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Abstract

In order to better understand the rationale be-
hind model behavior, recent works have ex-
ploited providing interpretation to support the
inference prediction. However, existing meth-
ods tend to provide human-unfriendly inter-
pretation, and are prone to sub-optimal per-
formance due to one-side promotion, i.e. ei-
ther inference promotion with interpretation
or vice versa. In this paper, we propose
a multi-level Mutual Promotion mechanism
for self-evolved Inference and sentence-level
Interpretation (MPII). Specifically, from the
model-level, we propose a Step-wise Integra-
tion Mechanism to jointly perform and deeply
integrate inference and interpretation in an au-
toregressive manner. From the optimization-
level, we propose an Adversarial Fidelity Reg-
ularization to improve the fidelity between in-
ference and interpretation with the Adversarial
Mutual Information training strategy. Exten-
sive experiments on NLI and CQA tasks reveal
that the proposed MPII approach can signifi-
cantly outperform baseline models for both the
inference performance and the interpretation
quality.’

1 Introduction

Recently, the interpretability of neural networks has
been of increasing concern. In order to break the
black-box of neural networks, many works explore
the interpretability of neural networks through pro-
viding interpretations to support their inference re-
sults (Ribeiro et al., 2016; Chen et al., 2018; Liu
et al., 2019; Thorne et al., 2019; Kumar and Taluk-
dar, 2020).

Although prior works have made some progress
towards interpretable NLP, they tend to provide
interpretations that lack human-readability. Ex-
isting interpretable models usually extract promi-

*Work was done during internship at Microsoft Research
'Our code is available at https://github.com/
theNamek/MPIT.git

Premise: People walk through a store.
Hypothesis: Passengers in a car driving down the street.
Label: Contradiction
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Token-level Explanation:
Passengers, through, walk, down, car

Sentence-level Explanation:
People cannot walk while driving down the street.

Figure 1: Comparison of different interpretations:
heatmap explanation, alignment rationale, token-level
NL explanation, and sentence-level NL explanation.

nent features or select input key words as expla-
nations, such as attention distribution (Xu et al.,
2015), heatmap (Samek et al., 2017), alignment
rationale (Jiang et al., 2021), gradients (Li et al.,
2016), magnitude of hidden states (Linzen et al.,
2016), etc. Considering readability and comprehen-
sibility for humans, some works turn to generate
token-level explanations (Liu et al., 2019; Thorne
et al., 2019), which are nevertheless prone to cause
ambiguity. Figure 1 shows some prevalent forms of
interpretations in NLI task. Obviously, human lan-
guage interpretations seem more acceptable than
those chaotic maps, whether it is heatmap or align-
ment map. As for the token-level interpretation,
several discrete tokens without any logical links
are vague and ambiguous. Moreover, Thorne et al.
(2019) observed that token-level methods tend to
predict common tokens (e.g. people, man, dog)
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rather than keywords. Intuitively, human language
sentence-level interpretations containing reasoning
logic are the best form for human to understand.

With annotated natural language interpretation
datasets available (Camburu et al., 2018; Rajani
et al., 2019), methods of generating sentence-level
interpretation have been explored recently. Cam-
buru et al. (2018) proposed to first generate inter-
pretation and then predict the label only based on
the generated interpretation. Kumar and Talukdar
(2020) proposed to first generate sentence-level in-
terpretations with deep pre-trained language mod-
els (such as BERT and GPT), then fed those in-
terpretations as extra knowledge to help improve
inference performance. We notice that these meth-
ods only include one-side promotion: utilizing in-
formation contained in interpretation to improve
inference, while ignoring the other-side promotion:
using inference logic to enhance interpretation. As
claimed in Kumar and Talukdar (2020) that their
one-side promotion improves predictions’ faithful-
ness to generated interpretations, then the other-
side should be able to improve interpretation’s faith-
fulness to inference process. This has aroused our
thinking: Can we deeply fuse these two relevant
tasks with ingenious combination skills and achieve
mutual promotion for inference and interpretation?

