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Abstract

While significant progress has been made on
the task of Legal Judgment Prediction (LJP) in
recent years, the incorrect predictions made by
SOTA LJP models can be attributed in part to
their failure to (1) locate the key event infor-
mation that determines the judgment, and (2)
exploit the cross-task consistency constraints
that exist among the subtasks of LJP. To ad-
dress these weaknesses, we propose EPM, an
Event-based Prediction Model with constraints,
which surpasses existing SOTA models in per-
formance on a standard LJP dataset.

1 Introduction

Legal Judgment Prediction (LJP) is a crucial task in
the legal judgment decision making process. Given
the facts of a legal case, the goal is to predict the
court’s outcome. So far, English LJP has focused
on predicting law articles (Chalkidis et al., 2019a,
2021) and court decisions (Malik et al., 2021) while
French LJP (Sulea et al., 2017b) has focused on
predicting court rulings. In this paper, we examine
LJP in the context of Chinese via the widely used
CAIL dataset (Zhong et al., 2018; Xu et al., 2020),
which involves three subtasks: predicting (1) law
articles, (2) charges and (3) terms of penalty, as
shown in Figure 1.

While state-of-the-art (SOTA) LJP models have
several fundamental limitations (Binns, 2019), one
of the technical issues they face concerns their fail-
ure to locate the key event information that deter-
mines the judgment results. Consider Figure 2,
where the fact statement of a robbery case involves
the illegal break-in description. Existing models
wrongly predict that the law article is about illegal
search since many words describe the break-in pro-
cess even though the main point is about robbery.

How can we address this problem? Recall that
in the continental judicial system, a law article
consists of two parts: (1) the event pattern, which
stipulates the behavior that violates the law, and (2)

Fact Statement

On April 1, 2019, Mike violently broke into Jessica’s
home and robbed a gold ring. After identification, the
- ring is worth 1,535 RMB.
Predicting

Law Article
Article 263: [Crime of Robbery]

Charge
Crime of Robbery }
Term of Penalty
An imprisonment of three years J

Figure 1: An illustration of legal judgment prediction.
The green and blue texts of the law article describe the
event pattern and the judicial consequence respectively.
The red words are fine-grained event information.

the judgment, which describes the corresponding
penalties. In the law article related to Robbery in
Figure 1, the event pattern is Anyone robs public or
private property and the judgment is be sentenced
to imprisonment of not less than three years and
not more than ten years. The event pattern and
the corresponding judgment defined by each law
article can be viewed as a causal pair: if an event
pattern is detected, the corresponding judgment can
be inferred from the causal pair. In other words, it
is the event information described in the case facts
on which the reasoning judgment for the case is
based. If we use the fine-grained key event infor-
mation extracted from the facts to match the event
pattern defined in the law articles, the law articles
that are applicable to the case could be retrieved
accurately and the penalty could be inferred with
the judgment in the law article. For example, if we
could compress the fact statement in Figure 1 into
the fine-grained event in Table 1, we could easily
match it with the event pattern defined in Article
263 (see Figure 1). Then the penalty defined in this
article can be used as the predicted judgment.
Inspired by this observation, we seek to leverage
event information for improving LJP, specifically
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Predicted Article

illegally searches another person s body or residence, or
illegally invades another person's residence.

Fact Description

On April 1, 2019, Mike violently broke into Jessica’s
home and robbed a gold ring. After identification, the

Article 245: [Crime of Illegal Search] Anyone who }
ring is worth 1,535 RMB J

Ground-truth Article

Article 263: [Crime of Robbery] Anyone who robs pul)lig
or private property is guilty of the crime of robbery... J

Figure 2: An error example of SOTA models.

by (1) extracting the fine-grained key event of the
case and then (2) predict the judgment based on the
extracted event information (instead of the whole
fact statement). To this end, we propose a hierar-
chical event definition referring to the hierarchy of
law articles. Since there is no public LJP dataset
that is annotated with event information, we man-
ually annotate a legal event dataset on the top of
CAIL (a public LJP dataset widely used by SOTA
methods) (Xiao et al., 2018). Nevertheless, event
extraction is challenging. So, to guide the learning
process, we design output constraints on event ex-
traction (e.g., what role types are compulsory for a
given trigger type) and employ them in our model.

Another weakness associated with SOTA meth-
ods concerns their failure to exploit the consistency
constraints among the three LJP subtasks. Specifi-
cally, each law article imposes constraints on what
charge and term penalty are possible. However,
SOTA methods typically frame LJP as a multi-task
learning problem in which the three tasks are jointly
learned in a model via a shared representation, with-
out guaranteeing that the aforementioned cross-task
constraints are satisfied. To address this problem,
we introduce consistency constraints.

In sum, our contributions are three-fold. First,
we present the first study on leveraging event extrac-
tion from case facts to solve LJP tasks. Second, we
define a hierarchical event structure for legal cases
and collect a new LJP dataset with event annota-
tions. Finally, we propose a model that learns LJP
and event extraction jointly subject to two kinds of
constraints. Experiments show that our model sur-
passes the existing SOTA models in performance.

2 Related Work

Legal judgment prediction. LJP has been in-
vestigated in the context of different jurisdictions,
such as China (Luo et al., 2017; Zhong et al., 2018;
Yue et al., 2021; Feng et al., 2021), the U.S. (Katz

Argument | Role
‘Who is the criminal? Mike Criminal
Who is the victim Jessica Victim
‘What happened? robbed Trigger-Rob
‘What were robbed? gold ring Property
‘What is the price of swag? | 1,535 RMB | Quantity

Judgment Results: Article 263, Robbery, three-year
imprisonment

Table 1: An example of the judging process of a real
case based on event information.

et al., 2017), Europe (Chalkidis et al., 2019a, 2021),
French (Sulea et al., 2017b,a), India (Malik et al.,
2021; Paul et al., 2020). While early works re-
lied on rule-based approaches (Kort, 1957; Segal,
1984; Nagel, 1963), later approaches use classifi-
cation techniques (Aletras et al., 2016; Liu et al.,
2015; Sulea et al., 2017a,b; Katz et al., 2017).
More recently, neural models are learned to pre-
dict judgment results jointly by sharing parameters
in a unified framework (Zhong et al., 2018; Xu
et al., 2020; Dong and Niu, 2021; Yang et al., 2019;
Feng et al., 2019), applying pre-trained language
models (Chalkidis et al., 2020, 2021; Xiao et al.,
2021; Niklaus et al., 2021; Zhong et al., 2019), ex-
ploiting label-attention mechanisms (Wang et al.,
2018, 2019), or injecting legal knowledge (Hu et al.,
2018; Gan et al., 2021; Zhong et al., 2020). Unlike
our work, these works do not explore the use of
case events for LJP. Though existing works exploit
dependency between subtasks (Zhong et al., 2018;
Yang et al., 2019), they merely utilize the subtasks’
prediction results as auxiliary features to influence
each other and therefore may still predict inconsis-
tent results. In contrast, our cross-task consistency
constraints can guarantee that the predictions are
consistent.

