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Abstract

The Mixture-of-Experts (MoE) technique can
scale up the model size of Transformers with
an affordable computational overhead. We
point out that existing learning-to-route MoE
methods suffer from the routing fluctuation is-
sue, i.e., the target expert of the same input
may change along with training, but only one
expert will be activated for the input during in-
ference. The routing fluctuation tends to harm
sample efficiency because the same input up-
dates different experts but only one is finally
used. In this paper, we propose STABLEMOE
with two training stages to address the rout-
ing fluctuation problem. In the first training
stage, we learn a balanced and cohesive rout-
ing strategy and distill it into a lightweight
router decoupled from the backbone model. In
the second training stage, we utilize the dis-
tilled router to determine the token-to-expert
assignment and freeze it for a stable routing
strategy. We validate our method on language
modeling and multilingual machine transla-
tion. The results show that STABLEMOE
outperforms existing MoE methods in terms
of both convergence speed and performance.
The code is available at https://github.
com/Hunter-DDM/stablemoe.

1 Introduction

In recent years, large-scale Transformers (Devlin
et al., 2019; Dong et al., 2019; Raffel et al., 2020;
Clark et al., 2020; Bao et al., 2020; Brown et al.,
2020) have shown a striking ability to model lan-
guages. However, with the model scale grow-
ing, the training speed will go slower, and the
extremely large memory requirement also intro-
duces a heavy burden of engineering. Mixture of
Experts (MoE) (Jacobs et al., 1991; Jordan and Ja-
cobs, 1994; Shazeer et al., 2017), in a much easier
way, enables Transformers to scale up the number
of parameters meanwhile introducing an affordable
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computational overhead. MoE-based Transform-
ers have a set of expert modules, and only a few
experts will be activated for each input token. In
this way, we can expand the model scale by adding
expert modules, which will keep the computational
and memory overhead within a tolerable range.

Most existing MoE methods (Lepikhin et al.,
2021; Fedus et al., 2021; Lewis et al., 2021) decide
the token-to-expert routing according to the dynam-
ically changing token representations. However,
we point out that they face the routing fluctuation
problem. As shown in Figure 1, the same input may
be assigned to different experts along with training.
However, during inference, only one expert will
be activated for the input. The routing fluctuation
problem tends to harm sample efficiency because
the same input updates different experts while only
one is finally used.

Taking BASE Layer (Lewis et al., 2021) as an
example, during the whole training process, we
examine the token-to-expert assignment for tokens
in the validation set. For an input token, we define
the last fluctuation step as the last step where its
target expert is different from the final step. We
plot the cumulative token percentage with regard to
the last fluctuation step (annotated as its percentage
accounting for all training steps) in Figure 2. We
find that the last fluctuation step of 40.9% tokens
exceeds 20%, which means 40.9% tokens do not
have a stable target expert when 20% of all training
steps have been done. Furthermore, 29.1% tokens
still change their target experts after half of the
whole training process, and 15.4% tokens even
change the target expert after 80% of all training
steps, which is nearing the training ending. These
statistics prove that the routing fluctuation problem
indeed exists in previous MoE methods.

In this paper, we propose STABLEMOE with
two training stages to address the routing fluctua-
tion problem. In the first training stage, we follow
the learning-to-route paradigm and aim to learn a
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Figure 1: Illustration of the routing fluctuation problem. The same input is assigned to different experts along with
training. However, during inference, only one expert is sparsely activated for the input. The routing fluctuation
tends to harm sample efficiency because the same input updates different experts while only one is used.
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Figure 2: Cumulative token percentage with re-
gard to the last fluctuation step of tokens for BASE
Layer (Lewis et al., 2021). A substantial portion of to-
kens still change their target experts even if the training
is nearing the end.

