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Abstract

Grammatical Error Correction (GEC) should
focus not only on correction accuracy but
also on the interpretability of the results for
language learners. However, existing neural-
based GEC models mostly focus on improv-
ing accuracy, while their interpretability has
not been explored. Example-based methods
are promising for improving interpretability,
which use similar retrieved examples to gen-
erate corrections. Furthermore, examples are
beneficial in language learning, helping learn-
ers to understand the basis for grammatically
incorrect/correct texts and improve their confi-
dence in writing. Therefore, we hypothesized
that incorporating an example-based method
into GEC could improve interpretability and
support language learners. In this study, we
introduce an Example-Based GEC (EB-GEC)
that presents examples to language learners as
a basis for correction result. The examples con-
sist of pairs of correct and incorrect sentences
similar to a given input and its predicted cor-
rection. Experiments demonstrate that the ex-
amples presented by EB-GEC help language
learners decide whether to accept or refuse sug-
gestions from the GEC output. Furthermore,
the experiments show that retrieved examples
also improve the accuracy of corrections.

1 Introduction

Grammatical Error Correction (GEC) models,
which generate grammatically correct texts from
grammatically incorrect texts, are useful for lan-
guage learners. In GEC, various neural-based mod-
els have been proposed to improve the correction
accuracy (Yuan and Briscoe, 2016; Chollampatt
and Ng, 2018; Junczys-Dowmunt et al., 2018; Zhao
et al., 2019; Kaneko et al., 2020; Omelianchuk
et al., 2020). However, the basis on which a neural
GEC model makes corrections is generally uninter-
pretable to learners. Neural GEC models rarely ad-
dress correction interpretability, leaving language

Figure 1: EB-GEC presents not only a correction but
also an example of why the GEC model suggested this
correction.

learners with no explanation of the reason for a
correction.

Interpretability plays a key role in educational
scenarios (Webb et al., 2020). In particular, present-
ing examples is shown to be effective in improving
understanding. Language learners acquire gram-
matical rules and vocabulary from examples (Johns,
1994; Mizumoto and Chujo, 2015). Presenting ex-
amples of incorrect sentences together with correct
ones improves the understanding of grammatical
correctness as well as essay quality (Arai et al.,
2019, 2020).

Recently, example-based methods have been ap-
plied to a wide range of natural language process-
ing tasks to improve the interpretability of neu-
ral models, including machine translation (Khan-
delwal et al., 2021), part-of-speech tagging (Wise-
man and Stratos, 2019), and named entity recogni-
tion (Ouchi et al., 2020). These methods predict
labels or tokens by considering the nearest neigh-
bor examples retrieved by the representations of
the model at the inference time. Khandelwal et al.
(2021) showed that in machine translation, exam-
ples close to a target sentence in the representation
space of a decoder are useful for translating the
source sentence. Inspired by this, we hypothesized
that examples corrected for similar reasons are dis-
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Figure 2: An illustration of how EB-GEC chooses examples and predicts a correction. The model predicts a
correction “They have /a tremendous problem .” by using the example “This has /a tremendous problem .”
Hidden states of the decoder computed during the training phase are stored as keys, and tokens of the output
sentences corresponding to the hidden states are stored as values. A hidden state of the decoder (blue box) at the
time of inference is used as a query to search for k-neighbors (yellow box) of hidden states of the training data.
EB-GEC predicts a distribution of tokens for the correction from a combination of two distributions of tokens:
a vanilla distribution computed by transforming the hidden state of the decoder; and a kNN distribution by the
retrieved k-neighbors.

tributed closely in the representation space. Thus,
we assume that neighbor examples can enhance
the interpretability of the GEC model, allowing
language learners to understand the reason for a
correction and access its validity.