In this paper, we propose a multi-level Mutual
Promotion mechanism for self-evolved Inference
and sentence-level Interpretation (MPII). Specif-
ically, from the model-level, we propose a Step-
wise Integration Mechanism (SIM) to iteratively
update the inference prediction and generate an in-
terpretation token at each decoding step, and deeply
integrate hidden representations of the prediction
and the token with two fusion modules. In this
way, the model learns to refine the inference con-
clusion as the interpretation proceeds, and the in-
ference procedure can in turn guide the generation
of interpretation at each decoding step. From the
optimization-level, we propose an Adversarial Fi-
delity Regularization (AFiRe) to improve the fi-
delity between inference and interpretation with
the Adversarial Mutual Information (AMI) method
(Pan et al., 2020), which extends the maximum
mutual information optimization objective with the
idea of generative adversarial network (Goodfel-
low et al., 2014). With this training framework, the
model is trained against a smart backward network
that learns to reward the inference prediction and
interpretation of fidelity, which ensures faithfulness

and makes the derived interpretation depict the true
profile of how the model works (Jiang et al., 2021).
To verify the effectiveness of MPII, we conduct
extensive experiments on two inference tasks: Nat-
ural Language Inference (NLI) task and Common-
sense Question Answering (CQA) task. Experi-
ment results reveal that compared with baseline
models, our method can achieve mutual promotion
on both model inference performance and sentence-
level interpretation quality. Meanwhile, through
providing simultaneous inference prediction and
human-comprehensible interpretation with deep in-
tegration mechanism and adversarial training strat-
egy, our model can perform inference and interpre-
tation of fidelity and generate more robust explana-
tions. Main contributions of this work include:

* Different from the previous works that only
include one-side promotion, we mutually pro-
mote the inference and sentence-level inter-
pretation from both the model-level and the
optimization-level.

* We propose a Stepwise Integration Mecha-
nism to tightly fuse latent prediction and inter-
pretation information at every decoding step,
and an Adversarial Fidelity Regularization to
further improve the fidelity with the adversar-
ial training strategy.

* Experiment results show that our method
achieves significant improvement in both in-
ference accuracy and interpretation quality
compared with baseline models.

2 Methodology

In this section, we introduce Stepwise Integration
Mechanism (SIM) and Adversarial Fidelity Reg-
ularization (AFiRe) in details. Utilizing the auto-
regressive nature of Transformer decoder, SIM en-
ables deep interaction at every decoding step be-
tween inference and interpretation. With the ad-
versarial training strategy, AFiRe enables further
integration of latent semantic information between
inference and interpretation, and also improves the
quality of explanation sentences by bringing them
closer to human expressions.

2.1 Task Description

Transformer model (Vaswani et al., 2017) has been
firmly established as the dominant approach in
text generation tasks, we therefore adopt the Trans-
former model as backbone. Given a sequence of to-
kens as input X = {z¢, z1, ..., Ty, } (e.g. for NLI:
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Figure 2: The overall architecture of our model. Both prediction label and explanation token are generated at every
decoding step. Two fusion gates are attached to enable deep interaction of their hidden representations.

X = {[CLS] + Premise + [SEP] + Hypothesis},
for CQA: X = {[CLS] + Question + [SEP] +
Answers}), Transformer encoder produces a se-
quence of continuous vectors He,.. Conditioned
on H,,., on each decoding step, Transformer de-
coder takes the embedding of words generated by
previous steps as input and predicts the word for
current step.

With ground truth prediction L and explanation
E from human-annotated dataset, the interpretable
model is required to generate prediction L and
explanation sentence E' = {e[, €], ..., e/, } simulta-
neously.

2.2 Stepwise Integration Mechanism

Prevalent interpretable models share the same en-
coder and separately adopt a MLP and a decoder to
generate predictions and explanations. We analo-
gously adopt the standard Transformer encoder, but
apply Stepwise Integration Mechanism to deeply
integrate standard MLP and Transformer decoder
at every decoding step to simultaneously produce
predictions and explanations.

