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Abstract

Back-translation is a critical component of
Unsupervised Neural Machine Translation
(UNMT), which generates pseudo parallel
data from target monolingual data. A UNMT
model is trained on the pseudo parallel data
with translated source, and translates natural
source sentences in inference. The source dis-
crepancy between training and inference hin-
ders the translation performance of UNMT
models. By carefully designing experiments,
we identify two representative characteristics
of the data gap in source: (1) style gap (i.e.,
translated vs. natural text style) that leads to
poor generalization capability; (2) content gap
that induces the model to produce hallucina-
tion content biased towards the target language.
To narrow the data gap, we propose an online
self-training approach, which simultaneously
uses the pseudo parallel data {natural source,
translated target} to mimic the inference sce-
nario. Experimental results on several widely-
used language pairs show that our approach
outperforms two strong baselines (XLM and
MASS) by remedying the style and content
gaps. 1

1 Introduction

In recent years, there has been a growing interest in
unsupervised neural machine translation (UNMT),
which requires only monolingual corpora to accom-
plish the translation task (Lample et al., 2018a,b;
Artetxe et al., 2018b; Yang et al., 2018; Ren et al.,
2019). The key idea of UNMT is to use back-
translation (BT) (Sennrich et al., 2016) to construct

∗Work was done when Zhiwei He was interning at Ten-
cent AI Lab.

†Rui Wang is the corresponding author.
1 Code, data, and trained models are available at https:

//github.com/zwhe99/SelfTraining4UNMT.

Source Target

Train X ∗ Y
Inference X Y∗

Table 1: {X ∗,Y} is the translated pseudo parallel data
which is used for UNMT training on X ⇒ Y trans-
lation. The input discrepancy between training and in-
ference: 1) Style gap: X ∗ is in translated style, and X
is in the natural style; 2) Content gap: the content of
X ∗ biases towards target language Y due to the back-
translation manipulation, and the content of X biases
towards source language X .

the pseudo parallel data for translation modeling.
Typically, UNMT back-translates the natural target
sentence into the synthetic source sentence (trans-
lated source) to form the training data. A BT loss is
calculated on the pseudo parallel data {translated
source, natural target} to update the parameters of
UNMT models.

In Supervised Neural Machine Translation
(SNMT), Edunov et al. (2020) found that BT suf-
fers from the translationese problem (Zhang and
Toral, 2019; Graham et al., 2020) in which BT
improves BLEU score on the target-original test
set with limited gains on the source-original test
set. Unlike authentic parallel data available in the
SNMT training data, the UNMT training data en-
tirely comes from pseudo parallel data generated
by the back-translation. Therefore in this work, we
first revisit the problem in the UNMT setting and
start our research from an observation (§2): with
comparable translation performance on the full test
set, the BT based UNMT models achieve better
translation performance than the SNMT model
on the target-original (i.e. translationese) test set,
while achieves worse performance on the source-

6611

https://github.com/zwhe99/SelfTraining4UNMT
https://github.com/zwhe99/SelfTraining4UNMT


original ones.
In addition, the pseudo parallel data {translated

source, natural target} generated by BT poses great
challenges for UNMT, as shown in Table 1. First,
there exists the input discrepancy between the trans-
lated source (translated style) in UNMT training
data and the natural source (natural style) in in-
ference data. We find that the poor generalization
capability caused by the style gap (i.e., translated
style v.s natural style) limited the UNMT transla-
tion performance (§3.1). Second, the translated
pseudo parallel data suffers from the language cov-
erage bias problem (Wang et al., 2021), in which
the content of UNMT training data biases towards
the target language while the content of the infer-
ence data biases towards the source language. The
content gap results in hallucinated translations (Lee
et al., 2018; Wang and Sennrich, 2020) biased to-
wards the target language (§3.2).

