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Abstract

Recent studies have shown that language mod-
els pretrained and/or fine-tuned on randomly
permuted sentences exhibit competitive perfor-
mance on GLUE, putting into question the im-
portance of word order information. Some-
what counter-intuitively, some of these stud-
ies also report that position embeddings appear
to be crucial for models’ good performance
with shuffled text. We probe these language
models for word order information and inves-
tigate what position embeddings learned from
shuffled text encode, showing that these mod-
els retain information pertaining to the origi-
nal, naturalistic word order. We show this is
in part due to a subtlety in how shuffling is
implemented in previous work — before rather
than after subword segmentation. Surpris-
ingly, we find even Language models trained
on text shuffled after subword segmentation
retain some semblance of information about
word order because of the statistical depen-
dencies between sentence length and unigram
probabilities. Finally, we show that beyond
GLUE, a variety of language understanding
tasks do require word order information, of-
ten to an extent that cannot be learned through
fine-tuning.

1 Introduction

Transformers (Vaswani et al., 2017), when used in
the context of masked language modelling (Devlin
et al., 2018), consume their inputs concurrently.
There is no notion of inherent order, unlike in au-
toregressive setups, where the input is consumed
token by token. To compensate for this absence
of linear order, the transformer architecture origi-
nally proposed in Vaswani et al. (2017) includes a
fixed, sinusoidal position embedding added to each
token embedding; each token carries a different
position embedding, corresponding to its position
in the sentence. The transformer-based BERT (De-
vlin et al., 2018) replaces these fixed sinusoidal

*Equal contribution. Order was decided by a coin toss.
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Figure 1: Pearson correlations between position embed-
dings for full-scale models; the patterns are similar to
fully learnable absolute embeddings (Wang et al., 2021)
and can be said to have learned something about posi-
tion. We later demonstrate that this is not the case with
post-BPE scrambling.

embeddings with unique, learned embeddings per
position; RoBERTa (Liu et al., 2019), the model
investigated in this work, does the same.

Position embeddings are the only source of or-
der information in these models; in their absence,
contextual representations generated for tokens
are independent of the actual position of the to-
kens in a sentence, and the models thus resemble
heavily overparameterised bags-of-words. Sinha
et al. (2021) pre-trained RoBERTa models on shuf-
fled corpora to demonstrate that the performance
gap between these ‘shuffled’ language models and
models trained on unshuffled corpora is minor
(when fine-tuned and evaluated downstream on the
GLUE (Wang et al., 2018) benchmark). They fur-
ther show that this gap is considerably wider when
a model is pre-trained without position embeddings.
In this paper, we attempt to shed some light on why
these models behave the way they do, and in doing
s0, seek to answer a set of pertinent questions:

e Do shuffled language models still have traces
of word order information?

e Why is there a gap in performance between
models without position embeddings and mod-
els trained on shuffled tokens, with the latter
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Figure 2: Correlations between position embeddings when shuffling training data before segmentation (left), i.e,
at the word level, and after segmentation (middle), i.e., at the subword level, as well as when replacing all sub-
words with random subwords based on their corpus-level frequencies (right). The latter removes any dependency
between subword probability and sentence length. The plots show that shuffling before segmentation retains more
order information than shuffling after, and that even when shuffling after segmentation, position embeddings are
meaningful because of the dependence between subword probability and sentence length.

performing better?

e Are there NLU benchmarks, other than
GLUE, on which shuffled language models
perform poorly?

Contributions We first demonstrate, in Sec-
tion 3, that shuffled language models do contain
word order information, and are quite responsive
to simple tests for word order information, partic-
ularly when compared to models trained without
position representations. In Section 4, we demon-
strate that pre-training is sufficient to learn this:
position embeddings provide the appropriate in-
ductive bias, and performing BPE segmentation
after shuffling results in sensible n-grams appear-
ing in the pre-training corpus; this gives models
the capacity to learn word order within smaller lo-
cal windows. Other minor cues - like correlations
between sentence lengths and token distributions -
also play a role. We further corroborate our analy-
sis by examining attention patterns across models
in Sec. 5. In Section 6, we show that, while shuf-
fled models might be almost as good as their un-
shuffled counterparts on GLUE tasks, there exist
NLU benchmarks that do require word order infor-
mation to an extent that cannot be learned through

fine-tuning alone. Finally, in Section 7, we describe
miscellaneous experiments addressing the utility
of positional embeddings when added just prior to
fine-tuning.