In this paper, we introduce an example-based
GEC (EB-GEC)1 that corrects grammatical errors
in an input text and provides examples for language
learners explaining the reason for correction (Fig-
ure 1). As shown in Figure 2, the core idea of
EB-GEC is to unify the token prediction model for
correction and the related example retrieval model
from the supervision data into a single encoder-
decoder model. EB-GEC can present the reason
for the correction, which we hope will help learn-
ers decide whether to accept or to refuse a given
correction.

Experimental results show that EB-GEC predicts
corrections more accurately than the vanilla GEC
without examples on the three datasets and com-
parably on one dataset. Experiments with human
participants demonstrate that EB-GEC presents sig-
nificantly more useful examples than the baseline
methods of example retrieval (Matsubara et al.,
2008; Yen et al., 2015; Arai et al., 2020). These
results indicate that examples are useful not only
to the GEC models but also to language learners.
This is the first study to demonstrate the benefits
of examples themselves for real users, as existing
studies (Wiseman and Stratos, 2019; Ouchi et al.,
2020; Khandelwal et al., 2021) only showed exam-
ple utility for improving the task accuracy.

1Our code is publicly available at https://github.
com/kanekomasahiro/eb-gec

2 EB-GEC

EB-GEC presents language learners with a correc-
tion and the related examples it used for generating
the correction of the input sentence. k-Nearest-
Neighbor Machine Translation (kNN-MT; Khan-
delwal et al., 2021) was used as a base method to
consider example in predicting corrections. kNN-
MT predicts tokens by considering the nearest
neighbor examples based on representations from
the decoder at the time of inference. EB-GEC
could use any method (Gu et al., 2018; Zhang et al.,
2018; Lewis et al., 2020) to consider examples, but
kNN-MT was used in this study because it does not
require additional training for example retrieval.

Figure 2 shows how the EB-GEC retrieves exam-
ples using kNN-MT. EB-GEC performs inference
using the softmax distribution of target tokens, re-
ferred to as vanilla distribution, hereafter, obtained
from the encoder-decoder model and the distribu-
tion generated by the nearest neighbor examples.
Nearest neighbor search is performed for a cache of
examples indexed by the decoder hidden states on
supervision data (kNN distribution). EB-GEC can
be adapted to any trained autoregressive encoder-
decoder GEC model. A detailed explanation of
retrieving examples using kNN-MT is provided in
Section 2.1, and of presenting examples in Section
2.2.

2.1 Retrieving Examples Using kNN-MT
Let x = (x1, ..., xN ) be an input sequence and
y = (y1, ..., yM ) be an output sequence of the
autoregressive encoder-decoder model. Here, N
and M are the lengths of the input and output se-
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quences, respectively.

Vanilla Distribution. In a vanilla autoregressive
encoder-decoder model, the distribution for i-th
token yi of the output sequence is conditioned
from the entire input sequence x and previous out-
put tokens ŷ1:i−1, where ŷ represents a sequence
of generated tokens. The probability distribution
of the i-th token p(yi|x, ŷ1:i−1) is calculated by
a linear translation to the decoder’s hidden state
h(x, ŷ1:i−1) followed by the softmax function.

Output Distribution. Let pEB(yi|x, ŷ1:i−1) de-
note the final probability distribution of tokens
from EB-GEC. We define pEB(yi|x, ŷ1:i−1) as
a linear interpolation of the vanilla distribution
p(yi|x, ŷ1:i−1) and pkNN(yi|x, ŷ1:i−1) (explained
later), which is the distribution computed using the
examples in the datastore,

pEB(yi|x, ŷ1:i−1) =λpkNN(yi|x, ŷ1:i−1)
+ (1− λ)p(yi|x, ŷ1:i−1).

(1)

Here, 0 ≤ λ ≤ 1 is an interpolation coefficient
between the two distributions. This interpolation
also improves the output robustness when relevant
examples are not found in the datastore.