As depicted in Figure 2, at decoding step ¢, de-
coder takes the last generated token e}_; and the
predicted label [;_, at previous step as input. At
the first decoding step, we pass the encoder hidden

state corresponding to [CLS] token into MLP to get
the [{,. We project the label /;_; with Multi-Layer
Perceptrons (MLP) and obtain v} _;, which repre-
sents the previous step prediction information. We
then fuse the prediction information V?fl and the
explanation token e, _; with gate mechanism. The
gate probability at ¢ step is computed by:

P, = ReLU(W; [Emb!_;; Emb{ ;] +by) (1)

pr = 0(Wa p} + ba) Q)

where ““;” means concatenation, W1, Wy, by and
by, are trainable parameters. ReL.U(-) here denotes
the ReLLU activation function (Nair and Hinton,
2010), o(-) represents the sigmoid function. We
fuse the prediction and interpretation information
as below:

Emb,; = p,Emb! | + (1 — p;)Emb{ | (3)

where Emb; contains the information of predic-
tion and the overall explanation sub-sequence gen-
erated in all previous steps.

We utilize the stack of masked self-attention lay-
ers fsq used in Transformer decoder to compute
the decoder hidden states:

{h07 hla ey hf} = fsrl({EmbO7 Embla ) Embf}) (4)
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The attention vector referring to the source se-
quence is computed with multi-head attention:

Vi = fmha(HenCa ht) 5)

where H.,,. represents the encoder hidden states,
fmha denotes the multi-head attention module. The
v, is further passed into a fully connected layer fol-
lowed with so ftmax function to obtain the vocab-
ulary distribution of generated explanation token
e} at t step:

e; = argmax(softmaxr(Wv; + b))  (6)

where W and b are both trainable parameters.

The gate mechanism is then used to integrate the
explanation information to update the prediction
information:

pt = o(MLPy ([Emb]_;; MLPs(v;)]))  (7)
where the two MLP(-) use different parameters.
Emb! = Emb! | + p;MLP3(v;)  (8)

We apply the residual connection (He et al., 2016)
here, which is easier to optimize in the scenario
of many decoding steps. This is similar to the
gate mechanism used in Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) that
learns to remember important information obtained
on each decoding step. At the last decoding step,
the model deduces the eventual decision:

L' = argmaz(softmaz(EmbL)) (9

where n is the length of the generated explanation
E’. With this setting, both prediction and expla-
nation are updated at every decoding step. The
step-by-step explanation helps the model to do bet-
ter inference, and the stepwise inference in turn
guides the generation of better explanation.

2.3 Adbversarial Fidelity Regularization

From the level of optimization objective, we further
introduce the Adversarial Fidelity Regularization
(AFiRe) to improve the fidelity of inference and
interpretation. We leverage the Adversarial Mu-
tual Information (AMI) method (Pan et al., 2020)
to extend the maximum mutual information ob-
jective among input, inference prediction and the
generated explanation with the idea of generative
adversarial network (Goodfellow et al., 2014).

min Qy(X | L, E)
maz Qy(X | L, E) Forward
Network

Backward \

] e L] |
« OWOrR
X LLsL% | iLold Backward X

) Network

maz Py(L, E| X)

Figure 3: The overview of Adversarial Fidelity Regu-
larization.

Backward
Network

Compared to the maximum likelihood estima-
tion (MLE) objective, maximum mutual informa-
tion (MMI) objective encourages the model to gen-
erate the prediction and explanation that are more
faithful to the input (Kinney and Atwal, 2014;
Stratos, 2019). The mutual information I (X, L, E)
among the input X, inference label L and explana-
tion E is formulated as:

](X, L7 E) = EP(X,L,E) logiplz)(();})[(/’l/?;)
= H(X) - H(X|L,E)

where H denotes the entropy.