Event extraction in legal domain. Some works
have defined legal events and built models to auto-
matically extract legal events from fact statements
using these definitions (Shen et al., 2020; Li et al.,
2019; Chen et al., 2020). However, we cannot use
these event-annotated legal datasets for two rea-
sons. First, the legal documents in these datasets
do not contain legal judgment predictions, so we
cannot use them to jointly extract events and make
legal judgment predictions. Second, there is a key
difference between our work and previous work in
terms of how legal events (i.e., the trigger types and
argument roles) are defined: while existing works
define legal events solely from the perspective of
event extraction, we define legal events so that the
trigger types and argument roles are useful for LJP.
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Dataset CAIL-small CAIL-big
#Training Set Cases 96,540 1,489,932
#Validation Set Cases 12,903 -
#Testing Set Cases 24,848 185,647
#Law Articles 101 127
#Charges 117 140
#Term of Penalty 11 11

Table 2: Statistics on CAIL.

3 Dataset and Task Definition

Dataset. We employ as our dataset CAIL (Xiao
et al., 2018), a large-scale publicly available Chi-
nese legal document dataset that has been widely
used. In CAIL, each judgment document consists
of a fact statement and judgment results (law ar-
ticles, charges and term of penalty). We follow
prior works (Xu et al., 2020; Yang et al., 2019) for
preprocessing CAIL (see Appendix H). CAIL is
composed of two subdatasets: CAIL-big and CAIL-
small, and their statistics are shown in Table 2. LJP
on CAIL is by no means trivial: there are 127, 140
and 11 categories for article, charge and penalty
respectively on CAIL-big.

Task definition. Given a fact statement, LJP on
CAIL involves three prediction subtasks ¢, t., t, €
T, which correspond to law article, charge and term
of penalty respectively. Following previous works
(Xu et al., 2020; Yang et al., 2019), we formalize
each subtask ¢ € T as a multi-class classification
problem and predict for each ¢ the corresponding
result 4* € V!, where V! is the label set of .

4 Baseline LJP Model

We begin by designing a multi-task legal judgment
prediction model, which we will use as a base-
line and augment with event extraction and con-
straints in subsequent sections. The framework of
our model is shown in Figure 3.

Token representation layer. Given a fact state-
ment represented as a character sequence D =
{1, 22, ...7 ; }, we first encode each character by
passing them into a pretrained legal BERT en-
coder (Zhong et al., 2019).

hl, hg, '--hlf = Legal-BERT(wl,xg, ...J}lf> (1)

where Hy = {hy, hy,..h;, } is the hidden vector
sequence of the fact statement and [ is the length
of the fact statement.

Generating context features. Next, we generate
the context representation of the fact statement by

‘onstrainl
Article Charge Term of Penalt
& y
| Constraint---"""
Fact-based Event-based 4 "»
r Vs

Context Features Event Features

Article Embeddings

(Criminal ) ("Trigger ][ Property ]

(Mike ) robbed ][ gold ring ]
r - hfie
[ Legal BERT }

...On April 1,2019, Mike violently broke into Jessica’s home and
robbed a gold ring. After identification, the ring is worth 1,535 RMB...

Figure 3: Model architecture. Note that the green box,
which computes event features, and the "Constraint"s in
the uppermost box are not part of the baseline.

applying a max-pooling layer to H:
h = mazpooling(hy, ha, ~hy,) 2)

Incorporating law article semantics. Using the
aforementioned context representation to predict
judgment essentially treats each law article as an
atomic label, leaving its semantic information un-
exploited. Inspired by previous work (Chalkidis
et al., 2019b; Rios and Kavuluru, 2018), we em-
ploy an attention mechanism to incorporate article
semantics into the model. Specifically, we match
h with all candidate law articles. To do so, we
first use the same encoder to encode the character
sequence of each law article and obtain the hidden
vector sequence H, = {h;, hy,...h;, }, where [,
is the length of a law article text. Then we apply a
max-pooling layer to H, to get the context repre-
sentation c. Next, we use the context representation
of the fact statement, h, to query all candidate arti-
cles in order to mine the most relevant semantics
in the article texts. Specifically, we first obtain the
relevance scores between h and the j-th article c;:

a; = h"Wc; 3)

where W, is a trainable matrix. Then the most rel-
evant semantics are summed in a weighted fashion
to represent the features from the article texts:

] cap(a;)
c= =—"—¢Cj 4
Z Z _ ( ) J
where ¢ contains the integrated article semantics.
Legal judgment prediction layer. To predict le-

gal judgment, we input h and ¢ into three task-
specific classifiers as follows:

y' = softmax(Wi[h;c] + by) Q)

where W, and b, are the learnable parameters and
y! is the prediction distribution of task ¢.
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Training. For each legal judgment prediction
task ¢, we employ cross-entropy as the loss func-
tion to measure the distance between the predicted
y! and the ground-truth y*.

Li=—Y y'logy'

The final loss is composed of the losses of three
subtasks, and is defined as follows:

(6)

L(©) = A, Lt, + M Lo, + A, Ly, (D)

where hyperparameters A\ determine the trade-off
between all subtask losses. The model is trained to
minimize £(0O).

5 Improving LJP via Event Extraction

In this section, we propose a novel method to lever-
age event extraction to improve LJP.

5.1 Hierarchical Legal Event Definition

Event definition. FEach law article stipulates
what event violates this article, so it is easy to de-
fine legal events based on law articles. The Chinese
law articles have been organized in a hierarchical
manner. For example, robbery-related and theft-
related articles belong to Property Infringement,
which is the general name of robbery-related and
theft-related articles. We define legal events follow-
ing this hierarchy. As shown in Figure 4, Property
Infringement is treated as a superordinate event
type, whereas Robbery and Theft are treated as sub-
ordinate event types. This hierarchy can express
the connections between different legal events.

Trigger and role definitions. An event trigger is
a word that realizes the occurrence of an event and
has a type. There is a one-to-one correspondence
between event type and trigger type. For example,
the Robbery event has the trigger type Trigger-Rob.

Next, we define the roles for each event such
that they reflect the key elements of the event that
would be useful for making legal judgments. For
example, the Criminal and Victim roles specify the
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parties involved in a case, whereas the Quantity
role measures the value of loot, based on which
term penalty is derived. We define the roles in a
hierarchical manner. As seen in Figure 4, the Party
arguments are the people involved in the cases, and
its subordinate roles include Criminal and Victim.'

5.2 Dataset Collection

To investigate the use of event extraction for LJP,
we manually create an event-annotated LJP dataset
since no such dataset is publicly available.

Step 1: judgment document collection. We con-
struct LJP-E, our event-annotated dataset, based
on CAIL. Specifically, we first analyze the per-
formance of the SOTA models (Xu et al., 2020;
Zhong et al., 2018) on the validation portion of
CAIL-small and identify the 15 law articles for
which they achieved poor performance, and then
select a subset of the cases that can be judged by
these 15 law articles for annotation. This subset
consists of 1367 documents (957 as training set,
136 as validation set and 274 as test set). We hence-
forth refer to this set of judgment documents as
D,.

Step 2: event trigger and argument role annota-
tion. Next, we hire two annotators to manually
produce event triggers and argument roles for each
case in D, after giving them a three-hour tutorial
on how to annotate events. The annotators are na-
tive speakers of Chinese who are graduate students
in NLP with significant experience with working
on legal problems (none of them are the authors).

The annotation process. Given the fact state-
ment and the gold law article of a case, each anno-
tator is asked to independently highlight the salient
words in the fact statement that reflect the core
event of the case and correlate well with the event
pattern of the law article. Then each of them is
asked to (1) select a trigger word and assign it
a subordinate trigger type, and (2) assign a sub-
ordinate role type to each of its arguments from
a predefined role list. The trigger type and role
type inventories were designed by the authors after
having read a large number of fact statements and
corresponding articles. Inter-annotator agreement
numbers can be found in Appendix E.