2 Models

Sinha et al. (2021) train several full-scale RoOBERTa
language models on the Toronto Book Corpus (Zhu
et al., 2015) and English Wikipedia.! Four of their
models are trained on shuffled text, i.e., sentences
in which n-grams are reordered at random.”> We
dub the original, unperturbed model ORIG, and the
scrambled models SHUF.N1, SHUF.N2, SHUF.N3
and SHUF.N4 depending on the size of the shuffled
n-grams: SHUF.N1 reorders the unigrams in a sen-
tence, SHUF.N2 reorders its bigrams, etc. For com-
parison, Sinha et al. (2021) also train a RoBERTa
language model entirely without position embed-
dings (NOPOS), as well as a RoBERTa language
model trained on a corpus drawn solely from uni-
gram distributions of the original Book Corpus, i.e.,
a reshuffling of the entire corpus (SHUF.CORPUS).

!Training reportedly takes 72 hours on 64 GPUs.

>The shuffling procedure does not reorder tokens com-
pletely at random, but moves a token in position ¢ to a new
position selected at random among positions j # .
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We experiment with their models, as well as with
smaller models that we can train with a smaller
carbon footprint. To this end, we downscale the
RoBERTza architecture used in Sinha et al. (2021).
Concretely, we train single-headed RoBERTa mod-
els, dividing the embedding and feed-forward di-
mensionality by 12, for 24 hours on a single GPU,
on 100k sentences sampled from the Toronto Book
Corpus. To this end, we train a custom vocabulary
of size 5,000, which we use for indexing in all our
subsequent experiments. While these smaller mod-
els are in no way meant to be fine-tuned and used
downstream, they are useful proofs-of-concept that
we later analyse.

3 Probing for word order

We begin by attempting to ascertain the extent to
which shuffled language models are actually ca-
pable of encoding information pertaining to the
naturalistic word order of sentences. We perform
two simple tests on the full-scale models, in line
with Wang and Chen (2020): the first of these is
a classification task where a logistic regressor is
trained to predict whether a randomly sampled to-
ken precedes another in an unshuffled sentence,
and the second involves predicting the position of
a word in an unshuffled sentence. The fact that
we do not fine-tune any of the model parameters is
noteworthy: the linear models can only learn word
order information if it reflects in the representations
the models generate somehow.

Pairwise Classification For this experiment, we
train a logistic regression classification model on
word representations extracted from the final layer
of the Transformer encoder, mean pooling over
sub-tokens when required. For each word pair x
and y, the classifier is given a concatenation of our
model m’s induced representations m(z) @ m(y)
and trained to predict a label indicating whether x
precedes y or not. Holding out two randomly sam-
pled positions, we use a training sets sized 2k, 5k,
and 10k, from the Universal Dependencies English-
GUM corpus (Zeldes, 2017) (excluding sentences
with more than 30 tokens to increase learnability)
and a test set of size 2,000. We report the mean
accuracy from three runs.

Regression Using the same data, we also train a
ridge-regularised linear regression model to predict
the position of a word p(x) in an unshuffled sen-
tence, given that word’s model-induced representa-

Classification (acc.) Regression (R?
Model 2k sk 10k -
ORIG 8150 81.74 80.40 0.68
SHUF.NI | 6596 64.98 71.82 0.60
Nopos | 5041 5335 50.22 | 0.03

Table 1: Pairwise classification and regression results.

tion m(z). R? score is reported per model. To pre-
vent the regressors from memorising word to posi-
tion mappings, we perform 6-fold cross-validation,
where the heldout part of the data contains no vo-
cabulary overlap with the corresponding train set.

Results For both tasks (see Table 1), our results
indicate that position encodings are particularly im-
portant for encoding word order: Classifiers and re-
gressors trained on representations from ORIG and
SHUF.N1 achieve high accuracies and R? scores,
while those for NOPOS are close to random. Both
ORIG and SHUF.N1 appear to be better than ran-
dom given only 2k examples. These results imply
that, given positional encodings and a modest train-
ing set of 2k or more examples, a simple linear
model is capable of extracting word order infor-
mation, enabling almost perfect extrapolation to
unseen positions. Whether the position encodings
come from a model trained on natural or shuffled
text does not appear to matter, emphasizing that
shuffled language models do indeed contain sub-
stantial information about the original word order.