To alleviate the data gap between the training
and inference, we propose an online self-training
(ST) approach to improve the UNMT performance.
Specifically, besides the BT loss, the proposed ap-
proach also synchronously calculates the ST loss on
the pseudo parallel data {natural source, translated
target} generated by self-training to update the pa-
rameters of UNMT models. The pseudo parallel
data {natural source, translated target} is used to
mimic the inference scenario with {natural source,
translated target} to bridge the data gap for UNMT.
It is worth noting that the proposed approach does
not cost extra computation to generate the pseudo
parallel data {natural source, translated target}2,
which makes the proposed method efficient and
easy to implement.

We conduct experiments on the XLM (Lample
and Conneau, 2019) and MASS (Song et al., 2019)
UNMT models on multiple language pairs with
varying corpus sizes (WMT14 En-Fr / WMT16 En-
De / WMT16 En-Ro / WMT20 En-De / WMT21
En-De). Experimental results show that the pro-
posed approach achieves consistent improvement
over the baseline models. Moreover, we conduct
extensive analyses to understand the proposed ap-
proach better, and the quantitative evidence reveals
that the proposed approach narrows the style and
content gaps to achieve the improvements.

2The vanilla UNMT model adopts the dual structure to
train both translation directions together, and the pseudo par-
allel data {natural source, translated target} has already been
generated and is used to update the parameters of UNMT
model in the reverse direction.

In summary, the contributions of this work are
detailed as follows:

• Our empirical study demonstrates that the back-
translation based UNMT framework suffers from
the translationese problem, causing the inaccu-
rate evaluation of UNMT models on standard
benchmarks.

• We empirically analyze the data gap between
training and inference for UNMT and identify
two critical factors: style gap and content gap.

• We propose a simple and effective approach for
incorporating the self-training method into the
UNMT framework to remedy the data gap be-
tween the training and inference.

2 Translationese Problem in UNMT

2.1 Background: UNMT
Notations. Let X and Y denote the language
pair, and let X = {xi}Mi=1 and Y = {yj}Nj=1 rep-
resent the collection of monolingual sentences of
the corresponding language, where M,N are the
size of the corresponding set. Generally, UNMT
method that based on BT adopts dual structure
to train a bidirectional translation model (Artetxe
et al., 2018b, 2019; Lample et al., 2018a,b). For
the sake of simplicity, we only consider translation
direction X → Y unless otherwise stated.

Online BT. Current mainstream of UNMT meth-
ods turn the unsupervised task into the synthetic
supervised task through BT, which is the most criti-
cal component in UNMT training. Given the trans-
lation task X → Y where target corpus Y is avail-
able, for each batch, the target sentence y ∈ Y is
used to generate its synthetic source sentence by
the backward model MTY→X :

x∗ = arg max
x

PY→X(x | y; θ̃), (1)

where θ̃ is a fixed copy of the current parameters
θ indicating that the gradient is not propagated
through θ̃. In this way, the synthetic parallel sen-
tence pair {x∗, y} is obtained and used to train the
forward model MTX→Y in a supervised manner by
minimizing:

LB = Ey∼Y [− logPX→Y (y | x∗; θ)]. (2)

It is worth noting that the synthetic sentence pair
generated by the BT is the only supervision signal
of UNMT training.

6612



Objective function. In addition to BT, denoising
auto-encoding (DAE) is an additional loss term of
UNMT training, which is denoted by LD and is
not the main topic discussed in this work.

In all, the final objective function of UNMT is:

L = LB + λDLD, (3)

where λD is the hyper-parameter weighting DAE
loss term. Generally, λD starts from one and de-
creases as the training procedure continues3.

2.2 Translationese Problem
To verify whether the UNMT model suffers from
the input gap between training and inference and
thus is biased towards translated input while against
natural input, we conduct comparative experiments
between SNMT and UNMT models.

Setup We evaluate the UNMT and SNMT mod-
els on WMT14 En-Fr, WMT16 En-De and WMT16
En-Ro test sets, following Lample and Conneau
(2019) and Song et al. (2019). We first train the
UNMT models on the above language pairs with
model parameters initialized by XLM and MASS
models. Then, we train the corresponding SNMT
models whose performance on the full test sets
is controlled to be approximated to UNMT by
undersampling training data. Finally, we evalu-
ate the UNMT and SNMT models on the target-
original and source-original test sets, whose inputs
are translated and natural respectively. Unless oth-
erwise stated, we follow previous work (Lample
and Conneau, 2019; Song et al., 2019) to use case-
sensitive BLEU score (Papineni et al., 2002) with
the multi-bleu.perl4 script as the evaluation
metric. Please refer to Appendix B for the results
of SacreBLEU, and refer to Appendix A for the
training details of SNMT and UNMT models.