After the above steps, each case in D, is anno-
tated with a trigger, its type, its arguments and roles.
The average number of arguments per event is 4.13.

"Details of the event and role definitions together with
their explanations can be found in Appendix A and B.



There are 16 distinct subordinate roles and 15 dis-
tinct subordinate trigger types.> Each disagreement
between the annotators is resolved via discussion.

5.3 Hierarchical Event Extraction

To make use of the event annotations, we augment
our baseline model with a hierarchical event extrac-
tion layer that detects event triggers and arguments
and determines trigger types and arguments roles
(see Figure 3). The resulting model simultaneously
learns event extraction and LJP.

We formalize event extraction as a token labeling
problem. Given the hidden vectors of the fact to-
kens H;, = {hy, hg, ...hlf}, we assign each token
a subordinate trigger (if it is part of a trigger) or a
subordinate role type (if it is part of an argument).

The hierarchical event extraction layer consists
of two modules: (1) a superordinate module that
attends each hidden vector to all superordinate
types/roles for obtaining their correlations, and (2)
a subordinate module that computes the subordi-
nate type/role probability distribution based on hi-
erarchical information, as described below.

For a specific superordinate type/role j, we rep-
resent its semantic features with a trainable vector
p;. We adopt a fully-connected layer to calculate
the correlation score between hidden vector h; and
superordinate type/role p;.

ui; = Wplhy; py] )

where u;; represents the correlation score and [; |
denotes the concatenation of two vectors. Then, we
apply a softmax operation to get the superordinate
type/role feature for each token x;.

_ exp(ui;)
> k=1 €xp(Uik)

0; = Z BiiPj
j=1

where o; is the integrated superordinate type/role
feature, which provides superordinate-oriented in-
formation useful for predicting subordinate types/
roles. Next, we concatenate each h; with o; as the
input feature for the trigger type and argument role
classifier and estimate the probability that token x;
belongs to subordinate type/role r; as follows:

Bij 9)

(10)

AT

(o g) = eap(qj [hy; 04))
nE Vo) T eep(al by o]

2Statistics of LIP-E can be found in Appendix D.

1D

where q; is the trainable vector of r;. After ob-
taining the type/role probability distribution of z;,
we apply a CRF (Lafferty et al., 2001) to pro-
duce the sequence of types/roles with the highest
score, where the score of a sequence of types/roles
v = {g)&),g)&)...} is computed as:

lf lf
score(D,§") =Y Tor_ o, > seli i)
=1

i=1
(12)
Here, T is the score of transitioning from one tag
to another tag.

Instead of predicting LJP based on the context
fact representation h, we replace it with the de-
tected event features. Specifically, we input the
extracted trigger word and arguments with their
type/role embeddings into the three task-specific
classifiers. Denote an extracted span as H; =
{hy, hg,...h; }. We apply a max-pooling layer to
each span and concatenate with the corresponding
subordinate type/role embedding q:

gi = [mazxpooling(Hy); q] (13)
where g; denotes the representation of span ¢,
which contains both semantics and subordinate
type/role features. Based on g;, we can calculate
the context span representation g as follows:

g = maxpooling(g1, La...) (14)
which is used to replace the context fact represen-
tation h in Equation 2.

Training. The event extraction loss is defined as:

score(D,y")

(&

where y" is the gold tag sequence. We incorporate
L, into he total loss in Equation 7 as follows:

L(O) = A, L1, + M. Li. + A, Lo, + N Ly (16)

6 Exploiting Constraints

To improve model performance, we explore two
types of constraints, as described below.
6.1 Event-Based Constraints

Event-based constraints are output constraints on
events. We propose two such constraints.
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Absolute constraint. For a legal event, the trig-
ger must appear exactly once and certain roles are
compulsory (e.g., subordinate role Criminal should
appear at least once). If the trigger is missing, we
impose the following penalty:

Ly
Pt == Z Z S’I‘(mbg(i)) — max [Sr(.%'z,g&))}

2 i,FETG

©,TE

a7

where TG is the trigger inventory.® If a required
role r is missing, we impose the following penalty:

Pr=11—- mlax[sr(xi, gl (18)
Event-Based consistency constraint. If a trigger

type is detected, all and only its related roles should
be detected. For example, if a Illegal Doctoring
event is detected, no roles related to lllegal Logging
should be predicted. If a trigger r is predicted, we
impose the following penalty:

P, = Z 11— mzax[sr(fvi,@é))”

reRT
ly (19)
D IDIEACHH
FeER— i=1

where R is the set of roles that should occur if 7 is
predicted, and R~ is the set of roles that cannot oc-
cur. We sum all the penalty terms and incorporate
them into the total loss as follows:

L(O) = My Lo, + AL, + A Lo,

20
+)\r£r + )\p Z Pz ( )

6.2 Cross-Task Consistency Constraints

While the multi-task learning setup employed by
our model allows subtasks of LJP to benefit each
other via the shared representation layer, it fails to
exploit the dependency explicitly that exist among
them. Below we exploit two such dependencies,
one between law article and charge and the other
between law article and term of penalty.

Each law article states the allowable charges and
range of term of penalty. Hence, we can utilize
these dependencies to constrain (and hopefully im-
prove) the prediction of charge and term of penalty

3 An explanation of the penalty functions in Equation 17,
18 and 19 can be found in Appendix K

using the predicted law article. More specifically,
we make the model learn how to predict charge
and term of penalty based on the predicted article
during training by modifying the cross entropy loss
as follows. If the law article is predicted correctly
by the model, then when calculating £;_ (i.e., the
cross-entropy loss associated with the charge pre-
diction task), we mask each term in the loss corre-
sponding to a charge that is not allowed according
to the predicted article:

L, =— Z Z mask * y'clogy'

where mask is equal to O if the charge is not al-
lowed according to the predicted article and 1 other-
wise. However, if the article is predicted incorrectly
by the model, £, is the standard cross entropy loss.
Intuitively, through masking, the model is forced to
predict a charge that is allowed according to the pre-
dicted article. During testing, since we do not know
whether the law article is predicted correctly or not,
we always mask the charge probability distribution
according to the predicted article. We adopt the
same strategy to compute £y, when enforcing the
consistency constraint between law article predic-
tion and term of penalty prediction.

1)

7 Evaluation

7.1 Experimental Setup

We train our model EPM using the pre-training and
fine-tuning strategy. Specifically, we pre-train EPM
without event components on the training portion
of CAIL (Table 2), and then fine-tune EPM on the
training portion of LJP-E, our event-annotated LJP
dataset, to learn from the event annotations.

As for the encoder, the maximum fact length is
set to 512. For training, we utilize the Adam opti-
mizer with learning rate of 10~* and the batch size
is 32. The warmup step is 3000. For the hyperpa-
rameters, A, in the loss function, the best setting
is {0.5,0.5, 0.4, 0.2, 0.1} for { A, At A, A Ap )
Models are trained for a maximum of 20 epochs. *
LJP results are reported in terms of Accuracy (Acc),
Macro-Precision (MP), Macro-Recall (MR) and
Macro-F1 (F1).