4 Hidden word-order signals

In Section 3, we observed that Sinha et al. (2021)’s
shuffled language models surprisingly exhibit in-
formation about naturalistic word order. That these
models contain positional information can also be
seen by visualizing position embedding similarity.
Figure 1 displays Pearson correlations® for posi-
tion embeddings with themselves, across positions.
Here, we see that the shuffled models satisfy the
idealised criteria for position embeddings described
by Wang et al. (2021): namely, they appear to be
a) monotonous within smaller context windows,
and b) invariant to translation. If position embed-
ding correlations are consistent across offsets over
the entire space of embeddings, the model can be
said to have ‘learned’ distances between tokens.
Since transformers process all positions in parallel,

3We see similar patterns with dot products for all our plots;
we use Pearson correlations to constrain our range to [—1, 1].
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and since language models without position em-
beddings do not exhibit such information, position
embeddings have to be the source of this informa-
tion. In what follows, we discuss this apparent
paradox.

Subword vs. word shuffling An important de-
tail when running experiments on shuffled text, is
when the shuffling operation takes place. When
tokens are shuffled before BPE segmentation, this
leads to word-level shuffling, in which sequences
of subwords that form words remain contiguous.
Such sequences become a consistent, meaningful
signal for language modelling, allowing models
to efficiently utilise the inductive bias provided by
position embeddings. Thus, even though our pre-
trained models have, in theory, not seen consecutive
tokens in their pre-training data, they have learned
to utilise positional embeddings to pay attention to
adjacent tokens. The influence of this is somewhat
visible in Figure 2: while models trained on text
shuffled before and after segmentation both exhibit
shifts in the polarity of their position correlations,
only the former show bands of varying magnitude,
similar to the full-scale models. Ravishankar and
S@gaard (2021) discuss the implications of these
patterns in a multilingual context; we hypothesise
that in our context, the periodicity in magnitude is
a visible artefact of the model’s ability to leverage
position embeddings to enable offset attention. In
Section 5, we analyse the effect of shuffling the pre-
training data on the models’ attention mechanisms.

Accidental overlap In addition to the n-gram
information which results from shuffling before
segmentation, we also note that short sentences
tend to include original bigrams with high proba-
bility, leading to stronger associations for words
that are adjacent in the original texts. This effect
is obviously much stronger when shuffling before
segmentation than after segmentation. Figure 3
shows how frequent overlapping bigrams (of any
sort) are, comparing word and subword shuffling
over 50k sentences.

Sentence length Finally, we observe some pre-
served information about the original word order
even when shuffling is performed after segmenta-
tion. We hypothesize that this is a side-effect of the
non-random relationship between sentence length
and unigram probabilities. That unigram probabili-
ties correlate with sentence length follows from the
fact that different genres exhibit different sentence

Words
Subwords

Bigram overlap

15 31 47 63

Sentence length

Figure 3: (Cumulative) plot showing subword bigram
overlap after shuffling either words or subwords, as a
percentage of the total number of seen bigrams. We see
the overlap is significant, especially when performing
shuffling before segmentation.

length distributions (Sigurd et al., 2004; Jin and Liu,
2017). Also, some words occur very frequently in
formulaic contexts, e.g., thank in thank you. This
potentially means that there is an approximately
learnable relationship between the distribution of
words and sentence boundary symbols.

To test for this, we train two smaller language
models on unigram-sampled corpora: for the first,
we use the first 100k BookCorpus sentences as
our corpus, shuffling tokens at a corpus level (yet
keeping the original sentence lengths). The stark
difference in position embedding correlations be-
tween that and shuffling is seen in Figure 2. For
the second, we sample from two different unigram
distributions: one for short sentences and one for
longer sentences (details in Appendix B). While
the first model induces no correlations at all, the
second does, as shown in Figure 4, implying that
sentence length and unigram occurrences is enough
to learn some order information.