balanced and cohesive routing strategy. We design
a balance loss to guarantee the assignment is bal-
anced. In addition, inspired by Lewis et al. (2021),
we adopt a sigmoid gating mechanism, which en-
ables the task objective to propagate supervised sig-
nal back to the routing strategy, to facilitate learn-
ing a more cohesive assignment. As the routing
strategy is being learned, we synchronously dis-
till it into a lightweight router decoupled from the
backbone model. In the second training stage, we
utilize the distilled router to determine the token-
to-expert assignment. The distilled router is frozen
in this stage to provide a stable routing strategy,
which addresses the routing fluctuation problem in
the remaining training. We conduct experiments on
language modeling and multilingual machine trans-
lation. The results show that STABLEMOE out-
performs existing MoE methods in terms of both
convergence speed and performance.

Our contributions are summarized as follows:

(1) We point out the routing fluctuation problem
in existing learning-to-route MoE methods. (2)
We propose STABLEMOE to address the routing
fluctuation problem. (3) We conduct substantial ex-
periments under various settings to show the advan-
tages of STABLEMOE over existing MoE methods.

2 Background: Mixture-of-Experts for
Transformers

We first introduce the MoE mechanism designed
for Transformers (Vaswani et al., 2017). Given a
standard L-layer Transformer model and an input
sequence X containing 7" tokens, the Transformer
output A is calculated by

H" = [h{;hy; .. hyl, (1)
hl = FFN (ui) +ul, 2)
ul. = self-att (hlljjl) +hi} 3)

where h! is the hidden state of ¢-th token after the
[-th layer, Self-Att(-) is the self-attention module,
and FFN(+) is short for the feed-forward network.
For simplicity, we omit the layer normalization.

We implement MoE for Transformers by insert-
ing MoE layers, that are composed of a set of FFNs,
into two neighboring Transformer blocks. At an
MOoE layer, for each input token, only a few or
one expert will be activated, controlled by a gating
function g(-):

N
n =S g (hf;l) FFN, <h§—1) +hit @)
=1

where N is the total number of experts, and FFN;
is the i-th expert. Here, the gating function g;(+) is
sparse for computational efficiency. For simplicity,
we omit the layer normalization.
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Figure 3: Illustration of two training stages in STABLEMOE. In training stage 1, we learn a routing strategy and
distill it into a lightweight router. Then, we freeze the distilled router for stable routing in training stage 2.

3 Method

STABLEMOE has two training stages as illustrated
in Figure 3. In the first training stage, we follow
the learning-to-route paradigm and aim to learn
a balanced and cohesive routing strategy. As the
routing strategy is being learned, we synchronously
distill it into a lightweight router decoupled from
the backbone model. In the second training stage,
we utilize the distilled router to determine the token-
to-expert assignment. The distilled router is frozen
in this stage to provide a stable routing strategy.
During inference, we also use the frozen distilled
router for consistent routing.

3.1 Training Stage 1: Learn Routing Strategy

Let hf:_l € R% be the input representation of token
t and E € RV*? be the centroids of N experts.
For each MoE layer, we assign each token to one
expert FEN (Fedus et al., 2021; Lewis et al., 2021;
Roller et al., 2021). The assignment score is:

s =B hi )

where s; ; is the assignment score between token
t and expert ¢, indicating their affinity. We use a
greedy assignment algorithm, i.e., sending each
token to the expert with the highest affinity. Then,
we calculate the expert FFN output as:

a; = argmax(s), (6)

B = 0 (st0) FFN,, (h7') +Bi™, ()

where a; is the expert index that token ¢ is sent
to, and o is the sigmoid gate (Lewis et al., 2021).
Considering the sigmoid gate o (s, ), if FFN,,
is beneficial for token ¢, optimizing the training
objective (e.g., minimizing the cross-entropy loss
for language modeling) will urge the gate to be

greater; otherwise, the gate will tend to be smaller.
The gate signal urges similar tokens to be assigned
to the same expert that is beneficial to them, thus
producing cohesive token-to-expert assignments.