7.2 Comparison with the SOTA

We compare EPM with SOTA models on the test
portion of our annotated dataset LJP-E in Table 3.
and the official test portion of the CAIL dataset in

*Details of experimental setup can be found in Appendix I
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Law Article Charge Term of Penalty
Acc% MP% MR% Fl1% | Acc% MP% MR% F1% | Acc’e MP% MR% F1%
1 MLAC 83.75 7149 7179 70.05 | 73.20 52.82 5593 52.19| 23,57 1792 1722 16.38
2 TOPJUDGE 86.46 7551 75.07 7397 | 75.16 56.04 58.96 5534 | 23.82 18.59 1843 17.63
3 MBPFN 86.72 86.72 75.60 7428 | 73.95 7395 5648 54.00 | 27.53 27.53 17.97 19.65
4 LADAN 89.92 78.13 78.01 77.06| 79.12 5854 61.87 5835 26.06 2086 18.03 16.58
5 NeurJudge 87.87 81.17 82.68 8041 | 76.04 6195 60.07 59.46 | 27.88 20.99 16.81 18.51
6 EPM 9385 91.15 89.14 89.37 | 7937 61.14 63.15 60.79 | 28.51 2827 23.58 23.23
7 w/ gold 97.05 9563 9342 9382 | 8698 7045 73.08 7092 | 33.16 30.28 23.52 24.11
8 TOPJUDGE+Event | 88.84 78.03 79.72 77.39 | 77.24 60.70 60.57 57.40 | 27.49 2238 18.17 18.10

Table 3: Comparisons with the SOTA models on LJP-E.

Law Article Charge Term of Penalty
Acc% MP% MR% Fl1% | Acc% MP% MR% F1% | Acc’ MP% MR% F1%
1 MLAC 9490 79.06 6691 69.41 | 9472 83.42 7238 75.62 | 56.43 46.87 40.43 41.89
2 TOPJUDGE 95.83 82.10 71.94 7432 | 9577 8595 77.11 79.58 | 58.09 47.773 4247 44.07
3  MBPEN 95.67 84.00 7440 76.44 | 9437 85.60 75.86 77.98 | 5548 47.27 3826 40.01
4 LADAN 95.78 8493 7588 78.79 | 9458 8552 7736 80.04 | 56.34 47.76 4048 42.02
5 NeurJudge 9559 84.01 7554 77.06 | 94.12 8548 77.21 79.83 | 5552 47.25 40.76 42.03
6 EPM 96.63 8593 77.60 79.72 | 95.88 88.67 79.49 8199 | 58.19 5150 43.25 44.99
7 EPM@G 96.72 85.79 79.68 81.77 | 96.45 88.78 81.93 82.84 | 58.67 5393 45.86 46.58
8 MLAC+EPM 9550 79.71 7029 72.81 | 9545 84.18 73.14 7586 | 57.39 47.08 41.53 43.07
9 TOPJUDGE+EPM | 96.01 83.68 74.77 77.26 | 9586 8621 78.67 81.23 | 58.11 4820 44.30 45.07
10 MPBFN+EPM 95.81 8336 74.61 7639 | 95.62 8634 7734 7935 | 5753 50.04 4046 42.01
11 LADAN+EPM 96.15 8490 76.54 79.26 | 9596 88.07 7898 81.79 | 58.40 5036 42.71 44.17
12 NeurJudge+EPM 9620 85.16 77.83 7821 | 9477 89.75 7746 80.19 | 57.81 49.36 41.77 43.79
13 TOPJUDGE+Event | 95.93 83.55 73.03 75.86 | 95.82 86.34 77.20 80.29 | 58.21 47.73 4436 45.00

Table 4: Comparisons with the SOTA models on CAIL-big.

Law Article Charge Term of Penalty
Acc% MP% MR% Fl1% | Acc% MP% MR% Fl1% | Acc’e MP% MR% F1%
1 MLAC 73.02 6927 66.14 64.23 | 7473 72.65 69.56 6836 | 3645 3450 29.95 29.64
2 TOPJUDGE 78.60 76.59 7484 73.72 | 81.17 81.87 80.57 79.96 | 35,70 32.81 31.03 31.49
3 MPBEN 76.83 7457 7145 70.57 | 80.17 78.88 75.65 75.68 | 36.18 33.67 30.08 29.43
4 LADAN 78.70 7495 75.61 7383 | 82.86 81.69 80.40 80.05 | 36.14 31.85 29.67 29.28
5 NeuralJudge 79.02  75.69 7523 74.87 | 81.22 7751 7817 7799 | 36.84 34.80 3222 3248
6 EPM 84.65 80.82 77.55 78.10 | 84.10 84.55 80.22 81.43 | 36.69 3560 32770 32.99
7 EPM@G 85.65 83.51 7856 79.76 | 8539 85.54 80.74 82.16 | 37.59 3532 3251 33.14
8 MLAC+EPM 81.16 79.29 71.17 72.08 | 81.13 80.88 75.60 76.12 | 36.04 30.92 30.69 29.77
9 Topjudge+EPM 83.73 80.29 76.88 7742 | 83.67 83.72 80.06 80.87 | 36.41 33.02 31.88 31.55
10 MPBFN+EPM 8233 7633 7526 7456 | 81.82 79.81 77.37 7751 | 3640 3401 3141 3231
11 LADAN+EPM 83.59 78.65 7799 77.10 | 8491 83.17 8131 81.54 | 36.54 34.06 31.14 32.06
12 NeurJudge+EPM 84.01 7743 77.11 76.83 | 83.12 78.13 7824 78.15| 37.01 35.24 3291 3251
13 TOPJUDGE+Event | 80.56 77.67 75.67 75.28 | 82.79 8252 79.43 80.01 | 36.66 3334 31.69 31.53

Table 5: Comparisons with the SOTA models on CAIL-small.

Table 4 and 5. Since LJP-E only contains the 15
case types of CAIL, when applying EPM on the
CAIL test set we use the pretrained version of EPM
(i.e., without fine-tuning) to predict samples that do
not belong to the 15 types and use the fine-tuned
version of EPM to predict samples that belong to
one of the 15 types. In order to determine whether
a sample belongs to one of the 15 types, we train a
binary classifier using legal BERT on the training
set of CAIL. We refer to this model as the Switch.’

We compare EPM with four SOTA neural mod-
els: (1) MLAC (Luo et al., 2017), which jointly

SDetails of the Switch can be found in Appendix J.

modeled charge prediction and the relevant arti-
cle extraction task in a unified framework. Here,
we add a fully-connected layer in order to pre-
dict the term of penalty; (2) TOPJUDGE (Zhong
et al., 2018), which formalized the subtasks of
LJP in a joint framework as a directed acyclic
graph in which the subtasks share parameters; (3)
MPBFN (Yang et al., 2019), which proposed a
multi-perspective forward and backward prediction
framework to make the sharing of parameters by
different subtasks effectively, as well as a number
embedding method for term of penalty prediction;
(4) LADAN (Xu et al., 2020), which developed a
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graph networks to learn the subtle differences be-
tween law articles in order to extract compelling
discriminative features from fact statements; and
(5) NeurJudge (Yue et al., 2021), which utilized
the results of intermediate subtasks to separate the
fact statement into different circumstances and ex-
ploits them to make the predictions of other sub-
tasks.

As shown in Tables 3, 4 and 5, EPM (row 6)
achieves the best results, substantially outperform-
ing not only MLAC but also TOPJUDGE, MPBFN,
LADAN and NeurJudge, which further leverage
extensions like number embedding and graph net-
works, particularly on law article prediction.