Because of the intractability of directly estimat-
ing the mutual information in high-dimensional
space, we approximate the optimization objective
with a Variational Information Maximization lower
bound (Chen et al., 2016b; Zhang et al., 2018;
Poole et al., 2019):

IX, L, E) = HX) + Ep(x,1,g) [logP(X|L, E)]
=HX) + Ep(x,1,5) [logQs(X|L, E)]
+Ep(zp) [IKL(P(X|L, B)||Qy(X|L, E£))]
> HX) +Epx)Ep,(r,21x) logQy(X|L, E)]

where ICL(+||-) denotes the Kullback-Leibler (KL)
divergence between two distributions. Py(L, E|X)
and Q(X|L, E) denote the forward network (gen-
erating L, E conditioned on X') and the backward
network (generating X conditioned on L, E) re-
spectively.

Since the entropy term H (X ) associates with the
training data and does not involve the parameters
we optimize, the objective of MMI is equivalent as:

I{OI%SX E(L/,E/)NPQ(L/,E/lx) [10gQ¢(X|L/, E/)]

where 6 and ¢ are the parameters of the forward and
backward network respectively. L' and E’ repre-
sent the synthetic prediction label and explanation
generated by the forward network.
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With the MMI optimization objective, the back-
ward network is trained with only the synthetic
label and explanation produced by the forward net-
work, and prone to sub-optimal performance if the
synthetic text is uninformative. Since the the back-
ward network provides a reward for optimizing the
forward network, a biased backward network may
provide unreliable reward scores and mislead the
forward network optimization.

To remedy this problem, we leverage the Ad-
versarial Mutual Information (AMI) method (Pan
et al., 2020) to extend MMI with the idea of genera-
tive adversarial network (Goodfellow et al., 2014).

Specifically, we first bring the min-max adver-
sarial game into training procedure and add an ad-
ditional objective term Q (X |L, ) to maximize
the negative likelihood of ()4 when feeding it with
the real data:

m(%nmeax B, Ery~py (L7, 5|X) [logQu(X|L', E")] — Qu(X|L, E)

With this interactive training strategy and regu-
larizing the backward network with both the syn-
thetic data and real data, the forward network will
be trained against a smarter backward network that
only rewards prediction and explanation of fidelity.

Besides, we add an objective term Py (L, E| X) of
maximize the negative likelihood of Py to balance
the positive samples as teacher-forcing algorithm
(Li et al., 2017). The final optimization objective
is formulated as:

Mutual Information

mgll max Py(L,E|X) + B prypy .5 x) [108Qu(X|L, E')] — Qu(X|L, E)

Adversarial Training

As depicted in Fig 3, to encourage the forward
network to learn a stronger connection between
generated explanations and model predictions, we
also add Qu(X|L, E’) as negative samples for
backward network. This explicitly encourages the
backward network to be capable of punishing the
Py when it generates unfaithful explanations.

3 Experiments

We intend to verify the mutual promotion effect
of SIM and AFiRe on the inference ability and
interpretablity of model. We choose two tasks re-
quiring inference ability: Natural Language Infer-
ence (NLI) and Commonsense Question Answer-
ing (CQA).

3.1 Datasets

We use six datasets as our testbeds: SNLI (Bow-
man et al., 2015), e-SNLI (Camburu et al., 2018),
CQA (Talmor et al., 2019), CoS-E (Rajani et al.,
2019), MultiNLI (Williams et al., 2018), and
SICK-E (Marelli et al., 2014).

SNLI is a standard benchmark for NLI task,
while e-SNLI extends it with human-annotated
natural language explanations for each sentence
pair. CoS-E? dataset extends CQA dataset with
natural language explanations for each QA sam-
ple. MultiNLI is another large-scale NLI corpus,
which includes a diverse range of genres. SICK-e
(Sentences Involving Compositional Knowledge
for entailment) provides sentence pairs that are rich
in the lexical, syntactic and semantic phenomena.
The latter two datasets are used for out-of-domain
evaluation.

3.2 Baselines

NLI: We use e-INFERSENT and Transformer
as two baseline models for NLI task. The e-
INFERSENT model adds a LSTM decoder into
INFERSENT (Conneau et al., 2017) for explana-
tions. The classification module and the explana-
tion generation module are separated but share the
same encoder. The Transformer model (Vaswani
et al., 2017) adds a MLP layer for making predic-
tions. With this baseline, we aim to test whether
vanilla transformer without further interaction can
achieve good results.