Datastore. In the work of Khandelwal et al.
(2021), the i-th hidden state h(x, y1:i−1) of the
decoder in the trained model was stored as a key,
and the corresponding next token yi was stored
as a value. In order to present examples of in-
correct/correct sentences, we stored a tuple of the
token yi, the incorrect input sentence x, and the
correct output sentence y as a value of the datas-
tore. Thus, we built key-value pairs (K, V) from
all decoder timesteps for the entire training data
(X ,Y),

(K,V) = {(h(x, y1:i−1), (yi, x, y)) |
∀yi ∈ y, (x, y) ∈ (X ,Y)}. (2)

kNN Distribution. During inference, given a
source x as input, the model uses the i-th hidden
state h(x, y1:i−1) of the decoder as the query to
search for k-nearest neighbors,

N = {(u(j), (v(j), x(j), y(j))) ∈ (K,V)}kj=1,

(3)

where u(j) (j = 1, . . . , k) are the k-nearest neigh-
bors of the query h(x, y1:i−1) measured by squared

L2 distance. The tuple (v(j), x(j), y(j)) is the
value associated with the key u(j) in the datas-
tore (K,V). Then, the kNN-MT aggregates the
retrieved tokens to form a probability distribution
pkNN(yi|x, ŷ1:i−1) with a softmax with tempera-
ture T to the negative L2 distances2,

pkNN(yi|x, ŷ1:i−1) ∝∑
(u,(v,_,_))∈N

Iv=yi exp

(
−‖u− h(x, ŷ1:i−1)‖

T

)
.

(4)

2.2 Presenting Examples
We used a pair of incorrect and correct sentences
stored in the value retrieved for the predicted to-
ken ŷi as an example from the correction. Figure 1
depicts an example where the retrieved value con-
sists of the predicted token v(j) = “a” and the
incorrect/correct sentences x(j), y(j) correspond-
ing to “This has /a tremendous problem .”. In
this study, we presented examples for each edited
token in an output. For example, when an input
or output is “They have /a tremendous problem
.”, we presented examples for the edit “ /a”. To
extract edit operations from an input/output pair,
we aligned the tokens in input and output sentences
by using the Gestalt pattern matching (Ratcliff and
Metzener, 1988).

There are several ways to decide which exam-
ples should be presented to a language learner. For
instance, we could use all the examples in k-nearest
neighborsN and possibly filter them with a thresh-
old based on L2 distance. In this paper, we present
an example incorrect/correct sentence pair that is
the nearest to the query in N , which is the most
confident example estimated by the model.

3 Experiments

This section investigates the effectiveness of the ex-
amples via manual evaluation and accuracy on the
GEC benchmark to show that the EB-GEC does,
in fact, improve the interpretability without sacri-
ficing accuracy. We first describe the experimental
setup and then report the results of the experiments.

3.1 Datasets and Evaluation Metrics
We used the official datasets of BEA-2019
Shared Task (Bryant et al., 2019), W&I-
train (Granger, 1998; Yannakoudakis et al., 2018),

2In Equation 4, we do not use the input and output sen-
tences in the value, and thus represent them as _.
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NUCLE (Dahlmeier et al., 2013), FCE-train (Yan-
nakoudakis et al., 2011) and Lang-8 (Mizumoto
et al., 2011) as training data and W&I-dev as de-
velopment data. We followed Chollampatt and
Ng (2018) to exclude sentence pairs in which the
source and target sentences are identical from the
training data. The final number of sentence pairs in
the training data was 0.6M. We used this training
data to create the EB-GEC datastore. Note that the
same amount of data is used by EB-GEC and the
vanilla GEC model.

We used W&I-test, CoNLL2014 (Ng et al.,
2014), FCE-test, and JFLEG-test (Napoles et al.,
2017) as test data. To measure the accuracy of the
GEC models, we used the evaluation metrics ER-
RANT (Felice et al., 2016; Bryant et al., 2017) for
the W&I-test and FCE-test, M2 (Dahlmeier and
Ng, 2012) for CoNLL2014, and GLEU (Napoles
et al., 2015) for the JFLEG-test. M2 and ERRANT
report F0.5 values.