Next, we conduct two oracle experiments involv-
ing EPM. First, we use gold rather than predicted
event annotations to make predictions for the three
subtasks.® The results, which are show in row 7 of
Table 3, show that considerably better results can
be obtained when gold event annotations are used.
These results suggest that existing LJP results can
be substantially improved by improving event ex-
traction. Next, we assume that the Switch is perfect
when obtaining the EPM results on CAIL. Perhaps
not surprisingly, results, which are shown in row 7
of Table 4 and 5, are better w.r.t. all subtasks.

Further, we apply EPM to MLAC, TOPJUDGE,
MPBFN, LADAN and NeurJudge on CAIL, the five
SOTA models following the same scheme (i.e., use
fine-tuned EPM to classify when the Switch says
the sample belongs to the 15 types and use the
SOTA model to classify otherwise), showing the
results in rows 8 to 12 in Table 4 and 5. We see
that EPM can also improve the performance of the
four SOTA models, yielding new SOTA results.

Finally, we examine whether modifying a SOTA
model, TOPJUDGE, by having it jointly perform
event extraction and the LJP tasks can improve
its performance. To do so, we replace its CNN
encoder by an LSTM and feed the LJP classi-
fiers with the extracted events rather than the case
facts in the same way as in EPM. We can see
that TOPJUDGE+Event outperforms TOPJUDGE,
which shows the usefulness of event information.
However, TOPJUDGE+ Event underperforms TOP-
JUDGE+EPM. This suggests that better LJP re-
sults can be achieved by treating TOPJUDGE as a
black box (by exploiting event information using
the Switch) rather than a glass box (by modifying

®Event extraction results in EPM are as follows: 53.75%

(R), 47.52% (P), and 50.37% (F1) for trigger detection and
55.69% (R), 49.88% (P), and 52.59% (F1) for role prediction.

the model to learn from event annotations).

7.3 Usefulness of Events and Constraints

We conduct experiments on the ablated versions
of EPM. Ablation results on LJP-E and CAIL are
shown in Tables 6 and 7, 8.

Event extraction. To test the usefulness of event
extraction, we delete all event components from
EPM. Results are shown in row 2. As we can
see, performance degrades substantially on all three
subtasks in terms of both Acc and F1.

Event-based constraints. Next, we evaluate the
usefulness of the two event-based constraints (Sec-
tion 6.1) on the outputs of event extraction. Remov-
ing the absolute constraint (w/o CSTRI, row 3) or
the event-based consistency constraint (w/o CSTR2,
row 4) generally yields worse results in terms of
both Acc and F1. In particular, removing the con-
sistency constraint generally provides bigger dete-
rioration than the absolute constraint.

Cross-task consistency constraints. We also
evaluate the cross-task consistency constraints. Re-
moving the article-charge constraint (w/o DEPI,
row 5) or the article-term constraint (w/o DEP2,
row 6) negatively impacts performance, with the
largest negative impact observed on charge pre-
diction. While these constraints are intended to
employ the predicted law article results to improve
charge prediction and term prediction, we see that
law article performance also deteriorates.

Superordinate types. So far, we have assumed
that hierarchical event extraction would be ben-
eficial to LJP. To better understand whether the
hierarchy is indeed useful, we evaluate a version
of EPM without using superordinate features. In
other words, the model predicts the subordinate
types/roles directly. Results are shown in row 7.
Comparing rows 1 and 7, we see that Acc and F1
scores drop across all subtasks when superordinate
features are not used, indicating their usefulness.

Event extraction as an auxiliary task. In EPM,
we use the predicted event features as inputs for the
three LJP task classifiers. Another way to exploit
event information would be to treat event extraction
as an auxiliary task in the model by having it share
encoders with the LJP tasks. Results of treating
event extraction as an auxiliary task are shown in
row 8. As we can see, these results are worse than
those of EPM (row 1), which means that EPM’s
way of exploiting event information is better, but
they are better than those when event information is
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Law Article Charge Term of Penalty
Acc% MP% MR% Fl1% | Acc% MP% MR% Fl% | Accl MP% MR% Fl1%
1 EPM 9385 91.15 89.14 8937 | 79.37 61.14 63.15 60.79 | 2851 28.27 23.58 23.23
2 wl/oevent 86.17 7649 75.66 75.19 | 7321 5694 56.46 5546 | 2625 18.78 1571 15.06
3 w/oCSTRI 88.44 83.22 80.77 80.00 | 7421 57.06 59.37 56.54 | 27.85 18.01 18.16 16.87
4  w/o CSTR2 86.96 7795 76.17 76.84 | 74.69 5729 5698 5599 | 27.77 19.18 17.55 16.99
5 w/o DEPI 91.15 86.29 8523 8496 | 73.62 56.84 58.69 56.71 | 23.35 1629 16.06 15.23
6 w/o DEP2 91.89 9098 87.41 8830 | 78.38 6048 61.43 59.31 | 2331 17.30 14.12 1449
7 w/o hierarchy | 87.21 79.20 76.52 76.38 | 73.95 5823 59.50 57.36 | 23.59 1942 16.77 16.32
8 w/ auxiliary 92.62 8524 8395 8390 | 76.18 55.08 59.05 56.39 | 2531 21.06 16.58 15.88

Table 6: Ablation results on LJP-E.

Law Article Charge Term of Penalty
Acc% MP% MR% Fl1% | Acc% MP% MR% Fl1% | Acc MP% MR% Fl1%
1 EPM 96.63 8593 77.60 79.72 | 95.88 88.67 79.49 81.99 | 58.19 51.50 43.25 44.99
2 w/oevent 9532 8425 7247 7540 | 93.23 8190 7474 76.24 | 5578 4429 41.52 4252
3 w/oCSTRI 9541 85.07 73.54 7637 | 9420 8566 77.81 78.99 | 5697 47.21 41.04 43.39
4  w/o CSTR2 9538 84.85 7329 7582 | 9426 8524 7745 7851 | 5736 46.54 40.63 42.87
5 w/o DEP1 95.10 8530 7334 76.10 | 9491 8353 75.18 7741 | 56.68 46.64 40.63 43.07
6 w/o DEP2 9529 85.07 7348 76.06 | 94.51 8558 77.44 78.78 | 55.63 4324 41.38 42381
7 w/ohierarchy | 9543 8532 7390 76.81 | 9424 8578 78.11 79.24 | 56.87 47.06 40.89 43.21
8 w/ auxiliary 96.35 86.21 73.81 7693 | 9558 87.54 7639 79.53 | 57.12 48.58 4226 42.98

Table 7: Ablation results on CAIL-big.

Law Article Charge Term of Penalty
Acc% MP% MR% Fl1% | Acc% MP% MR% Fl1% | Accl» MP% MR% Fl1%
1 EPM 84.65 80.82 77.55 78.10 | 84.10 84.55 80.22 81.43 | 36.69 3560 32.70 32.99
2 w/oevent 7773 7889 7522 7449 | 81.85 82.09 7648 78.76 | 33.67 31.73 28.33 28.88
3 w/oCSTRI 8391 81.57 7555 76.60 | 8336 84.15 7793 79.43 | 3547 30.86 29.67 29.50
4  w/o CSTR2 83.62 81.73 7556 76.65 | 83.80 84.70 78.62 80.01 | 35.17 3240 29.14 2945
5 w/o DEP1 8272 81.33 7542 7645 | 81.20 80.51 76.42 76.67 | 34.16 3220 27.88 28.30
6 w/o DEP2 83.40 81.30 7524 7633 | 83.08 84.41 78.06 79.47 | 32.57 30.07 2838 28.26
7 w/o hierarchy | 83.79 81.50 75.65 76.68 | 83.37 84.23 79.14 80.13 | 34.67 3146 2895 29.17
8 w/ auxiliary 8399 80.70 76.22 76.55 | 8451 84.60 80.76 81.35 | 3429 32.06 29.58 29.22

Table 8: Ablation on CAIL-small.