Balance Loss We design a balance loss Ly, to
avoid imbalanced assignments that will result in
a high computational bottleneck in the MoE layer
and thus limit the computational efficiency:

Loat =) (\A,\n—n) > o(sia) |, ®

=1 teA;

where « is a hyper-parameter, .4; denotes the set
of tokens assigned to expert ¢, and n denotes the
average number of tokens per expert. Intuitively, if
an expert is overloaded, the balance loss will urge
its assignment scores to be smaller. Otherwise, if an
expert is unoccupied, the balance loss will increase
its assignment scores to capture more tokens.

Distilled Router As the routing strategy is be-
ing learned, we synchronously distill it into a
lightweight router decoupled from the backbone
model to mimic the original routing strategy. Let X
be the input sequence and FE be the distilled expert
centroids, we use word embeddings D(-) to extract
the routing features. We use the cross-entropy loss
as the distillation loss L 4;s:

Sui= BTy, ©)

hi ' = D(Xt)

ﬁdis = ZIO Z

exp (8 _exp(8ta) )

; (10)
~exp (8e4)

where h!~! is the distilled routing feature of token
t, 54 1s the distilled assignment score between
token ¢ and expert ¢, and a, is the expert index
that token ¢ is actually sent to. In practice, D(-)
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Methods | Assignment Algorithm Gating Function Balance Loss
Switch Transformer Greedy softmax Yes
BASE Layer Auction (Bertsekas, 1992) sigmoid No
Hash Layer Fixed Hashing {0,1} No
STABLEMOE
Training Stage 1 Greedy sigmoid Yes
Training Stage 2 Fixed Routing sigmoid No

Table 1: Comparison of three core elements among STABLEMOE and existing MoE-based Transformers.

can also be other feature extractors such as CNNs
or Transformers (we investigate other variants of
distilled routers in Section 4.4.3), but the word
embedding is the fastest one and achieves the best
performance. At the end of training stage 1, we
freeze all parameters for the distilled router (i.e.,
D(-) and E)to prepare a stable routing strategy for
training stage 2 and the inference stage.

Training Objective In training stage 1, the train-
ing loss consists of the task loss, the balance loss,
and the distillation loss:

Ls1 = Liask + Lpar + Lais- (11)

3.2 Training Stage 2: Learn with Stable
Routing Strategy

Given frozen D(-) and E, in training stage 2, we di-
rectly use them for a stable routing strategy. Keep-
ing other processes the same as in training stage 1,
we calculate the output of the MoE layer as follows:

hi™' =D(Xy), &, =Ef b,

ar = argmax(§;),
i

h! = o (s.4,) FFNG, (hf;l) +hi7t (14

(12)
(13)

Notice that the sigmoid gate o (-) still uses orig-
inal assignment score s; 4, as input, so the gate
signal can also be learned in training stage 2. Since
the routing strategy has been fixed in training stage
2, we no longer need the balance loss and distilla-
tion loss. Therefore, the training loss for training
stage 2 contains only the task loss:

Lso = Liask- (15)

3.3 Inference

During inference, we also use the frozen distilled
router for routing. The fixed routing strategy, which
is consistent with training stage 2, makes informa-
tion learned in MoE layers be utilized more thor-
oughly and thus leads to better performance.

3.4 Comparison with Existing MoE Methods

We compare three core elements, including the as-
signment algorithm, the gating function, and the
balance loss, among STABLEMOE and existing
MoE-based Transformers. In Table 1, we summa-
rize their differences.

Assignment Algorithm Switch Transformer
and the training stage 1 in STABLEMOE simply
assign each token to the expert with the highest
affinity. BASE Layer adopts the auction algo-
rithm (Bertsekas, 1992) to find a global balanced
assignment with the maximum affinity sum. Hash
layer and the training stage 2 in STABLEMOE have
token-level fixed routing strategies, which have
good stability.

Gating Function Hash Layer uses a hard gating
function, which means an expert is either fully ac-
tivated or not activated, no any intermediate state.
Switch Layer, BASE Layer, and STABLEMOE
have soft gating functions, which can judge the
affinity between a token and its target expert and
determine a proper ratio to use the expert. Soft gat-
ing mechanisms also urge models to learn a more
cohesive token-to-expert assignment.