3.2 Implementation Details of EB-GEC
We used Transformer-big (Vaswani et al., 2017)
as the GEC model. Note that EB-GEC does not
assume a specific autoregressive encoder-decoder
model. The beam search was performed with a
beam width of 5. We tokenized the data into
subwords with a vocabulary size of 8,000 using
BPE (Sennrich et al., 2016). The hyperparameters
reported in Vaswani et al. (2017) were used, aside
from the max epoch, which was set to 20. In our
experiments, we reported the average results of five
GEC models trained using different random seeds.
We used four Tesla V100 GPUs for training.

We considered the kNN and vanilla distributions
equally, with λ in Eq. (1) set to 0.5, to achieve
both accuracy and interpretability. Based on the
development data results, the number of nearest
neighbors k was set to 16 and the softmax temper-
ature T to 1,000. We used the final layer of the
decoder feedforward network as the datastore key.
We used Faiss (Johnson et al., 2021) with the same
settings as Khandelwal et al. (2021) for fast nearest
neighbor search in high-dimensional space.

3.3 Human Evaluation Settings
We assessed the interpretability by human evalua-
tion based on Doshi-Velez and Kim (2017). The
human evaluation was performed to determine
whether the examples improved user understanding
and helped users to accept or refuse the GEC cor-
rections. To investigate the utility of the examples

presented by EB-GEC, we examined the relative
effectiveness of presenting examples in GEC as
compared to providing none. Moreover, we used
two baseline methods for example selection, token-
based retrieval and BERT-based retrieval. Note that,
unlike EB-GEC, token-based and BERT-based re-
trievals do not directly use the representations in
the GEC model; in other words, these baselines per-
form the task of choosing examples independently
of the GEC model. In contrast, EB-GEC uses ex-
amples directly for generating an output. EB-GEC
was expected to provide examples more related
to GEC input/output sentences than the baseline
methods.

Token-based Retrieval. This baseline method
retrieves examples from the training data where the
corrections of the EB-GEC output match the cor-
rections in the target sentence of the training data.
This is a similar method to the example search per-
formed using surface matching (Matsubara et al.,
2008; Yen et al., 2015). If multiple sentences are
found with matching tokens, an example is selected
at random. If the tokens do not match, this method
cannot present any examples.

BERT-based Retrieval. This baseline method
uses BERT3 (Devlin et al., 2019) to retrieve exam-
ples, considering the context of both the corrected
sentence and example from the datastore. This
method corresponds to one based on context-aware
example retrieval (Arai et al., 2020). In order to re-
trieve examples using BERT, we create a datastore,

(KBERT,VBERT) = {(e(yi), (yi, x, y))|
∀yi ∈ y, (x, y) ∈ (X ,Y)}.

(5)

Here e(yi) is the hidden state of the last layer of
BERT for the token yi when the sentence y is given
without masking. This method uses e(yi) as a
query for the model output sentence to then search
the datastore for k nearest neighbors.

The input and output sentences of the GEC
model and the examples from the baselines and
EB-GEC were presented to the annotators with
anonymized system names. Annotators then de-
cided whether the examples helped to interpret the
GEC output or not, or whether they aided under-
standing of grammar and vocabulary. The example

3https://huggingface.co/
bert-base-cased
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Method Human evaluation score

Token-based retrieval 28.8
BERT-based retrieval 52.4
EB-GEC 68.8†,‡

Table 1: Results of the human evaluation of the use-
fulness of Token-based retrieval, BERT-based retrieval
and EB-GEC examples. Human evaluation score is the
percentage of useful examples among those presented
to the language learners. The † and ‡ indicate statisti-
cally significant differences of EB-GEC according to
McNemar’s test (p < 0.05) against Token-based re-
trieval and BERT-based retrieval, respectively.