8 Conclusion

not use (row 2), which means that using predicted
events for LJP is still better than not using them.

7.4 Qualitative Analysis

Next, we perform a qualitative analysis of EPM
to better understand the role played by event infor-
mation and constraints. In CAIL, the data distri-
bution of term penalty for the same law article is
skewed towards larger penalty values, thus causing
EPM to inherit this bias in its prediction of term
penalty when cross-task consistency constraints
are not used. However, when constraints are used,
EPM was forced to only predict those term penal-
ties that are allowed by the predicted law article
and was thus more robust to the skewed data distri-
bution. As for events, the use of event information
prevents EPM from focusing on certain words in a
case fact that could trigger the prediction of wrong
law articles. A detailed analysis can be found in
Appendix F.

We proposed the first model that uses event ex-
traction and hand-crafted constraints to improve
LJP, achieving SOTA results. To facilitate future
research, we make our codes and annotations pub-
licly available at https://github.com/WAPAY/EPM.
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A The Definition of Hierarchical Event

Table 9 shows the hierarchical relationship between
legal events.

Property Infringement: seizing public or pri-
vate property for the purpose of illegal possession
or deliberately destroying public or private property.

* Robbery: robbing public or private property
by violence, coercion or other means.
* Theft: stealing public and private property.
* Fraud: swindling public and private property.
» Racketeering: extorting public and private
property.
Personal Rights Infringement: the illegal vio-
lation of citizens’ personal rights and democratic
rights.

* Intentional Injury: deliberately and illegally
harming the health of others.

» Rape: forcibly having sexual intercourse with
the victim by violence, threat or other means
against the will of the victim.

* Kidnapping: using violence, coercion or other
means to control others, restrict their personal
freedom, or coerce others as hostages for the
purpose of extorting money or property.

Disturbing Public Order: gathering people to
disturb public place and traffic order, and resisting
or hindering state security administration personnel
from performing their duties according to law.

* Obstructing Official Duties: obstructing State
functionaries from performing their duties ac-
cording to law by means of violence or threat.

* Forgery: illegally manufacturing, altering,
buying and selling official documents, certifi-
cates and seals of state organs.

* Gambling: gathering people to gamble or
gambling for the purpose of profit.

Endangering Public Health: endangering the
state’s health management.

* Illegal Doctoring: engaging in diagnosis and
treatment activities without medical qualifica-
tion.

Destroying Environment: intentionally violat-
ing environmental protection laws, polluting or
damaging environmental resources.

* Endangering Rare Wildlife: illegally hunting
and killing precious and endangered wild ani-
mals under special state protection.

Superordinate type

Subordinate type

Property Infringement

Robbery
Theft

Fraud
Racketeering

Personal Rights Infringement

Intentional Injury
Rape
Kidnapping

Disturbing Public Order

Obstructing Official Duties
Forgery
Gambling

Endangering Public Health

Illegal Doctoring

Destroying Environment

Endangering Rare Wildlife
Illegal Logging

Drug

Drug Possession
Drug Cultivation

Table 9: Hierarchical event types.

Superordinate type

Subordinate type

Party

Criminal
Victim
Officer

State

Qualified
Intention
Method

Object

Property
Instrument
Animal

Plant

Drug

Drug plant
Gambling device
License

Attribute

Quantity Attribute
Injury Attribute

Table 10: Hierarchical role types.

* Jllegal Logging: cutting down state, collective
or individual owned forests without authoriza-

tion.

Drug: violation of relevant national and interna-
tional drug control laws and regulations.

* Drug Possession: illegally possessing drugs.
* Drug Cultivation: cultivating opium poppy,
marijuana and other original drug plants.

B The Definition of Hierarchical Role

Table 10 shows the hierarchical relationship be-
tween role types.
Party: a person who enters a lawsuit.
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* Criminal: the person violating law articles.
* Victim: the aggrieved party.
* Officer: government officials.

State: the form that people or things show.

* Qualified: whether obtaining qualification cer-
tificate, medical license and logging qualifica-

tion.



* Intention: the motivation of crime.

* Method: the means of crime.

Object: the items involved in the crime.

* Property: public and private property.

¢ Instrument: tools for criminal purpose.

* Animal: endangered animals.

* Plant: trees, such as pine tree, coconut tree.
* Drug: drugs, such as heroin, marijuana.

* Drug Plant: drug plants, such as opium poppy.
* Gambling Device: gambling tools.

* License: certificates and licenses.

Attribute: the abstract characterization of items,
such as value, length.

* Quantity Attribute: measure words.
* Injury Attribute: the degree of injury.

C Details of Event Constraints

C.1 Absolute Constraint

During extraction trigger and role types, one subor-
dinate trigger type must be extracted. And Criminal
role type should appear at least once.

C.2 Consistency Constraint

A subordinate trigger type has its related subor-
dinate role types. We show the corresponding in
Table 11.

D Statistics of LJP-E

Table 12 shows the statistics of our proposed
dataset LJP-E. There are 957 cases for training,
136 cases for validation and 274 cases for testing.
The average number of arguments in a case is 4.13.

E Inter-Annotator Agreement

First, we measure inter-annotator agreement on trig-
ger and argument annotations. Since these annota-
tions involve annotation of text spans, we follow
Araki et al. (2018), treating one person’s annota-
tions as gold and the other person’s annotations as
predicted and calculating the F1 score under two
settings: strict matching and partial matching. The
former measures whether two annotations have the
exact same span. The latter measures whether there
is an overlap between annotations. Note that partial
matching has the restriction that each annotation
can only be matched to one annotation by the other
annotator. We then use the resulting F1 score as the
inter-annotator agreement. The agreement scores
are 0.8013 (strict) and 0.8425 (partial) for trigger

annotation and 0.6728 (strict) and 0.7819 (partial)
for argument annotation.

Next, we measure agreement on trigger type and
argument role annotations. We follow the way
we measured agreement on trigger and argument
annotations, computing the F1 score using both
strict matching and partial matching, where two
annotations strictly match if both their spans and
their types/roles exactly match, and two annota-
tions partially match if they spans overlap and their
types/roles are identical. The agreement scores are
0.7838 (strict) and 0.8255 (partial) for trigger type
annotation and 0.6405 (strict) and 0.7332 (partial)
for argument role annotation.

F Qualitative Analysis

Term of penalty error analysis. Compared to
law article and charge prediction, the F1 score
of term of penalty prediction is significantly low.
Hence, we give an error analysis to show more
insights of term penalty prediction subtask. Specif-
ically, we calculate the error rate of the 11 penalty
categories of EPM on the test portion of CAIL-
small. As shown in Table 13, the category 5-7
years has the highest error rate. In average, the
model performs worse on severe penalty categories
than mild penalty categories (take 3 years as the
boundary). It may cause from the data imbalance
problem, as there are fewer cases of severe penalty
categories than that of mild penalty categories. Fur-
thermore, we find that term of penalty prediction is
significantly impacted by fine-grained information.
For example, in two cases of intentional injury, the
victim in one case is seriously injured, whereas the
other case’s victim is slightly injured. Though the
other parts of the fact statements are similar, the
final sentence is completely different (5 years for
severe injury and 1 year for slight injury). Law arti-
cle and charge prediction involve judging whether
the fact statement matches with the event pattern
in the relevant law article, whereas term of penalty
prediction involves detecting event patterns and an-
alyzing fine-grained information simultaneously,
which make it more difficult. In the future, we will
focus on improving term of penalty prediction.