5 Attention analysis

Transformer-based language models commonly
have attention heads that attend to neighboring po-
sitions (Voita et al., 2019; Ravishankar et al., 2021).
Such attention heads are positional and can only be
learned in the presence of order information. We
attempt to visualise the attention mechanism for
pre-trained models by calculating, for each head
and layer, the offset between a token and the token

6910



0 256 512 0 256

Random vocab Disioint vocab

Figure 4: Similarity matrix between models with sen-
tences sampled based on unigram corpus statistics; dis-
joint vocab implies a correlation between token choice
and sentence length.

that it pays maximum attention to*. We then plot
how frequent each offset is, as a percentage, over
100 Book Corpus sentences, in Figure 5, where
we present results for two full-scale models, and
two smaller models (see §2). When compared to
NoPOS, SHUF.N1 has a less uniform pattern to its
attention mechanism: it is likely, even at layer O,
to prefer to pay attention to adjacent tokens, some-
what mimicking a convolutional window (Cordon-
nier et al., 2020). We see very similar differences
in distribution between our smaller models: Shuf-
fling after segmentation, i.e., at the subword level,
influences early attention patterns.

6 Evaluation beyond GLUE

SuperGLUE and WinoGrande Sinha et al.
(2021)’s investigation is conducted on GLUE and
on the Paraphrase Adversaries from Word shuf-
fling (PAWS) dataset (Zhang et al., 2019). For
these datasets, they find that models pretrained on
shuffled text perform only marginally worse than
those pretrained on normal text. This result, they
argue can be explained in two ways: either a) these
tasks do not need word order information to be
solved, or b) the required word order information
can be acquired during finetuning. While GLUE
has been a useful benchmark, several of the tasks
which constitute it have been shown to be solvable
using various spurious artefacts and heuristics (Gu-
rurangan et al., 2018; Poliak et al., 2018). If, for
instance, through finetuning, models are learning to
rely on such heuristics as lexical overlap for MNLI
(McCoy et al., 2019), then it is unsurprising that
their performance is not greatly impacted by the

*This method of visualisation is somewhat limited, in that
it examines only the maximum attention paid by each token.
We provide more detailed plots over attention distributions in
the Appendix.
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Figure 5: Relative frequency of offsets between to-
ken pairs in an attention relation; the y-axis denotes
the percentage of total attention relations that occur
at the offset indicated on the x-axis. We plot layers
le€{1,2,7,8,11,12} with increasing line darkness.

lack of word order information.

Evaluating on the more rigorous set of Super-
GLUE tasks® (Wang et al., 2019) and on the
adversarially-filtered Winograd Schema examples
(Levesque et al., 2012) of the WinoGrande dataset
(Sakaguchi et al., 2020) produces results which
paint a more nuanced picture compared to those
of Sinha et al. (2021). The results, presented in
Table 2, show accuracy or F1 scores for all mod-
els. For two of the tasks (MultiRC (Khashabi et al.,
2018), COPA (Roemmele et al., 2011)), we ob-
serve a pattern in line with that seen in Sinha et al.
(2021)’s GLUE and PAWS results: the drop in
performance from ORIG to SHUF.N1 is minimal
(mean: 1.75 points; mean across GLUE tasks: 3.3
points)®, while that to NOPOS is more substantial
(mean: 10.5 points; mean across GLUE tasks: 18.6
points).

This pattern alters for the BoolQ Yes/No ques-
tion answering dataset (Clark et al., 2019), the
CommitmentBank (De Marneffe et al., 2019), the
ReCoRD reading comprehension dataset (Zhang
et al., 2018), both the Winograd Schema tasks,

Results are reported for an average of 3 runs per task.
The RTE task is excluded from our results as it is also part of
GLUE; RTE results can be found in Sinha et al. (2021).

8CoLA results are excluded from the GLUE calculations
due to the very high variance across random seeds reported by
Sinha et al. (2021).
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and to some extent the Words in Context dataset
(Pilehvar and Camacho-Collados, 2018). For these
tasks we observe a larger gap between ORIG and
SHUF.N1 (mean: 8.1 points), and an even larger
one between ORIG and NOPOS (mean: 19.78
points). We note that this latter set of tasks requires
inferences which are more context-sensitive, in
comparison to the two other tasks or to the GLUE
tasks.