sentence pair was labeled as 1 if it was “useful
for decision-making or understanding the correc-
tion” and 0 otherwise. We then computed scores
for Token-based retrieval, BERT-based retrieval,
and EB-GEC models by counting the number of
sentences labeled with 1. We confirm whether
corrections with examples were more beneficial
for learners than those without, and whether EB-
GEC could present more valuable examples than
those from the baselines. Since it is not always
the case that only corrected parts are helpful for
learners (Matsubara et al., 2008; Yen et al., 2015),
the uncorrected parts were also considered during
annotation.

We manually evaluated 990 examples provided
by the three methods for 330 ungrammatical and
grammatical sentence pairs randomly sampled
from the W&I-test, CoNLL2014, FCE-test, and
JFLEG-test. The human evaluation was performed
by two annotators with CEFR4 proficiency level B
and one annotator with level C5. All three annota-
tors evaluated different examples.

3.4 Results

Human Evaluation of Examples. Table 1
shows the results of human evaluation of Token-
based retrieval, BERT-based retrieval, and EB-GEC
models. The percentage of useful examples has
increased significantly for EB-GEC compared to
token-based and BERT-based retrieval baselines.
The percentage of useful examples from EB-GEC

4https://www.cambridgeenglish.org/
exams-and-tests/cefr

5They are not authors of this paper. In this human evalua-
tion, annotators with a middle and high proficiency level are se-
lected in case annotators cannot understand errors/corrections
and make a judgment whether the presented example is nec-
essary or unnecessary. Therefore, this study does not focus
on whether annotators with lower proficiency levels find it
helpful to see examples without explanation.

Method W&I CoNLL2014 FCE JFLEG

Vanilla GEC 50.12 49.68 41.49 53.71
EB-GEC 52.45 50.51 43.00 53.46

Table 2: Accuracy of vanilla GEC model and EB-GEC
model on W&I, CoNLL2014, FCE and JFLEG test
data.

λ
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0.00 0.25 0.50 0.75 1.00

W&I CoNLL 2013 FCE JFLEG

Figure 3: Scores for each development data using dif-
ferent λ values from 0 to 1 in increments of 0.25. The
evaluation metrics for each data are the same as for the
test data.

is greater than 50, which indicates that present-
ing examples is more useful than providing none.
This result is non-trivial because the percentage for
token-based retrieval is only 28.8, which indicates
that those presented examples were mostly useless.
Therefore, the examples for interpretability in EB-
GEC support language learners’ understanding and
acceptance of the model output.

GEC Accuracy. We examined the impact of us-
ing examples for the prediction of GEC accuracy.
Table 2 shows the scores of the vanilla GEC and
EB-GEC for the W&I, CoNLL2014, FCE, and JF-
LEG test data. The accuracy of EB-GEC is slightly
lower for JFLEG but outperforms the vanilla GEC
for W&I, CoNLL2014, and FCE. This indicates
that the use of examples contributes to improving
GEC model accuracy.

4 Analysis

4.1 Effect of λ

We analyzed the relationship between the interpo-
lation coefficient λ (in Equation (1)) and the GEC
accuracy. A smaller λ value may reduce the in-
terpretability as examples are not considered in
prediction. In contrast, a larger λ value may reduce
robustness, especially when relevant examples are
not included in the datastore; the model must then
generate corrections relying more on kNN exam-
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Figure 4: Matching percentage of edits and error types
in model outputs and examples.

ples, which may not be present in the datastore for
some inputs.

Figure 3 shows the accuracy of the GEC for each
development data when the λ is changed from 0 to
1 in increments of 0.25. We found that when λ was
set to 1, the accuracy for all development datasets
was lower than when λ was set to 0.50 or less. It is
shown that the highest accuracy was obtained for
λ = 0.5, as this treats the vanilla output distribution
and the output distribution equally.