Law article error analysis. We also give an er-
ror analysis of law article prediction. We select
several cases for which EPM predicts wrong law
articles. We find that EPM shows weakness in
handling multiple events. If there are multiple
events in the fact statement, EPM prefers to ex-
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Subordinate Trigger Type Subordinate Role Types

Robbery Criminal, Victim, Property, Quantity

Theft Criminal, Victim, Property, Quantity

Fraud Criminal, Victim, Intention, Property, Quantity

Racketeering Criminal, Victim, Intention, Property, Quantity

Intentional Injury Criminal, Victim, Intention, Instrument, Injury

Rape Criminal, Victim, Method

Kidnapping Criminal, Victim, Method

Obstructing Official Duties Criminal, Victim, Method, Officer, Injury

Forgery Criminal, Intention, License, Quantity

Gambling Criminal, Intention, Gambling Device, Quantity

Illegal Doctoring Criminal, Qualified, License, Injury

Endangering Rare Wildlife Criminal, Qualified, License, Animal, Quantity

Illegal Logging Criminal, License, Qualified, Instrument, Plant, Quantity

Drug Possession Criminal, Drug, Quantity

[llegal Planting Drug Criminal, Qualified, License, Drug Plant, Quantity

Table 11: Trigger-Role.

Dataset CAIL Fact Statement: & NARK: T20165F3H29H, 7
#Training Set Cases 957 PEE RS X LR AT —2 558, HRze5
#Validation Set Cases 136 PR 7 DA R ES T ... (The criminal Song gave birth
#Testing Set Cases 274 to a baby boy in the bathroom of the Beijing-Shanghai
#Law Articles 15 Expressway Service Area at about 9:30 on March 29,
#Charges 15 2016, and abandoned the baby boy in the bathroom...)
#Term of Penalty 11 TOPJUDGE: Article 261; Crime of child trafficking; 1-2
#Average Arguments 4.13 years imprisonment
#Superordinate Trigger 6 EPM: Article 261; Crime of abandoning babies; 9-12
#Subordinate Trigger 15 moths imprisonment
#Superordinate Role 4 Ground-truth: Article 261; Crime of abandoning babies;
#Subordinate Role 16 9-12 moths imprisonment

Table 12: The statistics of LJP-E.

Penalty Error Rate  # of Class
Death/life imprisonment 56.38% 0.39%
>10 years 38.44% 1.15%
7-10 years 70.50% 0.87%
5-Tyears 95.16 % 1.19%
3-5 years 52.12% 3.77%
2-3 years 50.50% 6.95%
1-2 years 62.01% 11.46%
9-12 months 49.29% 16.11%
6-9 months 84.55% 12.73%
0-6 months 14.09% 41.83%
0 month 81.86% 3.50%

Table 13: The error rate of penalty. # of Class is the
percentage of each class in the test portion of CAIL-
small. Error Rate is the error percentage of each class.

tract the event type with more training data. For
example, kidnapping and racketeering cases may
contain intentional injury facts. There are more
training samples of intentional injury than that of
kidnapping/racketeering. When predicting law arti-
cles for kidnapping/racketeering cases with inten-
tional injury facts, EPM tends to extract the event
of intentional injury and ignore the events of kid-
napping/racketeering, which leads to wrong predic-
tions. It gives us motivation to solve the problem
of multiple events in the future work.

Fact Statement: 201357, R[S TRERT,
B AR Al A Ho i T PR WL B MR R A
A”ELHU... (In May 2013, in order to participate
in the project bidding, Li contacted others to forged a
business license named "Zhejiang Dayou Component Co.,
Ltd."...)

TOPJUDGE: Article 280; Crime of forging national
agency certificates; 6-9 moths imprisonment

EPM: Article 280; Crime of forging business unit certifi-
cates; 0-6 moths imprisonment

Ground-truth: Article 280; Crime of forging business
unit certificates; 0-6 moths imprisonment

Table 14: Examples of inconsistent predictions.

Charge error analysis. Obviously, the main
charge prediction errors of EPM come from the
wrong predicted law articles, as the predicted
charge is dependent on the predicted law article
by the cross-task constraint. Another type of errors
comes from the weakness in discriminating charges
with subtle difference, such as illegal hunting and
illegal fishing, illegal hunting and endangering rare
wildlife.

Consistency analysis. Recall that we propose
cross-task constraints to reduce inconsistent pre-
dictions. The SOTA model TOPJUDGE also ex-
ploits the dependency between different subtasks.
TOPJUDGE uses prediction results as auxiliary
features, which can not guarantee the predictions
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of subtasks are consistent. Different from TOP-
JUDGE, our cross-task constraints can ensure that
the outputs are consistent by forcing the model
to predict allowable charges or terms of penalty
based on the predicted articles during inference.
To analyze the impacts of cross-task constraints,
we select cases from the test portion of CAIL for
which TOPJUDGE predicts the correct law articles,
but wrong charges or terms of penalties, whereas
EPM -w/o event predicts the correct law articles,
charges and terms of penalty. We find that TOP-
JUDGE without cross-task constraints may predict
the wrong charges that are not allowable regrading
the predicted law article. For example, as shown
in Table 14, TOPJUDGE predicts child trafficking
for an abandoning babies case, whereas EPM -w/o
event exploits the cross-task constraint to select re-
sults among allowable candidates during inference
and predicts correctly.

As for term of penalty prediction, TOPJUDGE
has high possibility to predict severe penalty. In
cases where the same law article applies, the pro-
portion of large penalty values is higher than that
of small penalty values. Thus, models may inherit
this data bias and predict more severe penalty. As
shown in Table 14, TOPJUDGE predicts 1-2 years
imprisonment for a abandoning babies case, but
its ground-truth penalty is 9-12 months imprison-
ment, whereas EPM -w/o event exploits cross-task
constraints to predict allowable penalty regarding
the predicted law article and alleviate the data bias
problem.

Event impacts To analyze the impacts of pre-
dicted event information, we select 200 cases with
case types belonging to LJP-E annotation inven-
tory from the tesing portion of CAIL. For these
200 cases, TOPJUDGE predicts wrong law arti-
cles whereas EPM -w/o all DEP predicts correct
law articles. We find that there are two main types
of errors predicted by TOPJUDGE without event
extraction. The first is “specialisation over gener-
alisation”, which is completely incorrect. To be
specific, TOPJUDGE may focus on some words
that strongly trigger wrong law articles. As shown
in Table 15, in a case of illegal logging, the facts
describe that two criminals negotiated to cut down
tree by discussion. negotiated and by discussion
strongly imply it is a contract crime related case.
Hence, TOPJUDGE wrongly predicts the Crime
of contract fraud. In contrast, EPM can overcome
this bias and predict results based on events in-

Fact Statement: 2014F4 7, XIEMER (FHRL
) 223d R RERR R A R AR IRk,
AR ER AT E o B A ERR kA —
HZM... (In April 2014, Liu and Wang (handled in a
separate case) decided to cut down the peach trees planted
by Daxin Company after discussion, and negotiated that
Wang would be responsible for the sale. Liu cut down 100
tons of peach trees...)