Balance Loss BASE Layer and Hash Layer do
not apply any balance losses. By contrast, Switch
Transformer and the training stage 1 in STABLE-
MOE design balance losses to control the balance
of the token-to-expert assignment.

In summary, combing two training stages, STA-
BLEMOE has a stable, cohesive, and balanced rout-
ing strategy, while the other three MoE methods
cannot meet them all simultaneously.

4 Experiments

4.1 Tasks and Datasets

Language Modeling Following (Lewis et al.,
2021) and Roller et al. (2021), we use the com-
bination of the corpora in RoBERTa (Liu et al.,
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Size | Models | #Shared Params  # Expert Params FLOPs | Valid PPL  Test PPL
Standard Transformer 124M N/A 146B 23.02 22.58
Larger Transformer (deeper) 578M N/A 610B 17.93 17.63
Larger Transformer (wider) 578M N/A 610B 18.31 18.01
Base g vitch Transformer 124M 454M 160B 19.79 19.20
BASE Layer 124M 454M 160B 20.04 19.69
Hash Layer 124M 454M 160B 19.63 19.25
STABLEMOE 124M 454M 160B 19.28 18.93
Standard Transformer 355M N/A 414B 18.86 18.19
Large Switch Transformer 355M 3.22B 465B 16.62 16.21
BASE Layer 355M 3.22B 465B 16.36 15.75
Hash Layer 355M 3.22B 465B 16.37 15.79
STABLEMOE 355M 3.22B 465B 16.22 15.59

Table 2: Perplexity results of language modeling. We also report the training FLOPs, and the number of parameters
for the shared backbone (# Shared Params) and the expert layers (# Expert Params). “N/A” denotes not applicable.
STABLEMOE consistently outperforms other MoE methods under both the base and the large settings.

2019) and the English subset of the CC100 (Con-
neau et al., 2020) corpus. The corpus contains
about 100B tokens, and we randomly sample SM
tokens for validation and 20M tokens for test.

Multilingual Machine Translation We fol-
low Wang et al. (2020) and Ma et al. (2020) to use
a collection of parallel data in different languages
from the WMT datasets.' The dataset contains 32.5
million parallel data for language pairs between En-
glish and other 9 languages, including French (Fr),
Czech (Cs), German (De), Finnish (Fi), Latvian
(Lv), Estonian (Et), Romanian (Ro), Hindi (Hi),
and Turkish (Tr). In our experiments, we combine
the original parallel data with 180 million back-
translation data as described in (Ma et al., 2020)
and call the augmented dataset WMT for short.

4.2 Experimental Setup

We conduct experiments based on fairseq®. All ex-
periments are conducted on NVIDIA V100 GPUs
with 32 GB memory.

Language Modeling We adopt the tokenizer of
GPT-2 (Radford et al., 2019), which uses byte-pair
encoding (Sennrich et al., 2016) with a vocabulary
size of 50,257. We set up two settings for STABLE-
MOE, a base one and a large one. For both settings,
we insert one MoE layer after the middle Trans-
former block. We train the model for 60K steps in
total (6K for training stage 1 and 54K for training
stage 2). The dimension of the distilled routing fea-
tures is 50, which brings 2.51M extra parameters
for routing. The balance factor « is set to 0.3. We

Thttp://www.statmt.org
Zhttps://github.com/facebookresearch/fairseq

use Adam (Kingma and Ba, 2015) with 5; = 0.9
and 82 = 0.98 as the optimizer. The rest of the
hyper-parameters are summarized in Appendix A.