4.2 Matching Error Types of Model Outputs
and Examples

In Section 1, we hypothesized that similar error-
correcting examples are closely clustered in the
representation space. Therefore, we investigated
the agreement between the GEC output and the ex-
amples for edits and error types. We extracted edits
and their error types, which were automatically
assigned by ERRANT (Felice et al., 2016; Bryant
et al., 2017) for incorrect/correct sentence pairs.
For example, for a GEC input/output pair “They
have /a tremendous problem .”, the example pair
is “This has /a tremendous problem .”, its edit
is “ /a” and the error type is the determiner error
(DET). We calculated the matching percentage of
the edits and error types for EB-GEC outputs and
for the examples retrieved using EB-GEC to show
their similarity. In addition, we used token-based
and BERT-based retrieval as comparison methods
for obtaining examples relevant to EB-GEC out-
puts.

Figure 4 shows the matching percentage of ed-
its and error types between the GEC outputs and
the k-nearest neighbors examples. First, we see
that EB-GEC has the highest percentage for all test
data. This indicates that of the methods tested, EB-
GEC retrieves the most relevant examples. This
trend is consistent with the human evaluation re-

Error type Freq. Vanilla GEC EB-GEC Diff.

PREP 115K 40.9 44.6 3.7
PUNCT 98K 33.5 37.0 3.5
DET 171K 46.6 49.8 3.2

ADJ:FORM 2K 54.5 38.4 -16.08
ADJ 21K 17.0 14.5 -2.42
SPELL 72K 68.6 66.8 -1.87

Table 3: The error types with the highest and the lowest
EB-GEC accuracy compared to vanilla GEC on FCE-
test based on Diff. column. Freq. column is the fre-
quency of the error type in the datastore.

sults. Furthermore, we see that EB-GEC has a
lower percentage on JFLEG compared to those on
W&I, CoNLL2014, and FCE. This corroborates
the results of Table 2, which suggests that the ac-
curacy of GEC improved further when examples
more relevant to the corrections could be retrieved.

4.3 EB-GEC and Error Types

We analyzed the accuracy of EB-GEC for different
error types to investigate the effect of error type
on EB-GEC performance. We used ERRANT to
evaluate the accuracy of EB-GEC for each error
type on the FCE-test.

Table 3 shows three error types selected as hav-
ing the most significant increase and decrease in ac-
curacy for EB-GEC compared to the vanilla GEC.
The three error types with the largest increases
were preposition (PREP; e.g. I think we should
book at/ the Palace Hotel .), punctuation error
(PUNCT; e.g. Yours ./ sincerely ,), and article
error (DET; e.g. That should complete that/an
amazing day .). The three error types with the
largest decreases are adjective conjugation error
(ADJ:FORM; e.g. I was very please/pleased to re-
ceive your letter .), adjective error (ADJ; e.g. The
adjoining restaurant is very enjoyable/good as well
.), and spelling error (SPELL; e.g. Pusan Castle is
locted/located in the South of Pusan .).

We concluded the following findings from these
results. Error types with the largest increase in ac-
curacy have a limited number of tokens used for
the edits compared to those with the largest de-
creases in accuracy (namely, error types referring
to adjectives and nouns). Furthermore, these error
types are the most frequent errors in the datastore,
(excluding the unclassified error type annotated as
OTHER), and the datastore sufficiently covers such
edits. Contrary to the error types with improved
accuracy, ADJ and SPELL have a considerable
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Error type Error-correction pair Label

Input/Output PREP You will be able to buy them in/at /a reasonable price . -

Token-based retrieval PREP
Naturally , it ’s easier to get a job then/when you were/are good in/at 0foreign languagers/languages or computers .