Results We present the translation performance
in terms of the BLEU score in Table 2 and our
observations are:

• UNMT models perform close to the SNMT mod-
els on the full test sets with 0.3 BLEU difference
at most on average (33.5/33.9 vs. 33.6).

• UNMT models outperform SNMT models on
target-original test sets (translated input) with
3Verified from open-source XLM Github implementation.
4https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

Model En-Fr En-De En-Ro Avg.
⇒ ⇐ ⇒ ⇐ ⇒ ⇐

Full Test Set
SNMT 38.4 33.6 29.5 33.9 33.7 32.5 33.6
XLM 37.4 34.5 27.2 34.3 34.6 32.7 33.5

MASS 37.8 34.9 27.1 35.2 35.1 33.4 33.9

Target-Original Test Set / Translated Input
SNMT 37.4 32.4 25.6 37.1 38.2 28.2 33.2
XLM 39.1 36.5 26.6 42.2 42.1 34.4 36.8

MASS 39.2 37.6 27.0 42.9 43.1 35.6 37.6

Source-Original Test Set / Natural Input
SNMT 38.2 34.1 32.3 28.8 29.4 35.9 33.1
XLM 34.7 30.4 26.6 22.5 27.4 30.6 28.7

MASS 35.2 30.2 26.1 23.6 27.4 30.8 28.9

Table 2: Translation performance of SNMT and UNMT
models on full / target-original / source-original test
sets. SNMT denotes the supervised translation models
trained on undersampled parallel data and their perfor-
mance on full test data are controlled to be approximate
to the UNMT counterparts.

average BLEU score improvements of 3.6 and
4.4 BLEU points (36.8/37.6 vs. 33.2).

• UNMT models underperform the SNMT models
on source-original test sets (natural input) with
an average performance degradation of 4.4 and
4.2 BLUE points (28.7/28.9 vs. 33.1).

The above observations are invariant concern-
ing the pre-trained model and translation direction.
In particular, the unsatisfactory performance of
UNMT under natural input indicates that UNMT
is overestimated on the previous benchmark. We
attribute the phenomenon to the data gap between
training and inference for UNMT: there is a mis-
match between natural inputs of source-original
test data and the back-translated inputs that UNMT
employed for training. This work focuses on the
experiments on the source-original test sets (i.e.,
the input of an NMT translation system is generally
natural), which is closer to the practical scenario.5

3 Data Gap between Training and
Inference

In this section, we identity two representative
data gaps between training and inference data for

5From WMT19, the WMT community proposes to use
the source-original test with natural input sets to evaluate the
translation performance.
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Inference Input PPL

Natural 242
Translated 219

Table 3: Perplexity on the natural input sentences and
translated input sentences of newstest2013-2018. The
language model is trained on the UNMT translated
source sentences.

Model Natural De Translated De∗

BLEU ∆ BLEU ∆

SNMT 28.8 – 44.9 –
UNMT 22.5 -6.3 42.1 -2.8

Table 4: Translation performance on natural input por-
tion of WMT16 De⇒En. We also use Google Transla-
tor to generate the translated version by translating the
corresponding target sentences.

UNMT: style gap and content data. We divide the
test sets into two portions: the natural input por-
tion with source sentences originally written in the
source language and the translated input portion
with source sentences translated from the target
language. Due to the limited space, we conduct the
experiments with pre-trained XLM initialization
and perform analysis with different kinds of in-
puts (i.e., natural and translated inputs) on De⇒En
newstest2013-2018 unless otherwise stated.