TOPJUDGE: Article 224 [Crime of contract fraud]
EPM: Article 345 [Crime of illegal logging]

Extracted event: X3 (Liu) [Criminal], T %(Wang)
[Criminal], X f¥(Cut down) [Trigger], — E"{i(100 tons)
[Quantity], #k(peach) [Plant]

Ground-truth: Article 345 [Crime of illegal logging]
Fact Statement: 20158 H19H , # 5 AR AR
WG H RATEREAEI T, SiE NERE LT
SIERIRE BB, SEHENH LG IR
K. 2EE, WHFEAHEPOFENEN - (On
August 19, 2015, the criminal Shao gave the victim Huang
a plastic surgery by injection of hyaluronic acid without
obtaining the relevant medical qualifications. This resulted
in the victim Huang’s right eye blindness. After identifica-
tion, Huang was assessed as a serious injury grade II)
TOPJUDGE: Article 235 [Crime of intentional injury]
EPM: Article 336 [Crime of illegal doctoring]
Extracted event: fA\%:(Shao) [Criminal], ¥ }-(Huang)
[Victim], # J¥(plastic surgery) [Trigger], 1T [& ¥
¥%(medical qualifications) [License], B 5 — % (serious
injury grade II) [Injury]

Ground-truth: Article 336 [Crime of illegal doctoring]

Table 15: Examples of event impacts.

stead of single words. The other type of errors is
“multiple choice”, which is partially incorrect. A
case may contain several facts that violate different
law articles, which is a problem of dealing with
multiple crimes. TOPJUDGE prefers to predict-
ing one possible article without referring to global
information. As shown in Table 15, a illegal doc-
toring case wrongly predicted by TOPJUDGE as a
intentional injury case because of the fact that the
victim was assessed as a serious injury grade I1.
In contrast, EPM exploits event information and
predicts the correct article in global (note that a
illegal doctoring event contains injury degree argu-
ments that defined as role type “Injury”). Moreover,
which wrong law articles does TOPJUDGE prefer
to predict in the second error type? We find that
TOPJUDGE prefers to predict the wrong law arti-
cle having similar texts with the ground-truth. For
example, the illegal doctoring law article and the
intentional injury law article all have the texts about
injury degree.

G Event Extraction Performance

We show the event extraction performance on LJP-
E. The metrics are macro-precision (P), macro-
recall (R) and macro-F1 (F1). Here, both text span
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Role
F1% P% R%

Trigger
F1% P% R%

EPM 52.59 49.88 55.69|50.37 47.52 53.75
w/o CSTR1  50.07 50.09 50.38|48.41 49.21 47.90
w/o CSTR2  48.97 49.18 49.24|47.17 48.45 46.19
w/o DEP1 50.52 51.08 50.13|49.96 49.29 50.82
w/o DEP2 51.97 49.56 54.82|48.97 47.39 50.82

w/o hierarchy 48.97 51.07 47.04|47.62 45.45 50.00
w/ auxiliary  51.73 49.16 54.94|49.81 47.13 53.35

Table 16: Event extraction results on LJP-E.

and trigger type/argument role should be predicted
correctly simultaneously. From Table 16, EPM
achieves the best results on both trigger extraction
and role extraction. Removing the two event con-
straints (i.e., w/o CSTRI and w/o CSTR?2) degrades
the event extraction results and negatively impacts
LJP.

H Preprocessing CAIL

We follow existing works (Xu et al., 2020; Yang
etal., 2019) to preprocess the CAIL dataset. Specif-
ically, we filter out the case samples with multiple
applicable law articles and multiple charges. Also,
we only keep law articles and charges that appli-
cable to not less than 100 corresponding case sam-
ples. Note the frequency of each law article or
charge is calculated on the training and validation
portions. Besides, cases of second instance are
removed. And we follow (Zhong et al., 2018) to
divide the terms of penalty into non-overlapping
intervals.

I Experimental Details

For training, we utilize the Adam optimizer with
learning rate of 10~ and the batch size is 32. The
warmup step is 3000. Models are trained for a
maximum of 20 epochs. For testing, we calculate
Macro-F1 score for each subtask on the validation
portion after each epoch and select the model with
the maximum Macro-F1 score on the validation
portion for testing each subtask. Note the CAIL-
big subdataset has no validation portion and the
validation portion of CAIL-small is employed. For
LJP-E dataset, we run experiments 5 times and
report the average results. For the hyperparame-
ters, A, in the loss function, the best setting is {0.5,
0.5,0.4,0.2, 0.1} for { A, , At A, Ar,Ap } fOr both
CAIL-big and CAIL-small. The experiments have
been performed on two Tesla V100 GPUs.

J Details of the Switch

During testing on CAIL, we train a BERT-based
Switch model using Legal-BERT (Zhong et al.,
2019) as backbone to make binary classification.
We split the training portion of CAIL into two clus-
ters. One only contains the 15 case types of our an-
notate dataset. The other contains other case types
of CAIL. The input of Switch is a fact statement
and the output is a binary value. The binary value
determines whether to use the pretrained version
of EPM or the fine-tuned version of EPM. Specifi-
cally, we takes the hidden vector of [CLS] token for
making binary classification. we set batch size to
32 and epoch to 20. We take Adam as the optimize
and the learning rate is 0.0001. After training, the
Switch achieves 89.82% and 85.32% Accuracy on
the testing portion of CAIL-big and CAIL-small
respectively.

K Explanation of Event constraints in
Detail

We list our event constrains and then explain them.

Absolute constraint. For a legal event, the trig-
ger must be present. If the trigger is missing, we
impose the following penalty:

Z ZST i,y ? - mea7>_<g[8r($u ?))]

TeTG i=1

1,TE

(17)

where TG is the trigger inventory. s, (x;, @6)) is
the predicted softmax probability of trigger  for
ZT;.

In the equation, Y -7 S s, J(i) is the
summation of probabilities of all trigger types in
the sequence and max; 7c7g [sr(wi,gj@))] is the
maximum probability of all trigger types in the
sequence. |.| denotes the absolute operation. The
operations before absolute operation ensure that
all probabilities of trigger types except the max
one should be close to 0. It forces the model to
predict only one trigger. The absolute operation
guarantees that the max probability should be close
to 1 (note s, (z;, QZ)) is a value after softmax). It
means at least one trigger should be predicted and
its softmax probability should be close to 1. The
all operations makes the model to predict exactly
one trigger.
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If a required role r is missing, we impose the
following penalty:

Pr =1 — max[s,(z;, gl (18)

This equation ensures that the maximum probabil-
ity of the required role in the sequence should be
close to 1. It enforces the model to predict the
required role at least once.

Event-Based consistency constraint. If a trigger
type is detected, all and only its related roles should
be detected. For example, if a Illegal Doctoring
event is detected, no roles related to Illegal Logging
should be predicted. If a trigger r is predicted, we
impose the following penalty:

Pe= 3 [1—maxs (@, i)

FeERT
ls (19)
+ Z Zsr(‘rmga))
reR— i=1

where R is the set of roles that should occur if
r is predicted, R~ is the set of roles that cannot
occur.

This equation ensures that the maximum prob-
ability of positive roles in the sequence should be
close to 1. It means each positive role type should
appear at least once. The equation also ensures that
the probabilities of negative roles in the sequence
should be close to 0. It means none of negative role
types should be predicted. When applying this type
of penalty, we first obtain the predicted trigger and
then dynamically add the corresponding penalty
into the loss function.
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