BERT-based retrieval PREP I could purchase them in/at reasonable price/prices . 1
EB-GEC PREP I could purchase them in/at reasonable price/prices . 1

Input/Output PUNCT for/For example /, a reasercher that wants to be successfull must take risk . -
Token-based retrieval PUNCT Today /, we first/ met for /the first time in about four weeks . 0
BERT-based retrieval PUNCT for/For example /, a kid named Michael . 1
EB-GEC PUNCT for/For example /, a kid named Michael . 1

Input/Output DET Apart from that /, it takes /a long time to go somewhere . -
Token-based retrieval DET If you have enough time , I recommend /a bus trip . 0
BERT-based retrieval PREP However , it will take for/ a long time to go abroad in my company . 0
EB-GEC DET So/Because of that , it takes /a long time to write my journal/entries . 1

Table 4: Examples retrieved by Token-based retrieval, BERT-based retrieval, and EB-GEC for input/output, and
the human evaluation labels. Underlines indicate error-correction pairs in the sentences. Bold indicates the edit
used as the query to retrieve the example, and error types of the bold edits are assigned by ERRANT.

number of tokens used in edits, and they are not
easy to cover sufficiently in a datastore. Moreover,
ADJ:FORM is the second least frequently occur-
ring error type in the datastore, and we believe such
examples cannot be covered sufficiently. These re-
sults show that EB-GEC improves the accuracy of
error types that are easily covered by examples, as
there are fewer word types rarely used for edits and
they are better presented in datastore. Furthermore,
the results show that the accuracy deteriorates for
error types that are difficult to cover, such as word
types used for edits and infrequent error types in
the datastore.

We investigated the characteristics of the EB-
GEC examples by comparing specific examples
for each error type with those from token-based
and BERT-based retrieval. Table 4 shows exam-
ples of Token-based retrieval, BERT-based retrieval
and EB-GEC for the top three error types (PREP,
PUNCT and DET) with accuracy improvement in
EB-GEC. Token-based retrieval showed that the
tokens in the edits are consistent, including “in/at”,
“ /,”, and “ /a”. However, only surface informa-
tion is used, and context is not considered. So
such unrelated examples are not useful for language
learners. BERT-based retrieval presented the same
examples as EB-GEC for PREP and PUNCT error
types, and the label for human evaluation was also
1. However, the last example is influenced by the
context rather than the correction and so presents
an irrelevant example, labeled 0 by human eval-
uation. This indicates that BERT-based retrieval
overly focuses on context, resulting in examples re-
lated to the overall output but unrelated to the edits.

Conversely, EB-GEC is able to present examples in
which the editing pair tokens are consistent for all
corrections. Furthermore, the contexts were similar
to those of the input/output, for example “purchase
them in/at reasonable price/prices”, “for/For ex-
ample /,” and “it takes /a long time to”, and all
the examples were labeled 1 during human evalua-
tion. This demonstrates that EB-GEC retrieves the
most related examples that are helpful for users.

5 Related Work

5.1 Example Retrieval for Language
Learners

There are example search systems that support lan-
guage learners by finding examples. Before neural-
based models, examples were retrieved and pre-
sented by surface matching (Matsubara et al., 2008;
Yen et al., 2015). Arai et al. (2019, 2020) pro-
posed to combine Grammatical Error Detection
(GED) and example retrieval to present both gram-
matically incorrect and correct examples of essays
written by Japanese language learners. This study
showed that essay quality was improved by provid-
ing examples. Their method is similar to EB-GEC
in that it presents both correct and incorrect ex-
amples but incorporates example search systems
for GED rather than the GEC. Furthermore, the
example search systems search for examples inde-
pendently of the model. Contrastingly, EB-GEC
presents more related examples as shown in Section
3.4.

Cheng and Nagase (2012) developed a Japanese
example-based system that retrieves examples us-
ing dependency structures and proofread texts.
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Proofreading is a task similar to GEC because it
also involves correcting grammatical errors. How-
ever, this method also does not focus on using ex-
amples to improve interpretability.