3.1 Style Gap
To perform the quantitative analysis of the style
gap, we adopt KenLM6 to train a 4-gram language
model on the UNMT translated source sentences7

and use the language model to calculate the per-
plexity (PPL) of natural and translated input sen-
tences in the test sets. The experimental results
are shown in Table 3. The lower perplexity value
(219 < 242) indicates that compared with the nat-
ural inputs, the UNMT translated training in-
puts have a more similar style with translated
inputs in the test sets.

In order to further reveal the influence of the
style gap on UNMT, we manually eliminated it
and re-evaluated the models on the natural input
portion of WMT16 De⇒En. Concretely, We first
take the third-party Google Translator to translate

6https://github.com/kpu/kenlm
7To alleviate the content bias problem, we generate the

training data 50% from En⇒De translation and 50% from
round trip translation De⇒En⇒De.

the target English sentences of the test sets into
the source German language to eliminate the style
gap. And then we conduct translation experiments
on the natural input portion and its Google trans-
lated portion to evaluate the impact of the style
gap on the translation performance. We list the
experimental results in Table 4. We can find that by
converting from the natural inputs (natural De) to
the translated inputs (translated De∗), the UNMT
model achieves more improvement than the SNMT
model (-2.8 > -6.3), demonstrating that the style
gap inhibits the UNMT translation output quality.

3.2 Content Gap

In this section, we show the existence of the content
gap by (1) showing the most high-frequency name
entities, (2) calculating content similarity using
term frequency-inverse document frequency (TF-
IDF) for the training and inference data.

We use spaCy8 to recognize German named en-
tities for the UNMT translated source sentences,
natural inputs and translated inputs in test sets, and
show the ten most frequent name entities in Table 5.
From the table, we can observe that the UNMT
translated source sentences have few named entities
biased towards source language German (words in
red color), while having more named entities bi-
ased towards target language English, e.g., USA,
Obama. It indicates that the content of the UNMT
translated source sentences is biased towards the
target language English.

Meanwhile, the natural input portion of the infer-
ence data has more named entities biased towards
source language German (words in red color),
demonstrating that the content gap exists between
the natural input portion of the inference data and
the UNMT translated training data.

Next, we remove the stop words and use the
term frequency-inverse document frequency (TF-
IDF) approach to calculate the content similarity
between the training and inference data. Similarity
scores are presented in Table 6. We can observe
that the UNMT translated source data has a more
significant similarity score with translated inputs
which are generated from the target English sen-
tences. This result indicates that the content of
UNMT translated source data is more biased
towards the target language, which is consistent
with the findings in Table 5.

As it is difficult to measure the name entities
8https://github.com/explosion/spaCy
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Data Most Frequent Name Entities

Natural
Infer. Input

Deutschland, Stadt, CDU, deutschen, Zeit
SPD, USA, deutsche, China, Mittwoch

Translated
Infer. Input

Großbritannien, London, Trump, USA,
Russland, Vereinigten Staaten, Europa
Mexiko, Amerikaner, Obama

BT
Train Data

Deutschland, dpa, USA, China, Obama, Stadt
Hause, Europa, Großbritannien, Russland

Table 5: Ten most frequent entities in the source sen-
tences (i.e., German) of back-translated training data
(“BT Train Data"). For reference, we also list the most
frequent entities in the natural and translated inference
inputs. The BT training data has more entities biased
towards the target language English (blue words) rather
than the expected source language German (red words).

Inference Input Train

Natural Translated

Natural 0.95 0.85
Translated 0.84 0.93

Table 6: Content similarity between different kinds of
training and inference data.

translation accuracy in terms of BLEU evaluation
metric, we provide a translation example in Table 7
to show the effect of the content gap in the UNMT
translations (more examples in Appendix C). We
observe that the UNMT model outputs the halluci-
nated translation “U.S.”, which is biased towards
the target language English. We present a quantita-
tive analysis to show the impact of the content gap
on UNMT translation performance in Section 6.2.