CQA: We use CAGE (Rajani et al., 2019) as the
baseline model for CQA task. CAGE adopts the
explain-then-predict approach, which firstly fine-
tunes a deep pretrained language model GPT (Rad-
ford et al., 2019) to generate explanations, then use
a classifier to predict the inference label with the
generated explanation and source text as the input.

3.3 Metrics

To evaluate inference performance, we report Task-
specific Accuracy (NLI Accuracy and CQA Ac-
curacy). To evaluate the quality of generated in-
terpretation, we report BLEU (similarity between
generation and ground truth), PPL (fluency of gen-
erated sentences), and Inter Repetition (diversity
of generated explanations).

Zhttps://github.com/salesforce/cos-e
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Inference Interpretation

Methods Task-Accuracy?t BLEU?T PII.’[;J¢ Inter-Rep]

NLI Task
Dataset’ 100.00 22.51 30 0.40
e-INFERSENT? 83.96 22.40 24 0.72
Transformer 80.12 23.63 68 0.69
Transformer + MPII (w/o Inference in SIM) - 28.31 38 0.56
Transformer + MPII (w/o Interpretation in SIM) 85.43 - - -
Transformer + MPII (w/o AFiRe) 86.47 27.93 41 0.64
Transformer + MPII 87.32 28.64 37 0.52
BART + MPII (w/o AFiRe) 89.79 31.01 29 0.59
BART + MPII 91.85 31.26 27 0.51
A 11.731 7.631 41 0.18]

CQA Task
Dataset’ 100.0 100.0 454 0.16
CAGE? 58.15 4.37 129 0.36
BART + MPII (w/o AFiRe) 52.83 3.54 227 0.13
BART + MPII 60.21 4.92 196 0.15
A 2.067 0.551 671 0.21]

Table 1: Automatic evaluation results on the SNLI and CQA datasets with the annotated explanation from the
e-SNLI and CoS-E datasets. The higher! (or smaller') score indicates the better performance. fWe evaluate the
ground truth with our metrics. *We use the released baseline model and evaluate it with our metrics. A indicates the

improvement over the Transformer/CAGE baselines.

3.4 Main Results

Table 1 shows automatic evaluation results on the
SNLI and CQA datasets with the annotated expla-
nation from the e-SNLI and CoS-E datasets. Com-
pared with the baseline models, our MPII method
can achieve significant performance improvement
for both the inference and interpretation on two
tasks. It indicates that the inference and interpre-
tation process can be mutually promoted with our
proposed method. With the ablation study, we no-
tice a performance degradation of the inference and
interpretation if we remove either of them, demon-
strating the faithfulness between the generated ex-
planation and the model’s prediction.

Inference Promotion: We can achieve 11.73 and
2.06 absolute inference accuracy improvements
compared to the baselines for the NLI and CQA
task, respectively. For the NLI task, with our MPII
framework, the Transformer baseline model can
improve over 5 absolute accuracy score. The abla-
tion study shows the contribution comes from not
only the mutual interaction of inference and inter-
pretation in the Stepwise Integration Mechanism
(SIM), but also the adversarial mutual information
training objective introduced in the Adversarial
Fidelity Regularization (AFiRe). Moreover, with
parameters initialized with the pretrained BART
model, the accuracy can be further improved by a
4.53 absolute score. For the CQA task, we observe
that better performance is still achieved compared

Methods MultiNLI  SICK-E
Transformer 55.92 53.21
Transformer + MPII (w/o AFiRe) 56.42 53.84
Transformer + MPII 58.73 56.54

Table 2: Out-of-domain NLI evaluation results on
MultiNLI and SICK-E datasets.

with the CAGE baseline model. If we remove the
AFiRe, a significant inference degradation would
be witnessed. It also indicates the effectiveness of
AFiRe for utilizing interpretability to improve the
inference ability.