5.2 Explanation for Language Learners

There is a feedback comment generation task (Na-
gata, 2019) that can generate useful hints and ex-
planations for grammatical errors and unnatural ex-
pressions in writing education. Nagata et al. (2020)
used a grammatical error detection model (Kaneko
et al., 2017; Kaneko and Komachi, 2019) and neu-
ral retrieval-based method for prepositional errors.
The motivation of this study was similar to ours,
that is, to help language learners understand gram-
matical errors and unnatural expressions in an inter-
pretable way. On the other hand, EB-GEC supports
language learners using examples from the GEC
model rather than using feedback.

5.3 Example Retrieval in Text Generation

Various previous studies have used neural network
models to retrieve words, phrases, and sentences
for use in prediction. Nagao (1984) proposed an
example-based MT to translate sequences by anal-
ogy. This method has been extended to a variety of
other methods for MT (Sumita and Iida, 1991; Doi
et al., 2005; Van Den Bosch, 2007; Stroppa et al.,
2007; Van Gompel et al., 2009; Haque et al., 2009).
In addition, the example-based method has been
used for summarization (Makino and Yamamoto,
2008) and paraphrasing (Ohtake and Yamamoto,
2003). These studies were performed before neural
networks were in general use, and the examples
were not used to solve the neural network black
box as was done in this study.

In neural network models, methods using exam-
ples have been proposed to improve accuracy and
interpretability during inference. Gu et al. (2018)
proposed a model that during inference retrieves
parallel sentences similar to input sentences and
generates translations by the retrieved parallel sen-
tences. Zhang et al. (2018) proposed a method
that, during inference, retrieves parallel sentences
where the source sentences are similar to the in-
put sentences and weights the output containing
n-grams of the retrieved sentence pairs based on
the similarity between the input sentence and the
retrieved source sentence. These methods differ
from EB-GEC using kNN-MT in that they retrieve
examples via surface matching, as done in baseline

token-based retrieval. Moreover, these studies do
not focus on the interpretability of the model.

Several methods have been proposed to retrieve
examples using neural model representations and
consider them for prediction. Khandelwal et al.
(2020, 2021) proposed the retrieval of similar ex-
amples using the nearest neighbor examples of
pre-trained hidden states during inference and to
complement the output distributions of the lan-
guage model and machine translation with the dis-
tributions of these examples. Lewis et al. (2020)
combined a pre-trained retriever with a pre-trained
encoder-decoder model and fine-tuned it end-to-
end. For the input query, they found the top-k
documents and used them as a latent variable for
final prediction. Guu et al. (2020) first conducted
an unsupervised joint pre-training of the knowl-
edge retriever and knowledge-augmented encoder
for the language modeling task, then fine-tuned it
using a task of primary interest, with supervised ex-
amples. The main purpose of these methods was to
improve the accuracy using examples, and whether
the examples were helpful for the users was not ver-
ified. Conversely, our study showed that examples
for the interpretability in GEC could be helpful for
real users.

6 Conclusion

We introduced EB-GEC to improve the inter-
pretability of corrections by presenting examples to
language learners. The human evaluation showed
that the examples presented by EB-GEC supported
language learners’ decision to accept corrections
and improved their understanding of the correction
results. Although existing interpretive methods
using examples have not verified if examples are
helpful for humans, this study demonstrated that
examples were helpful for learners using GEC. In
addition, the results of the GEC benchmark showed
that EB-GEC could predict corrections more accu-
rately or comparably to its vanilla counterpart.

Future work would include investigations of
whether example presentation is beneficial for
learners with low language proficiency. In addi-
tion, we plan to improve the datastore coverage by
using pseudo-data (Xie et al., 2018) and weight low
frequency error types to present diverse examples.
We explore whether methods to improve accuracy
and diversity (Chollampatt and Ng, 2018; Kaneko
et al., 2019; Hotate et al., 2019, 2020) are effective
for EB-GEC.
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