Consider the Winograd schema tasks, for
example. Each instance takes the form of a binary
test with a statement comprising of two possible
referents (blue) and a pronoun (red) such as: Sid
explained his theory to Mark but
he couldn’t convince him. The correct
referent of the pronoun must be inferred based
on a special discriminatory segment (underlined).
In the above example, this depends on a) the
identification of “Sid” as the subject of “explained”
and b) inferring that the pronoun serving as the
subject of “convinced” should refer to the same
entity. Since the Winograd schema examples
are designed so that the referents are equally
associated with their context’, word order is
crucial® for establishing the roles of “Sid” and
“Mark” as subject and object of “explained” and
“he” and “him” as those of “convinced”. If these
roles cannot be established, making the correct
inference becomes impossible.

A similar reasoning can be applied to the Words
in Context dataset and the CommitmentBank. The
former task tests the ability of a model to distin-
guish the senses of a polysemous word based on
context. While this might often be feasible via a
notion of contextual association that higher-order
distributional statistics are sufficient for, some in-
stances will require awareness of the word’s role
as an argument in the sentence. The latter task in-
vestigates the projectivity of finite clausal comple-
ments under entailment cancelling operators. This
is dependent on both the scope of the entailment
operator and the identity of the subject of the ma-
trix predicate (De Marneffe et al., 2019), both of
which are sensitive to word order information.

A final consideration to take into account is
dataset filtering. Two of the tasks where we observe

"e.g. Sid and Mark are both equally likely subjects/objects
here. Not all Winograd schema examples are perfect in this
regard, however, which could explain why scrambled models
still perform above random. See Trichelair et al. (2018) for a
discussion of the latter point.

8Particularly in a language with limited morphological role
marking such as English.
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Figure 6: A, dependency arcs probing accuracy across
lengths 1-5+, w.r.t. ORIG.

the largest difference between ORIG, SHUF.N1,
and NoPOS — WinoGrande and ReCoRD — ap-
ply filtering algorithms to remove cues or biases
which would enable models to heuristically solve
the tasks. This indicates that by filtering out exam-
ples containing cues that make them solvable via
higher order statistics, such filtering strategies do
succeed at compelling models to (at least partially)
rely on word order information.

Dependency Tree Probing Besides GLUE and
PAWS, Sinha et al. (2021)’s analysis also includes
several probing experiments, wherein they attempt
to decode dependency tree structure from model
representations. They show, interestingly, that
the SHUF.N4, SHUF.N3 and SHUF.N2 models
perform only marginally worse than ORIG, with
SHUF.N1 producing the lowest scores (lower, in
fact, than SHUF.CORPUS). Given the findings of
Section 3, we are interested in taking a closer look
at this phenomenon. Here, we surmise that depen-
dency length plays a crucial role in the probing
setup, where permuted models may succeed on
par with ORIG in capturing local, adjacent depen-
dencies, but increasingly struggle to decode longer
ones. To evaluate the extent to which this is true,
we train a bilinear probe (used in Hewitt and Liang
(2019)) on top of all model representations and
evaluate its accuracy across dependencies binned
by length, where length between words w; and w;
is defined as |i — j|. We opt for using the bilinear
probe over the Pareto probing framework (Pimentel
et al., 2020), as the former learns a transformation
directly over model representations, while the latter
adds the parent and child MLP units from Dozat
et al. (2017) — acting more like a parser. We train
probes on the English Web Treebank (Silveira et al.,
2014) and evaluate using UAS, the standard parsing
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Model \ BoolQ CB COPA  MultiRC ReCoRD WiC WSC WinoGrande
ORIG 77.6 88.2/874 61.6 67.8/219 735/72.8 674 7135 62.9
SHUF.N1 724 79.7/825 597 662/150 61.1/604 630 629 55.7
SHUF.N2 73.1 86.6/855 603 64.8/16.1 63.1/624 630 653 57.6
SHUF.N4 73.5 87.9/87.1 60.8 66.2/182 64.6/639 624 653 59.53
Noros 66.0 63.5/750 556 52.8/3.8 23.8/23.5 554 63.09 52.73
SHUF.CORPUS 66.7 65.6/73.8  56.1 52.6/64 31.0/303 573 65.14 51.68

Table 2: SuperGLUE and WinoGrande results for all models. Scores displayed are: Avg. F1 / Accuracy for CB;
Fla/ Exact Match for MultiRC; F1 / Accuracy for ReCoRD ; accuracy for the remaining tasks.

metric.

