweight and thus
may not need precomputation. However, their ac-
curacy improvement against BERT4 is very limited,
which shows that even for short-distance context,
using a relatively complex and deep network is
beneficial to the final performance.

4.8.2 Effect of Short Context
We investigate the effect of short-distance context
leveraged in the local transformer layers of Skip-
BERT. Table 6 presents the comparisons of us-
ing different ranges of short-context in local trans-
former layers. 1-grams are equivalent to conven-
tional word embeddings, and the performance is
similar to the baseline. When using 2-grams, Skip-
BERT obtains notable improvements since each
token can now access its direct neighbors in local
transformer layers. 3-grams and 5-grams bring con-
sistent improvements to all tasks. Generally, the
results are improved when we broaden the recep-
tive field of local transformer layers, showing that
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more contexts are always beneficial. However, due
to its large number, it would be hard to enumerate
n-grams with n > 3. It might require certain prun-
ing or compression strategies, which we leave as
future work.

In addition, we also study the effect of the
weighted sum used in chunk aggregation, Eq. (3).
We add comparison against a variant that only
uses the embedding of the central token of each
chunk, denoted “ctr. only”. Table 6 shows that
the weighted sum brings improvements over all
tasks for the 3-gram setting. However, it is not
as effective for the 5-gram setting on MRPC and
MNLI. We believe using a weighted sum for five
chunks may confuse important semantics and thus
affect the accuracy; while for 3-gram setting, this
problem is not as serious, and using a weighted
sum for neighbor chunks can bring more context
information to improve the accuracy.

4.8.3 Effect of Distillation Objective

Model CoLA MRPC MNLI

SkipBERT6+4 32.9 86.3/90.4 80.9/81.1
w/o GD-att 29.9 81.9/87.2 81.3/81.6
w/o GD-hid 28.7 85.5/90.0 80.9/81.1
w/o TD-att 31.3 85.8/89.6 80.1/80.1
w/o TD-hid 30.5 85.8/89.9 80.4/80.1

Table 7: Effect of different distillation objectives.

We here show the effects of different distillation
objectives. We try to eliminate attention-based or
hidden state-based distillation. Results in Table 7
indicate that all distillation objectives are helpful
both in the general distillation and task-specific dis-
tillation process. In general distillation, both atten-
tion and hidden states-based distillation are critical
to the final performance of relatively small datasets,
e.g. CoLA and MRPC. But for large-scale datasets,
e.g. MNLI, removing attention based distillation
even improves the performance, which may imply
that the student model can benefit more from a fine-
tuned teacher model as long as the downstream task
has enough data.

In the task-specific distillation, the two distilla-
tion objectives are marginally helpful for CoLA and
MRPC, while acting more importantly for MNLI.
The original TinyBERT uses a data augmentation
strategy for all tasks during fine-tuning, which sig-
nificantly enlarges the training set and makes the
effect of task-specific distillation more significant.

5 Conclusion

In this paper, we proposed SkipBERT, a straightfor-
ward yet effective approach to skip the computation
of BERT’s shallow layers. We used representations
of short text chunks to approximate BERT’s shal-
low representation, and stored them in PLOT for
fast retrieval during inference. Empirical results
showed that SkipBERT could achieve performance
comparable to BERT while significantly reducing
inference time. In the future, we would like to lever-
age discontinuous text chunks to further improve
the accuracy and inference speed. We will also try
to reduce storage requirements with appropriate
pruning and compression strategies.
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A Hardware Information

Computation Related We test on Intel(R)
Xeon(R) Gold 6240C CPU with 24.75M Cache
and 2.60 GHz (3.90 GHz maximum). The GPU
model is Tesla V100 with 32GB Graphics RAM.