Multilingual Machine Translation Follow-
ing (Ma et al.,, 2020), we use the Sentence-
Piece (Kudo and Richardson, 2018) model to
tokenize sentences. The vocabulary is learned from
the training set and consists of 64,000 tokens. We
insert two MoE layers, one after the third encoder
block and one after the third decoder block. We
train the model for 352K steps in total (30K for
training stage 1 and 322K for training stage 2).
The dimension of the distilled routing features is
also set to 50. The balance factor « is set to 0.3.
We use Adam with 81 = 0.9 and 55 = 0.98 as the
optimizer. The rest of the hyper-parameters are
summarized in Appendix B.

4.3 Results

4.3.1 Language Modeling

We compare STABLEMOE with Switch Trans-
former, BASE Layer, Hash Layer, and the stan-
dard Transformer. All MoE models have the same
number of shared parameters as the standard Trans-
former. Under the base setting, in addition, we
compare two larger dense Transformers that add
FFNs in a dense manner to achieve the same num-
ber of total parameters as MoE models. The deeper
model stacks more FFNs, while the wider model
uses FFNs with a larger hidden size. The floating
point operations (FLOPs) per sequence are profiled
by the torchprofile toolkit.

We show the main results of language model-
ing on the RoBERTa+cc100en corpus in Table 2.
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Models | #Params FLOPs | De Ro  Fr Cs Et Hi Tr Fi Lv | Avg
Standard Transformer 7™M 290B 39.8 360 325 291 272 245 236 21.8 203 | 2831
Larger Transformer 90M 317B 40.6 369 337 29.8 27.8 254 246 222 209 | 29.10
Switch Transformer 480M 317B 423 37.1 338 31.0 28.6 260 243 230 212 | 29.70
BASE Layer 480M 317B 426 378 342 31.0 29.0 269 251 232 21.6 | 30.16
Hash Layer 480M 317B 4277 37.0 346 313 28.7 265 239 231 21.7 | 2994
STABLEMOE 480M 317B 43.0 374 347 315 293 268 247 23.6 219 | 30.32

Table 3: X—En test BLEU on WMT. We also report the total number of parameters, and training FLOPs. STA-

BLEMOE outperforms other MoE-based Transformers across most languages.
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Figure 4: Convergence speed of different models.
TRM is a shorthand for Transformer.

Under the base setting, STABLEMOE outperforms
existing MoE methods on both the validation and
the test sets by 0.3-0.8 perplexity. Compared with
dense models, STABLEMOE achieves about 3.7
lower perplexity than the standard Transformer,
and about 1.3 higher perplexity than the deeper
larger model. Under the large setting, consistently,
STABLEMOE outperforms the other MoE methods,
and achieves about 2.6 lower perplexity than the
standard Transformer.

We also compare the convergence speed of differ-
ent models under the base setting. The results are
plotted in Figure 4, which takes the validation per-
plexity as y-axis and the training wall time as x-axis.
Although larger dense models achieve better valida-
tion perplexity at last, their training speed is quite
slow. With regard to the convergence speed, MoE-
based Transformers usually exceed dense models.
Further, among the MoE methods, STABLEMOE
has the fastest convergence speed.

4.3.2 Multilingual Machine Translation

We compare STABLEMOE with Switch Trans-
former, BASE Layer, Hash Layer, the standard
Transformer, and a larger Transformer. All MoE-

21.0
B BASE Layer
Hash Layer
20.5

EA StableMoE

Valid PPL

=
©
e

=
©
o

18.5

16

32 64
Number of Experts

Figure 5: Comparison of MoE-based Transformers
with different numbers of experts. Lower perplexity
indicates better performance.

based models have the same number of shared pa-
rameters as the standard Transformer. Except the
standard Transformer, the other models have the
same FLOPs.

We translate other languages to English (X—En)
and report the test BLEU on WMT in Table 3.
STABLEMOE achieves the best average test BLEU
among the compared MoE methods. Keeping the
same FLOPs, STABLEMOE outperforms the dense
model by 1.22 test BLEU. With the MoE technique,
we expand the number of parameters by 523% and
the FLOPs just increase by 9.3%.