Interpretation Promotion: The quality of gen-
erated interpretation can also be significantly im-
proved with our mutual promotion method on both
NLI and CQA tasks. For the NLI task, combined
with our MPII, the Transformer baseline model can
provide more accurate, fluent and diverse interpre-
tation with much better results in all metrics. Sim-
ilar with the inference results, the ablation study
shows that both SIM and AFiRe contribute to the
performance improvement. With the pretrained
BART model, we further improve the BLEU and
Inter-Rep performance and get comparable PPL
compared with the e-INFERSENT model. For the
CQA task, our method performs better in terms of
BLEU score and the diversity of generated expla-
nations. We notice that the BLEU scores are pretty
low for CQA task, which may stem from the free
form of expression for explanations in the dataset,
i.e. several different explanations share the same
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Figure 4: Visualization for mutual promotion evolution of inference and interpretation.

Methods Critic-Score
e-INFERSENT? 82.41
Transformer 82.27
Transformer + MPII (w/o AFiRe) 92.09
Transformer + MPII (w/o Interpretation in SIM) 93.81
Transformer + MPII (w/o Inference in SIM) 94.50
Transformer + MPII 95.93

Table 3: Fidelity evaluation results on SNLI dataset.

commonsense knowledge. We observe that most
of the explanations generated by our method are
reasonable enough to interpret the predictions even
though the BLEU scores are low. Our method also
achieves a smaller Inter-Rep score, which shows
that our model can provide more diverse expla-
nations to reveal the inference process of making
predictions.

3.5 Out-of-Domain Evaluation

As shown in Table 2, we evaluate our method
with the Transformer baseline model on two out-
of-domain datasets: MultiNLI and SICK-E. The
results show that our mutual promotion method
enables the Transformer model to be more robust,
and achieves about 3 absolute accuracy improve-
ment on both of the out-of-domain datasets without
fine-tuning. It is because with our MPII method,
the model can generate more reliable and domain-
related interpretation, which helps to make more
accurate inference prediction. The ablation results
demonstrate both the adversarial mutual informa-
tion training strategy in AFiRe and deep integration
in SIM is very effective to improve the model’s gen-
eralization and robustness.

3.6 Fidelity Evaluation

We propose a model-based evaluation metric Critic-
Score to evaluate the fidelity between model’s in-
ference predictions and interpretations. Inspired by
Shen et al. (2017), which applied a trained model to
automatically evaluate the text style transfer accu-
racy in the absence of parallel dataset, we pre-train
a well-performed discriminator model to evaluate
the fidelity between the predicted label and the gen-
erated explanation.

The discriminator is a binary classifier [ :
(X,L,E) — Yes/No , which shares similar ar-
chitecture with the backward network in our Ad-
versarial Fidelity Regularization (Section 2.3). The
training dataset is constructed based on the e-SNLI
and CoS-E corpus. Given a sample (X;, L;, E;)
on e-SNLI that serves as a positive sample, we
build the negative sample as (X;, L;, E;), where
explanation E; # E; is selected from another e-
SNLI sample that shares either the same premise
or hypothesis. With this dataset, the discriminator
model is trained to learn the intrinsic fidelity be-
tween the label and its corresponding explanation.
The trained discriminator achieves 97% accuracy
on its test set and is able to serve as a quantitative
way of evaluating fidelity.

As shown in Table 3, with our proposed mu-
tual promotion method, the Transformer model can
achieve significant improvement on Critic-Score
between prediction and explanation. The ablation
results confirm both the deep interaction design in
Stepwise Integration Mechanism and the adversar-
ial training strategy in Adversarial Mutual Informa-
tion can contribute to the improvement of fidelity
and faithfulness.
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Input X: the premise is : a statue at a museum that no seems to be looking at , while the hypothesis is : the statue is offensive and people are mad that it is on display .

Choices: (0) entailment, (1) neutral, (2) contradiction.

Method Prediction | Explanation

Human: (1) not all statues are ignored because they are offensive .

e-INFERSENT: (0) people is _end_ .

MPII (w/o AFiRe): (1) just because a statue at a museum that no seems to be looking at does n’t imply the statue is offensive and people are mad .
MPII: (1) a statue that no seems to be looking at it does not imply the statue is offensive or people are mad .