Figure 6 shows A probing accuracy across vari-
ous dependency lengths for NOPOS and SHUF.N1,
with respect to ORIG?; we include detailed As for
all models in Appendix C. For NOPOS, parsing
difficulty increases almost linearly with distance,
often mimicking the actual frequency distribution
of dependencies at these distances in the original
treebank (Appendix C); for SHUF.N1, the picture is
a lot more nuanced, with dependencies at a distance
of 1 consistently being closer in terms of parseabil-
ity to ORIG, which, we hypothesise, is due to its
adjacency bias.

7 Other Findings

Random position embeddings are difficult to
add post-training We tried to quantify the de-
gree to which the inductive bias imparted by posi-
tional embeddings can be utilised, solely via fine-
tuning. To do so, for a subset of GLUE tasks
(MNLI, QNLI, RTE, SST-2, CoLA), we evalu-
ate NOPOS, and a variant where we randomly
initialised learnable position embeddings and add
them to the model, with the rest of the model equiv-
alent to NOPOS. We see no improvement in results,
except for MNLI, that we hypothesise stems from
position embeddings acting as some sort of regular-
isation parameter. To test this, we repeat the above
set of experiments, this time injecting Gaussian
noise instead; this has been empirically shown to
have a regularising effect on the network (Bishop,
1995; Camuto et al., 2021). Adding Gaussian noise
led to a slight increase in score for just MNLI, back-
ing up our regularisation hypothesis.

Models learn to expect specific embeddings
Replacing the positional embeddings in ORIG with
fixed, sinusoidal embeddings before fine-tuning
significantly hurts scores on the same subset of

Note that Layer 13 refers to a linear mix of all model
layers, as is done for ELMo (Peters et al., 2018).

GLUE tasks, implying that the models expect em-
beddings that resemble the inductive bias imparted
by random embeddings, and that fine-tuning tasks
do not have sufficient data to overcome this. The
addition of fixed, sinusoidal to NOPOS also does
not improve model performance on a similar subset
of tasks; this implies, given that sinusoidal embed-
dings are already meaningful, that model weights
also need to learn to fit the embeddings they are
given, and that they need a substantial amount of
data to do so.

8 On Word Order

In Humans It is generally accepted that a ma-
jority of languages have “canonical” or “base’
word orderings (Comrie, 1989) (e.g. Subject-Verb-
Object in English, and Subject-Object-Verb in
Hindi). Linguists consider word order to be a cod-
ing property — mechanisms by which abstract, syn-
tactic structure is encoded in the surface form of
utterances. Beyond word order, other coding prop-
erties include, e.g. subject-verb agreement, mor-
phological case marking, or function words such
as adpositions. In English, word order is among
the most prominent coding properties, playing a
crucial role in the expression of the main verb’s
core arguments: subject and object. For more mor-
phologically complex languages, on the other hand,
(e.g. Finnish and Turkish), word order is primar-
ily used to convey pragmatic information such as
topicalisation or focus. In such cases, argument
structure is often signalled via case-marking, where
numerous orderings become possible (shift in topic
or focus nonwithstanding). We refer the reader to
Kulmizev and Nivre (2021) for a broader discus-
sion of these topics and their implications when
studying syntax through language models.

More generally, evidence for the saliency of
word order in linguistic processing and compre-
hension comes from a variety of studies using ac-
ceptability judgements, eye-tracking data, and neu-
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ral response measurements (Bever, 1970; Danks
and Glucksberg, 1971; Just and Carpenter, 1980;
Friederici et al., 2000, 2001; Bahlmann et al., 2007;
Lerner et al., 2011; Pallier et al., 2011; Fedorenko
et al., 2016; Ding et al., 2016). Psycholinguistic
research has, however, also highlighted the robust-
ness of sentence processing mechanisms to a va-
riety of perturbations, including those which vio-
late word order restrictions (Ferreira et al., 2002;
Gibson et al., 2013; Traxler, 2014). In recent work,
Mollica et al. (2020) tested the hypothesis that com-
position is the core function of the brain’s language-
selective network and that it can take place even
when grammatical word order constrains are vio-
lated. Their findings confirmed this, showing that
stimuli with shuffled word order where local depen-
dencies were preserved — as is, roughly speaking,
the case for many dependencies in the sentences
SHUF.N4 is trained on — elicited a neural response
in the language network that is comparable to that
elicited by normal sentences. When interword de-
pendencies were disrupted so combinable words
were so far apart that composition among nearby
words was highly unlikely — as in SHUF.N1, neu-
ral response fell to a level compared to unconnected
word lists.