4.4 Analysis
4.4.1 Effects of Hyperparameters

On top of the base setting of language modeling,
we investigate different settings for the MoE layers
in STABLEMOE.

Number of Experts Figure 5 shows the results
of BASE Layer, Hash Layer, and STABLEMOE
with different numbers of experts. As the num-
ber of experts goes larger, the validation perplexity
of each model tends to further descend. Consis-
tently, STABLEMOE performs the best with dif-
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Figure 6: Comparison of MoE models with different
numbers of expert sublayers (i.e., number of parame-
ters). Lower perplexity indicates better performance.

Models Valid PPL
STABLEMOE (stacked, top) 19.55
STABLEMOE (stacked, middle) 19.28
STABLEMOE (stacked, bottom) 22.82
STABLEMOE (scattered) 20.56

Table 4: Effects of the position of MoE layers. STA-
BLEMOE (scattered) scatters 3 MoE sublayers uni-
formly into the standard Transformer, while the others
stack 3 MoE sublayers together.

ferent numbers of experts. In addition, it is worth
noting that STABLEMOE with 16 experts outper-
forms BASE Layer with 32 experts, and STABLE-
MOE with 32 experts achieves a similar perplexity
to BASE Layer with 64 experts.

Number of Expert Parameters We compare
MOoE models with different numbers of expert pa-
rameters by setting different expert sublayers. Mod-
els with 3 and 10 expert sublayers have 454M and
1.51B expert parameters, respectively. From Fig-
ure 6, we observe that more expert parameters bring
better performance, and STABLEMOE consistently
performs the best under both settings.

Position of MoE Layers We investigate the ef-
fect of the inserting position of the MoE layer. By
default, the MoE layer stacks 3 MoE sublayers and
is inserted after the %—th Transformer block (mid-
dle). We also attempt to insert the MoE layer before
the first Transformer block (bottom), and after the
last Transformer block (top). In addition, we also
investigate the effect if we scatter 3 MoE sublayers
uniformly into the standard Transformer, i.e., after
the %—th, %-th, and %-th blocks, respectively. As
shown in Table 4, among the above four settings,

Models Valid PPL
BASE Layer 20.04

+ Fixed Routing Strategy (Stage 2) 19.41 (0.63))
STABLEMOE with Only Stage 1 19.48

+ Fixed Routing Strategy (Stage 2) 19.28 (0.20J)

Table 5: Effects of the fixed routing strategy.

inserting stacked MoE sublayers into the middle
position allows STABLEMOE to achieve the best
performance.

Ratio Between Two Training Stages We inves-
tigate the balance point of the ratio between two
training stages in STABLEMOE. Given a fixed num-
ber of total steps, allocating more steps to training
stage 1 can help to learn and distill a better routing
strategy. On the other hand, a larger ratio of train-
ing stage 2 means longer stable training. Under the
base setting of language modeling, we attempt to
allocate 6K, 15K, and 30K steps to training stage 1
and show the results in Table 6. We find that if we
use word embeddings as the distilled router, allo-
cating 6K steps (10% of the total steps) to training
stage 1 is a good balance point. We speculate that
the word embedding is simple enough to be learned
fast, so longer stable training is more important to
achieve better performance.

4.4.2 Effects of the Fixed Routing Strategy

Based on the base setting of language modeling, we
design two experiments to investigate how much
performance improvement the fixed routing strat-
egy can bring. On the one hand, we equip BASE
Layer with a stable routing strategy to address its
routing fluctuation problem. Specifically, as in
STABLEMOE, we use word embeddings to distill
the routing strategy of BASE Layer in the first 6K
training steps, and freeze the distilled router for
stable routing in the remaining training. As shown
in Table 5, the fixed routing strategy decreases the
validation perplexity of BASE Layer by 0.63. On
the other hand, we attempt to disable the training
stage 2 in STABLEMOE and always train the model
as in training stage 1. As a result, the validation
perplexity of STABLEMOE becomes 0.20 higher
than the full version that has a fixed routing strat-
egy. These two cases support that the fixed routing
strategy, which addresses the routing fluctuation
problem, can bring better performance for MoE-
based Transformers.