Data Retrieval Related The server has 384GB
RAM. We store PLOT as mmap files and read them
from SSD. The SSD used is Toshiba PX04PMC160
1.6TB with NVMe driver. It contains four caches
of Micron’s 5ME77 D9QBJ, DDR3L 1600 MHz.
Each one has 512MB capacity, and thus the four
make up a 2GB cache capacity. We also note that
the CPU used in the experiments contains 48 lanes
of PCIe 3.0 bandwidth and throughput for demand-
ing I/O-intensive workloads.

We attach below the results of random 4k read
benchmark on our SSD with fio,6 and it takes
107.24 µs on average to retrieve 4k data randomly,
which is in line with our latency tests.
4kQD32read: (groupid=4, jobs=1): err= 0: pid=330145:

Thu Sep 16 03:12:05 2021
read: IOPS=297k, BW=1162MiB/s (1218MB/s)(5000MiB

/4303msec)
slat (nsec): min=1335, max=89614, avg=1892.79,
stdev=790.98
clat (usec): min=24, max=497, avg=105.31, stdev
=28.29
lat (usec): min=26, max=499, avg=107.24, stdev
=28.33

B Fine-tuning Details

In this section, we introduce the detailed settings
during fine-tuning. We set the maximum sequence
length to 128 for the GLUE benchmark. We train
20 epochs with a learning rate of 2e-5. We choose
batch sizes from {16, 32}, and β from {0.1, 0.2}.

According to TinyBERT (Jiao et al., 2020), it is
useful to first perform the intermediate layer dis-
tillation (i.e. with no prediction loss) on the aug-
mented dataset using a fine-tuned teacher model for
several epochs. In our experiments, without data
augmentation, this strategy is still useful for CoLA,

6https://fio.readthedocs.io/en/latest/
fio_doc.html

SST-2, MRPC, STS-B, and RTE but not as useful
for other tasks. Specifically, we train additional
10 epochs with no prediction loss for CoLA and
STS-B, and 1 epoch for SST-2, MRPC, and RTE.

C Model Architecture

Table 8 presents the neural network architecture
of SkipBERT6+6, SkipBERT6+4 and SkipBERT6+2,
and we compare with BERT12 as a reference. The
local transformer layers of SkipBERT only appear
in the training phase, and we replace them with
PLOT in inference-time. We use the same set-
tings of local transformer layers for SkipBERT6+6,
SkipBERT6+4 and SkipBERT6+2, since they do not
affect inference speed. We reduce the hidden size
of SkipBERT6+4 so as to be able to compare with
recent 4-layer counterparts, and we add a linear
layer between local and global transformer layers
to match their hidden size. We also instantiate
SkipBERT6+2 with only 2 global transformer lay-
ers to further reduce the latency, where the hidden
size setting is the same to SkipBERT6+6.

D PLOT Implementation

N-gram to ID
Dictionary

("quick", "red", "fox")

Memmap
Array

Figure 7: Simple Implementation of PLOT

We here provide a simple implementation of
PLOT, as shown in Fig. 7. We store chunk represen-
tations in a mmap file as a huge numpy array7. We
use python built-in dictionary to map text chunks
(n-grams) to their corresponding IDs, which are the
offsets to their corresponding representations in the
mmap file. By such a two-step procedure, we can
get the chunk representation without transformer
layer computation.

7https://numpy.org/doc/stable/
reference/generated/numpy.memmap.html
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BERT12 SkipBERT6+6 SkipBERT6+4 SkipBERT6+2

Params 110M 110M 71M 81M

Global
Layers

MHA
dout



 768
12

768

 768
3072
768



×12



 768
12
768

 768
3072
768



×6



 312
12
312

 312
1200
312



×4



 768
12
768

 768
3072
768



×2

nhead
din

FFN
dout
dffn
din

Chunk Aggregation din/out 768 768 312 768

Local
Layers

Linear dout

-

-
(

312
768

)
-

din

MHA
dout



 768
12
768

 768
3072
768



×6



 768
12
768

 768
3072
768



×6



 768
12
768

 768
3072
768



×6

nhead
din

FFN
dout
dffn
din

Embedding demb 768 768 768 768

Table 8: The detailed model architecture of BERT12, SkipBERT6+6, SkipBERT6+4 and SkipBERT6+2. MHA: Multi-
Head Attention. FFN: Feed-Forward Networks. demb, din, dout, dffn, and nhead denote the embedding size, input
hidden size, output hidden size, FFN intermediate size, number of attention heads.