In Machines Recently, many NLP researchers
have attempted to investigate the role of word order
information in language models. For example, Lin
et al. (2019) employ diagnostic classifiers and at-
tention analyses to demonstrate that lower (but not
higher) layers of BERT encode word order infor-
mation. Papadimitriou et al. (2021) find that Multi-
lingual BERT is sensitive to morphosyntactic align-
ment, where numerous languages (out of 24 total)
rely on word order to mark subjecthood (English
among them). Alleman et al. (2021) implement
an input perturbation framework (n-gram shuffling,
phrase swaps, etc.), and employ it towards testing
the sensitivity of BERT s representations to various
types of structure in sentences. They report a sen-
sitivity to larger constituent units of sentences in
higher layers, which they deduce to be influenced
by hierarchical phrase structure. O’Connor and An-
dreas (2021) examine the contribution of various
contextual features to the ability of GPT-2 (Radford
etal., 2019) to predict upcoming tokens. Their find-
ings show that several destructive manipulations,
including in-sentence word shuffling, applied to
mid- and long range contexts lead only to a modest
increase in usable information as defined according

to the V-information framework of Xu et al. (2020).

Similarly, word order information has been
found not to be essential for various NLU tasks
and datasets. Early work showed that Natural Lan-
guage Inference tasks are largely insensitive to per-
mutations of word order (Parikh et al., 2016; Sinha
et al., 2020). Pham et al. (2020) and Gupta et al.
(2021) discuss this in greater detail, demonstrat-
ing that test-time word order perturbations applied
to GLUE benchmark tasks have little impact on
LM performance. Following up on this, Sinha
et al. (2021), which our work builds on, found
that pretraining on scrambled text appears to only
marginally affect model performance. Most related
to this study, Clouatre et al. (2021) introduce two
metrics for gauging the local and global ordering of
tokens in scrambled texts, observing that only the
latter is altered by the perturbation functions found
in prior literature. In experiments with GLUE, they
find that local (sub-word) perturbations show a sub-
stantially stronger performance decay compared to
global ones.

In this work, we present an in-depth analysis of
these results, showing that LMs trained on scram-
bled text can actually retain word information and
that — as for humans — their sensitivity to word
order is dependent on a variety of factors such as
the nature of the task and the locality of perturba-
tion. While performance on some “understanding”
evaluation tasks is not strongly affected by word
order scrambling, the effect on others such as the
Winograd Schema is far more evident.

9 Conclusion

Much discussion has resulted from recent work
showing that scrambling text at different stages of
testing or training does not drastically alter the per-
formance of language models on NLU tasks. In
this work, we presented analyses painting a more
nuanced picture of such findings. Primarily, we
demonstrate that, as far as altered pre-training is
concerned, models still do retain a semblance of
word order knowledge — largely at the local level.
We show that this knowledge stems from cues in
the altered data, such as adjacent BPE symbols and
correlations between sentence length and content.
The order in which shuffling is performed — be-
fore or after BPE tokenization — is influential in
models’ acquisition of word order, which calls for
caution in interpreting previous results. Finally, we
show that there exist NLU tasks that are far more
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sensitive to sentence structure as expressed by word
order.
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A Subword vs. word scrambling
B On biased sampling

We first split our vocab of size 5,000 into two
halves, both of size 2500, such that the sum to-
tal of unigram frequencies of tokens in each half
is roughly equivalent. Next, iterating over 100k
BookCorpus sentences, we determine the sentence
length [, for which there are an equivalent num-
ber of tokens in sentences with length < [ and
sentences with length >= [. We then sample to-
kens from the first vocab half for sentences < [,
and from the second vocab half for sentences with
length >= [, 80% of the time; for the other 20%,
we sample from the opposite half to introduce some
overlap.

C Full UD results
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Figure 7: Pearson correlations, when scrambling by subword/word, with/without disjoint vocabularies. Disjoint
vocabularies appear to induce patterns in position-position correlations, while scrambling at a word level induces
‘stripes’ of oscillating magnitude; this is likely due to position embeddings learning connections to adjacent tokens.
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Figure 9: A UAS, all models and layers across depen-
dency lengths 1-5+, w.r.t. ORIG. Layer 13 represents a
linear mix of all model layers.
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