4 Online Self-training for UMMT

To bridge the data gap between training and infer-
ence of UNMT, we propose a simple and effective
method through self-training. For the translation
task X → Y , we generate the source-original train-
ing samples from the source corpus X to improve
the model’s translation performance on natural in-
puts. For each batch, we apply the forward model
MTX→Y on the natural source sentence x to gen-
erate its translation:

y∗ = arg max
y

PX→Y (y | x; θ̃). (4)

In this way, we build a sample {x, y∗} with nat-
ural input, on which the model can be trained by
minimizing:

LS = Ex∼X [− logPX→Y (y∗ | x; θ)]. (5)

Input
Die deutschen Kohlekraftwerke ... der in

Deutschland emittierten Gesamtmenge .

Ref
German coal plants , ..., two thirds of

the total amount emitted in Germany .

SNMT
..., German coal-fired power stations ...

of the total emissions in Germany .

UNMT
U.S. coal-fired power plants ... two thirds of

the total amount emitted in the U.S. ... .

Table 7: Example translation that the UNMT model
outputs the hallucinated translation “U.S.”, which is bi-
ased towards target language English.

Under the framework of UNMT training, the final
objective function can be formulated as:

L = LB + λDLD + λSLS , (6)

where λS is the hyper-parameter weighting the self-
training loss term. It is worth noting that the gener-
ation step of Eq.(4) has been done by the BT step of
Y → X training. Thus, the proposed method will
not increase the training cost significantly but make
the most of the data generated by BT (Table 9).

5 Experiments

5.1 Setup

Data We follow the common practices to con-
duct experiments on several UNMT benchmarks:
WMT14 En-Fr, WMT16 En-De, WMT16 En-
Ro. The details of monolingual training data are
delineated in Appendix A.2. We adopt En-Fr
newsdev2014, En-De newsdev2016, En-Ro news-
dev2016 as the validation (development) sets, and
En-Fr newstest2014, En-De newstest2016, En-Ro
newstest2016 as the test sets. In addition to the
full test set, we split the test set into two parts:
target-original and source-original, and evaluate
the model’s performance on the three kinds of test
sets. We use the released XLM BPE codes and
vocabulary for all language pairs.

Model We evaluate the UNMT model fine-tuned
on XLM9 and MASS10 pre-trained model (Lample
and Conneau, 2019; Song et al., 2019). For XLM
models, we adopt the pre-trained models released
by Lample and Conneau (2019) for all language
pairs. For MASS models, we adopt the pre-trained

9https://github.com/facebookresearch/XLM
10https://github.com/microsoft/MASS
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Testset Model Approach En-Fr En-De En-Ro Avg. ∆⇒ ⇐ ⇒ ⇐ ⇒ ⇐
Existing Works (Full set)

XLM (Lample and Conneau, 2019) 33.4 33.3 26.4 34.3 33.3 31.8 32.1 –
MASS (Song et al., 2019) 37.5 34.9 28.3 35.2 35.2 33.1 34.0 –
CBD (Nguyen et al., 2021) 38.2 35.5 30.1 36.3 36.3 33.8 35.0 –

Our Implementation

Full set
XLM

UNMT 37.4 34.5 27.2 34.3 34.6 32.7 33.5 –
+Self-training 37.8 35.1 28.1 34.8 36.2 33.9 34.3 +0.8

MASS
UNMT 37.8 34.9 27.1 35.2 35.1 33.4 33.9 –
+Self-training 38.0 35.2 28.9 35.6 36.5 34.0 34.7 +0.8

Trg-Ori
XLM

UNMT 39.1 36.5 26.6 42.2 42.1 34.4 36.8 –
+Self-training 39.3 37.8 26.5 42.4 42.9 34.1 37.2 +0.4

MASS
UNMT 39.2 37.6 27.0 42.9 43.1 35.6 37.6 –
+Self-training 39.0 37.3 27.7 42.7 42.9 35.3 37.5 -0.1

Src-Ori
XLM

UNMT 34.7 30.4 26.6 22.5 27.4 30.6 28.7 –
+Self-training 35.4⇑ 30.2 28.0⇑ 23.1↑ 29.6⇑ 32.7⇑ 29.8 +1.1