Input X: the premise is : a young family enjoys feeling ocean waves lap at their feet . while the hypothesis is : a family is out at a restaurant .

Choices: (0) entailment, (1) neutral, (2) contradiction.

Method Prediction Explanation

Human: 2) one says the family is inside the restaurant , while the other says they are feeling ocean waves .
e-INFERSENT: 2) a family can not be enjoying their feet out at a restaurant and at the same time

MPII (w/o AFiRe): ?2) the family can not be at the beach and at a restaurant at the same time .

MPII: 2) the family can not be feeling ocean waves and be at a restaurant at the same time .

Table 4: Examples randomly selected from the test set of e-SNLI. “Human” here represents the explanations from
dataset. Blue and red indicate good and bad explanations respectively, except for those provided by human.

Input X: what do people aim to do at work ?

Choices: (0) complete job, (1) learn from each other, (2) kill animals, (3) wear hats (4) talk to each other.

Method Prediction Explanation

Human: (0) people aim to complete job in work .

CAGE: (2) people aim to kill animals .

BART + MPII (w/o AFiRe): 0) people want to complete job .

BART + MPII: (0) what people aim to do at work is to complete job .

Input X: the lock kept the steering wheel from moving, but the thief still took his chances and began to work on the what ?
Choices: (0) keep cloesd, (1) train, (2) ignition switch, (3) drawer, (4) firearm.

Method Prediction | Explanation

Human: 2) it was more safe .

CAGE: 0) the lock kept the steering wheel from moving, but the door kept the door from moving .
BART + MPII (w/o AFiRe): (2) the lock kept the steering wheel from moving ignition switch .

BART + MPII: 2) the ignition switch is the only thing that would work on a car .

Table 5: Randomly selected examples in CQA task. “Human’ here represents the explanations from dataset. Blue
and red indicate good and bad explanations respectively, except for those provided by human. Predicted label is

presented in the parentheses.

3.7 Analysis

Mutual Promotion Visualization: Figure 4
demonstrates the evolution of the inference predic-
tion as the interpretation proceeds. The input of the
model is “[CLS] a couple standing on what looks
like a peer or boardwalk [SEP] a couple hugging
each other at the park™, of which the ground truth
label is “contradiction”. We observe that the model
draws an initial conclusion that the entailment rela-
tionship between the premise and the hypothesis is
not “entailment”, and is not able to tell whether it
is “neutral” or “contradiction”. As the deliberation
proceeds, our model comes to judge that it is “con-
tradiction” with the generated interpretation “a park
does not have a peer or boardwalk”. From the clear
split of the red and blue lines when “does” and “not”
are generated, we can see that the prediction is very
sensitive to explanation, which demonstrates the
faithfulness (Kumar and Talukdar, 2020).

Semantic Similarity Evaluation of Interpreta-
tion: To better evaluate the quality of generated
explanations, we also measure the cosine similarity
between generated explanations and human anno-
tated explanations. The results are presented in
Fig 5. The cosine similarity of our method con-

0.5

[0 CAGE
[ BART+MPII(w/o AFiRe)) =
[ BART+MPII 0.43

0.4

0.3l 0.3 03

Proportion

0.2 0.19
17 0.17

0.1
.07 0.07

0.6 0.7 0.8 0.9 1.0
Semantic Similarity

Figure 5: The distribution of cosine similarity with
average sentence embedding between human annotation
and generated interpretation.

centrates on 0.9 and achieves higher scores than
CAGE, which demonstrates the effectiveness of
our MPII for generating better interpretation that
are closer to human expression.