In addition, we visualize the fixed routing strat-
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Distilled Routers Stage 1 Steps Valid PPL
Word Embedding 6K (10%) 19.28
Word Embedding 15K (25%) 19.34
Word Embedding 30K (50%) 19.41
CNN 15K (25%) 19.39
1-layer Transformer 15K (25%) 19.42
2-layer Transformer 15K (25%) 19.38
3-layer Transformer 15K (25%) 19.65

Table 6: Results of different ratios of two training
stages and different variants of distilled routers.

100%
—— BASE Layer
—— StableMoE

®
Q
X

60%
(20%, 40.9%)

40% (50%, 29.1%)

0% (80%, 15.4%)
4

Cumulative Token Percentage

: (50%, 0.0%) ! :

0% 1(20%, 0.0%) i (80%, 0.0%)1

0% 20% 40% 60% 80% 100%
Last Fluctuation Step

Figure 7: Cumulative token percentage about the last
fluctuation step of tokens for BASE Layer and STA-
BLEMOE. Notice that training stage 2 of STABLEMOE
does not have routing fluctuation compared with BASE
Layer.

egy of STABLEMOE in Appendix C for reference.

4.4.3 Variants of Distilled Routers

In Table 6, in addition to word embedding, we also
investigate four variants of the distilled router in-
cluding CNN and three Transformers with different
numbers of layers. We allocate 15K steps to train-
ing stage 1 for all of them. From the table, we find
that using word embedding achieves the best per-
formance, while the 3-layer Transformer does not
perform well. For the routing strategy distillation,
the distilling signal from a 32-category classifica-
tion objective may not be informative enough to
learn a complex router. By contrast, it is more
suitable for simpler routers. Therefore, we recom-
mend using word embedding, which is simple and
effective, as the distilled router in STABLEMOE.

4.4.4 Analysis of Routing Fluctuations

We compare the degree of routing fluctuations be-
tween STABLEMOE and BASE Layer to show our
advantage with regard to the routing stability. Dur-
ing the 60K training steps, we examine the token-
to-expert assignment for tokens in the validation
set every 500 steps. For each token, we define the

last fluctuation step as the last step where its tar-
get expert is different from the final step. We plot
the cumulative token percentage about the last fluc-
tuation step in Figure 7. For ease of reading, we
annotate the x-axis as the percentage it accounts
for all training steps. From the figure, we find
that the routing fluctuation problem is notable for
BASE Layer. By contrast, for STABLEMOE, there
is no routing fluctuation in training stage 2 since
we apply a fixed routing strategy.

5 Related Work

Jacobs et al. (1991); Jordan and Jacobs (1994) pro-
pose Mixture of Experts (MoE) to compute dif-
ferent examples with independent expert modules.
Shazeer et al. (2017) introduce MoE to build large-
scale language models based on LSTMs (Hochre-
iter and Schmidhuber, 1997). Recently, as Trans-
formers become popular, many pieces of work
design MoE-version FFNs to build MoE-based
Transformers. GShard (Lepikhin et al., 2021),
Switch Transformer (Fedus et al., 2021), and BASE
Layer (Lewis et al., 2021) follow the learning-to-
route paradigm and dynamically learn how to route
each input token to experts. However, we point out
that these learning-to-route methods face the rout-
ing fluctuation problem. Hash Layer (Roller et al.,
2021) propose a non-parametric routing strategy,
which uses a pre-designed token-level hash table
to determine the token-to-expert assignment. The
static routing strategy will not fluctuate, but the
randomly determined hash table limits the upper
bound of its performance. Our work includes the
advantages of learning-to-route methods to learn a
balanced and cohesive routing strategy, and further
addresses the routing fluctuation problem through
applying a frozen lightweight router that mimics
the original routing strategy.