MASS
UNMT 35.2 30.2 26.1 23.6 27.4 30.8 28.9 –
+Self-training 35.9⇑ 30.9↑ 28.7⇑ 24.9⇑ 30.1⇑ 31.9⇑ 30.4 +1.5

Table 8: Translation performance on WMT14 En-Fr, WMT16 En-De, WMT16 En-Ro and their corresponding
source-original (natural input) and target-original (translated input) subset. “↑ / ⇑”: significant over the corre-
sponding baseline model (p < 0.05/0.01), tested by bootstrap resampling (Koehn, 2004).

models released by Song et al. (2019) for En-Fr
and En-Ro and continue pre-training the MASS
model of En-De for better reproducing the results.
More details are delineated in Appendix A.2.

5.2 Main Result
Table 8 shows the translation performance of XLM
and MASS baselines and our proposed models. We
have the following observations:

• Our re-implemented baseline models achieve
comparable or even better performance as re-
ported in previous works. The reproduced
XLM+UNMT model has an average improve-
ment of 1.4 BLEU points compared to the orig-
inal report in Lample and Conneau (2019) and
MASS+UNMT model is only 0.1 BLEU lower
on average than Song et al. (2019).

• Our approach with online self-training signifi-
cantly improves overall translation performance
(+0.8 BLEU on average). This demonstrates the
universality of the proposed approach on both
large-scale (En-Fr, En-De) and data imbalanced
corpus (En-Ro).

• In the translated input scenario, our approach
achieves comparable performance to baselines.

It demonstrates that although the sample of self-
training is source-original style, our approach
does not sacrifice the performance on the target-
original side.

• In the natural input scenario, we find that our
proposed approach achieves more significant im-
provements, with +1.1 and +1.3 average BLEU
on both baselines. The reason is that the source-
original style sample introduced by self-training
alleviates model bias between natural and trans-
lated input.

5.3 Comparison with Offline Self-training
and CBD

We compare online self-training with the following
two related methods, which also incorporate natural
inputs in training:

• Offline Self-training model distilled from the
forward and backward translated data gener-
ated by the trained UNMT model.

• CBD (Nguyen et al., 2021) model distilled
from the data generated by two trained UNMT
models through cross-translation, which em-
braces data diversity.
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Model Approach WMT19 WMT20 Avg. ∆ Training Cost
⇒ ⇐ ⇒ ⇐

XLM

UNMT 26.6 24.4 22.9 26.6 25.1 – 1.0
+Offline ST 26.9 24.2 23.2 25.9 25.1 +0.0 ×1.8
+CBD 28.3⇑ 25.6⇑ 24.2⇑ 26.9 26.3 +1.2 ×7.3
+Online ST 28.3⇑ 26.0⇑ 24.3⇑ 27.6⇑ 26.6 +1.5 ×1.2

MASS

UNMT 26.7 24.6 23.1 27.0 25.3 – 1.0
+Offline ST 27.2 24.6 23.1 26.9 25.4 +0.1 ×1.8
+CBD 28.3⇑ 25.6⇑ 24.0⇑ 27.0 26.2 +0.9 ×7.3
+Online ST 28.5⇑ 26.1⇑ 23.8⇑ 27.8⇑ 26.6 +1.3 ×1.1

Table 9: Comparison with offline self-training and CBD11. “↑ / ⇑”: significant over the corresponding baseline
model (p < 0.05/0.01), tested by bootstrap resampling (Koehn, 2004). The training cost is estimated by the time
required for training one epoch where the cost of data generation is also considered.

Dataset Previous studies have recommended re-
stricting test sets to natural input sentences, a
methodology adopted by the 2019-2020 edition
of the WMT news translation shared task (Edunov
et al., 2020). In order to further verify the effective-
ness of the proposed approach, we also conduct the
evaluation on WMT19 and WMT20 En-De test sets.
Both test sets contain only natural input samples.