We note that the implementation of PLOT can be
extended to a distributed key-value store to support
parallel accesses and larger keys (longer n-grams)
with reasonable engineering efforts. We welcome
community participation to further optimize the
structure in the future.

E Distillation Layer Mapping

Fig. 8 presents the layer mapping of different Skip-
BERT variants.

We use the uniform mapping strategy for
attention-based distillation to leverage the hetero-
geneous attention patterns across different layers.
For SkipBERT6+6, we match the student’s atten-
tion scores with the attention scores of every two
transformer layers of the teacher (BERT-base). For
SkipBERT6+4, we match with every three trans-
former layers of the teacher. And for SkipBERT6+2,
we match the 3rd and 7th transformer layer of the
teacher.

We use the top mapping strategy for hidden
states-based distillation. That it, we match the stu-
dent’s hidden states with the top few transformer
layers of the teacher. Since the initial sequence
representation (outputs of chunk aggregation) are
already partially contextualized, SkipBERT can
learn from higher transformer layers of the teacher
while skipping shallow layers.

F Data and Tasks

We evaluate our approach on the GLUE benchmark.
This benchmark consists of a diverse set of 9 NLU
tasks:

CoLA Corpus of Linguistic Acceptability,
a single-sentence classification task to predict
whether a sentence can be accepted a grammati-
cally correct one. (Warstadt et al., 2019)

SST-2 Stanford Sentiment Treebank, a single-
sentence classification task to predict the sentiment
of movie reviews. (Socher et al., 2013)

MRPC Microsoft Research Paraphrase Corpus,
a paraphrase identification task to predict whether
two sentences are paraphrases of each other. (Dolan
and Brockett, 2005)

STS-B Semantic Textual Similarity Benchmark,
a regression task to evaluate the similarity of two
pieces of texts by a score from 1 to 5. (Cer et al.,
2017)

QQP Quora Question Pairs, a bi-sentence classifi-
cation task to determine whether two questions are
semantically equivalent. (Chen et al., 2018)

MNLI Multi-Genre Natural Language Inference,
a bi-sentence classification task. Given a pair of
premise and hypothesis, the task aims to predict
whether the hypothesis is an entailment, contra-
diction, or neutral with respect to the premise.
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Figure 8: Mapping between the teacher (BERT-base) and student. Red dotted lines indicate the layer mapping for
attention-based distillation; blue dotted lines indicate the layer mapping for hidden states-based distillation.

(Williams et al., 2018)

QNLI Question Natural Language Inference, a
bi-sentence classification task. Given a pair of ques-
tion and context, the task aims to predict whether
the context contains the answer to the question.
(Rajpurkar et al., 2016b)

RTE Recognizing Textual Entailment, a bi-
sentence classification task, determining whether
the meaning of one sentence is entailed from the
other sentence. (Bentivogli et al., 2009)

WNLI Winograd Schema Challenge, aiming to
predict if the original sentence entails the sentence
with the pronoun substituted. (Levesque et al.,
2011)

G Latency Distribution of Retrieving
Data from Mmap

We perform experiments in Docker containers
with different RAM limitations, including 256GB,
128GB, 64GB, and 32GB. We evaluate cases with
different hidden sizes, and the results are shown in
Fig. 9 and Fig. 10.
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(a) RAM=256GB, d=768

(b) RAM=128GB, d=768

(c) RAM=64GB, d=768

(d) RAM=32GB, d=768

Figure 9: Latency distribution (d=768)
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(a) RAM=256GB, d=312

(b) RAM=128GB, d=312

(c) RAM=64GB, d=312

(d) RAM=32GB, d=312

Figure 10: Latency distribution (d=312)

7301