6 Conclusion

In this paper, we point out the routing fluctuation
problem that exists in previous learning-to-route
MOoE methods. In order to address this problem,
we propose STABLEMOE with two training stages.
We first learn a balanced and cohesive routing strat-
egy and synchronously distill it into a lightweight
router decoupled from the backbone model. Then,
we freeze the distilled router for a stable routing
strategy in the remaining training. We validate STA-
BLEMOE on language modeling and multilingual
machine translation. The results show that STA-
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BLEMOE outperforms existing MoE methods in
terms of both convergence speed and performance.
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Appendix

A Hyper-parameters for Language
Modeling

The hyper-parameters of STABLEMOE under the
base and the large settings for language modeling
are summarized in Table 7.

Hyper-parameters Base Large
Number of Experts 32 64
Number of MoE Layers 1 1
Sublayers per Expert 3 6
Embedding & Hidden Size 768 1024
FFN Inner Hidden Size 3072 4096
Number of Attention Heads 12 16
Number of Transformer Blocks 12 24
Sequence Length 1024 1024
Batch Size 512K Tokens 512K Tokens
Optimizer Adam Adam
Maximum Learning Rate 6e-4 3e-4

Learning Rate Scheduler Linear Decay Linear Decay

Total Steps 60K 60K
Warm-up Steps 2K 2K
Gradient Clip Norm 0.1 0.1
Dropout 0 0

Table 7: Hyper-parameters of STABLEMOE under the
base and the large settings for language modeling.

B Hyper-parameters for Multilingual

Machine Translation

The hyper-parameters of STABLEMOE for mul-
tilingual machine translation are summarized in

Table 8.

Number of Experts 32
Number of MoE Layers 2
Sublayers per Expert 3
Embedding & Hidden Size 512
FFN Inner Hidden Size 2048
Number of Attention Heads 8
Number of Transformer Encoder Blocks 6
Number of Transformer Decoder Blocks 6
Maximum Sequence Length 256
Maximum Batch Size 512K Tokens
Optimizer Adam
Maximum Learning Rate Se-4
Learning Rate Scheduler InvSqrt
Total Steps 352K
Warm-up Steps 4K
Gradient Clip Norm 0.1
Dropout 0.1
Attention Dropout 0
Label Smoothing 0.1

Table 8: Hyper-parameters of STABLEMOE for multi-

lingual machine translation.
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Experts Most Frequent Tokens

Descriptions

5 my, his, her, year, years, day, life, week, family, days

6 with, at, from, about, them, need, want, him, against, using

11 that, 2, !, which, )., .", That, ".,.), !1, 2", 111, ), A, 1", 2, 1, D),

12 one, what, some, any, two, many, $, use, 2, 1

13 information, support, experience, service, data, services, money, access, research
17 world, government, state, country, community, city, 2018, United, US, law
22 right, business, high, free, important, public, big, top, hard, small

27 time, work, home, place, care, water, area, health, job, car

29 ing, a, ed, in, er, on, o, e, as, es, an, al, en, am, it, is, ie, os, le

30 you, we, they, there, It, We, here, You, ve, 've

31 and, or, by, when, after, through, before, while, And, until

possessive case & time units
prepositions & objective case
conjunctions & punctuations
numerals

nouns about technologies
nouns about politics
adjectives

nouns about the daily life
suffixes

pronouns

conjunctions

Table 9: The most frequent tokens assigned to each expert in the validation set. We present several representative

experts. Tokens assigned to the same expert usually share some common features.

C Visualization of the Fixed Routing
Strategy of STABLEMOE

We visualize the fixed routing strategy of STABLE-
MOE in Table 9. On the validation set, for each
expert, we demonstrate the most frequent tokens
assigned to it along with a text that describes their
common features. We find that tokens assigned to
the same expert usually share some common fea-
tures, e.g., Expert 22 captures adjectives and Expert
31 captures conjunctions. These cases show good
cohesiveness of the token-to-expert assignment in
STABLEMOE.
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