Results Experimental results are presented in Ta-
ble 9. We also show the training costs of these
methods. We find that

• Unexpectedly, the offline self-training has no
significant improvement over baseline UNMT.
Sun et al. (2021) have demonstrated the effec-
tiveness of offline self-training in UNMT un-
der low-resource and data imbalanced scenarios.
However, in our data-sufficient scenarios, offline
self-training may suffer from the data diversity
problem while online self-training can alleviate
the problem through the dynamic model param-
eters during the training process. We leave the
complete analysis to future work.

• CBD achieves a significant improvement com-
pared to baseline UNMT, but the training cost is
about six times that of online self-training.

• The proposed online self-training achieves the
best translation performance in terms of BLEU
score, which further demonstrates the superiority
of the proposed method under natural input.
11Our re-implemented CBD model can not achieve compa-

rable performance with Nguyen et al. (2021), with 28.4 and
35.2 BLEU scores on WMT16 En-De and De-En test sets.

6 Analysis

6.1 Translationese Output

Since the self-training samples are translated sen-
tences on the target side, there is concern that the
improvement achieved by self-training only comes
from making the model outputs better match the
translated references, rather than enhancing the
model’s ability on natural inputs. To dispel the con-
cern, we conducted the following experiments: (1)
evaluate the fluency of model outputs in terms of
language model PPL and (2) evaluate the transla-
tion performance on Google Paraphrased WMT19
En⇒De test sets (Freitag et al., 2020).

Output fluency We exploit the monolingual cor-
pora of target languages to train the 4-gram lan-
guage models. Table 10 shows the language mod-
els’ PPL on model outputs of test sets mentioned
in §5.2. We find that online self-training has only
a slight impact on the fluency of model outputs,
with the average PPL of XLM and MASS models
only increasing by +3 and +6, respectively. We
ascribe this phenomenon to the translated target
of self-training samples, which is model generated
and thus less fluent then natural sentences. How-
ever, since the target of BT data is natural and the
BT loss term is the primary training objective, the
output fluency does not decrease significantly.

Translation performance on paraphrased refer-
ences Freitag et al. (2020) collected additional
human translations for newstest2019 with the ul-
timate aim of generating a natural-to-natural test
set. We adopt the HQ(R) and HQ(all 4), which
have higher human adequacy rating scores, to re-
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Approach En-Fr En-De En-Ro Avg.
⇒ ⇐ ⇒ ⇐ ⇒ ⇐

XLM
UNMT 101 147 250 145 152 126 154
+ST 101 144 253 147 156 138 157

MASS
UNMT 100 145 256 144 143 119 151
+ST 103 146 263 142 156 133 157

Table 10: Automatic fluency analysis in terms of per-
plexity (PPL). Language models are trained on the nat-
ural monolingual data in the respective target language.

evaluate our proposed models.
We present the experimental results in Table 11.

Our proposed method outperforms baselines on
both kinds of test sets. Therefore, we demonstrate
that our proposed method improves the UNMT
model performance on natural input with limited
translationese outputs.

Model HQ(R) HQ(all 4)

Supervised Model
35.0 27.2

(Freitag et al., 2020)

XLM+UNMT 24.5 19.6
+Self-training 25.9 20.7

MASS+UNMT 24.3 19.6
+Self-training 26.0 20.8

Table 11: Translation performance on WMT19
En⇒De test sets with additional human translation ref-
erences provided by Freitag et al. (2020). We report
sacreBLEU for comparison with supervised model.

Model Approach NER Acc.

XLM
UNMT 0.46

+Self-training 0.53

MASS
UNMT 0.44

+Self-training 0.52

Table 12: Accuracy of NER translation on natural input
portion of test sets.

6.2 Data Gap
Style Gap From Table 8, our proposed approach
achieves significant improvements on the natural
input portion while not gaining on the translated
input portion over the baselines. It indicates our

approach has better generalization capability on the
natural input portion of test sets than the baselines.

Content Gap To verify that our proposed ap-
proach bridges the content gap between training
and inference, we calculate the accuracy of NER
translation by different models. Specifically, we
adopt spaCy to recognize the name entities in ref-
erence and translation outputs and treat the name
entities in reference as the ground truth to calculate
the accuracy of NER translation. We show the re-
sults in Table 12. Our proposed method achieves
a significant improvement in the translation accu-
racy of NER compared to the baseline. The result
demonstrates that online self-training can help the
model pay more attention to the input content rather
than being affected by the content of the target lan-
guage training corpus.