Case Study Table 4 presents examples produced
by different models. For the first example, e-
INFERSENT fails to make correct prediction and
provide reasonable explanation. In contrast, our
MPII not only predict the entailment relation cor-
rectly, but also produce faithful explanations to
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Methods Fidelity-C"  Fidelity-W' LAcc' Fluency'
NLI Task

e-INFERSENT 3.16 2.74 3.34 4.23

Transformer 3.30 3.21 3.65 3.68

Transformer + MPII (w/o AFiRe) 4.01 4.12 4.33 4.36

Transformer + MPII 4.17 4.38 4.57 4.51
CQA Task

CAGE(GPT, ETP) 3.71 3.18 352 4.25

BART + MPII (w/o AFiRe) 4.26 4.13 4.05 4.21

BART + MPII 4.37 4.39 4.22 4.30

Table 6: Human evaluation results on Fidelity-C(fidelity
between correct prediction and corresponding interpre-
tation), Fidelity-W(fidelity between wrong prediction
and corresponding interpretation), LAcc(accuracy of
selecting correct lables when only given the generated
interpretations), Fluency(fluency of interpretation).

interpret predictions. For the second example, our
MPII and MPII with AFiRe removed still capture
the entailment relation well, and explain that “at
the beach” and ““at restaurant” can not be done at
the same time. As we can see, these explanations
generated by our method are also fluent.

Table 5 shows the randomly selected examples
generated by different models in the CQA task. For
the first example, CAGE makes wrong prediction,
and generates explanation that obviously conflicts
with common knowledge. In contrast, our method
can make correct predictions and generate more
reasonable explanations. Similarly for the second
example, CAGE seems to directly copy words from
the question that do not actually contain meaningful
information. Our MPII still explains well, but fails
to explain properly with AFiRe removed, even if
the explanation contains the correct answer, which
reveals the importance of AFiRe for promotion of
interpretation.

Human evaluation: We conduct human evalua-
tion to further evaluate the effectiveness of MPIIL.
We randomly selected 300 examples from the test
set of e-SNLI, and asked 4 well-educated anno-
tators to rate every sample with 4 metrics on a
1-5 Likert scale in a strictly blind fashion (Stent
et al., 2005). As shown in Table 6, analogous
to automatic evaluation results (Section 3.4), our
MPII can generate interpretations with best quality
and fidelity to corresponding inference predictions,
whether correct or wrong.

4 Related Work

With the great success of natual language infer-
ence, many recent works explore the interpretabil-
ity of neural networks through providing interpre-
tation to support their inference results (Ribeiro
et al., 2016; Chen et al., 2018; Liu et al., 2019;

Thorne et al., 2019; Kumar and Talukdar, 2020).
Three forms of interpretation are provided by these
works: (1) feature-based interpretation (Chen et al.,
2016a, 2018; Ribeiro et al., 2016, 2018; Li et al.,
2016; Nguyen, 2018; Feng et al., 2018; Gururan-
gan et al., 2018) such as attention distribution (Xu
et al., 2015), heatmap (Samek et al., 2017), align-
ment rationale (Jiang et al., 2021), gradients (Li
et al., 2016), magnitude of hidden states (Linzen
et al., 2016), etc.; (2) token-level interpretation
that relatively easy to comprehend but prone to
ambiguity (Ribeiro et al., 2016; Liu et al., 2019;
Thorne et al., 2019), and (3) sentence-level interpre-
tation which has the best human-readability Cam-
buru et al. (2018); Talmor et al. (2019); Kumar
and Talukdar (2020). Different from the previous
work which only include one-side promotion, we
proposed the mutual promotion mechanism that
can improve the performance of both inference and
sentence-level interpretation.

5 Conclusions

In this work, we propose to mutually promote
model inference ability and interpretability from
multi-levels. From the model-level, we propose
Stepwise Integration Mechanism to enable the
model to refine the prediction conclusion as the
explaining proceeds and also to guide the genera-
tion of better explanation with the inference pro-
cedure of reaching prediction conclusion. From
the optimization-level, we propose an Adversarial
Fidelity Regularization, which leverages the Ad-
versarial Mutual Information method to improve
the fidelity between the inference and interpreta-
tion, which further guarantees faithfulness. Experi-
ment results show the effectiveness of our proposed
method on both NLI and CQA tasks. Future work
will involve extending our approaches into other
tasks of NLP. We hope that our work can encourage
further research in this direction.
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