6.3 Target Quality

Next, we investigate the impact of target quality on
ST. We use the SNMT model from §2.2 to generate
ST data rather than the current model itself and
keep the process of BT unchanged. As shown in
Table 2, the SNMT models perform well on source-
original test set and thus yield higher quality target
in ST data. We denote this variant as “knowledge
distillation (KD)” and report the performance on
WMT19/20 E⇔De in Table 13. When target qual-
ity gets better, model performance improves sig-
nificantly, as expected. Therefore, reducing the
noise on the target side of the ST data may fur-
ther improve the performance. Implementing in an
unsupervised manner is left to future work.

Approach WMT19 WMT20

⇒ ⇐ ⇒ ⇐

XLM
UNMT 26.6 24.4 22.9 26.6

+ST 28.3 26.0 24.3 27.6
+KD 33.8 31.0 29.5 30.6

MASS
UNMT 26.7 24.6 23.1 27.0

+ST 28.5 26.1 23.8 27.8
+KD 32.9 31.0 28.1 31.1

Table 13: Translation performance on WMT19/20
En⇔De. “KD” denotes the variant that exploits SNMT
model to generate ST data with higher quality target.
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7 Related Work

Unsupervised Neural Machine Translation
Before attempts to build NMT model using mono-
lingual corpora only, unsupervised cross-lingual
embedding mappings had been well studied by
Zhang et al. (2017); Artetxe et al. (2017, 2018a);
Conneau et al. (2018). These methods try to align
the word embedding spaces of two languages with-
out parallel data and thus can be exploited for unsu-
pervised word-by-word translation. Initialized by
the cross-lingual word embeddings, Artetxe et al.
(2018b) and Lample et al. (2018a) concurrently pro-
posed UNMT, which achieved remarkable perfor-
mance for the first time using monolingual corpora
only. Both of them rely on online back-translation
and denoising auto-encoding. After that, Lample
et al. (2018b) proposed joint BPE for related lan-
guages and combined the neural and phrase-based
methods. Artetxe et al. (2019) warmed up the
UNMT model by an improved statistical machine
translation model. Lample and Conneau (2019)
proposed cross-lingual language model pretraining,
which obtained large improvements over previous
works. Song et al. (2019) extended the pretrain-
ing framework to sequence-to-sequence. Tran et al.
(2020) induced data diversification in UNMT via
cross-model back-translated distillation.

Data Augmentation Back-translation (Sennrich
et al., 2016; Edunov et al., 2018; Marie et al., 2020)
and self-training (Zhang and Zong, 2016; He et al.,
2020; Jiao et al., 2021) have been well studied in
the supervised NMT. In the unsupervised scenario,
Tran et al. (2020) have shown that multilingual pre-
trained language models can be used to retrieve the
pseudo parallel data from the large monolingual
data. Han et al. (2021) use generative pre-training
language models, e.g., GPT-3, to perform zero-shot
translations and use the translations as few-shot
prompts to sample a larger synthetic translations
dataset. The most related work to ours is that
offline self-training technology used to enhance
low-resource UNMT (Sun et al., 2021). In this pa-
per, the proposed online self-training method for
UNMT can be applied to both high-resource and
low-resource scenarios without extra computation
to generate the pseudo parallel data.

Translationese Problem Translationese prob-
lem has been investigated in machine translation
evaluation (Lembersky et al., 2012; Zhang and
Toral, 2019; Edunov et al., 2020; Graham et al.,

2020). These works aim to analyze the effect of
translationese in bidirectional test sets. In this work,
we revisit the translationese problem in UNMT and
find it causes the inaccuracy evaluation of UNMT
performance since the training data entirely comes
from the translated pseudo-parallel data.

8 Conclusion

Pseudo parallel corpus generated by back-
translation is the foundation of UNMT. However,
it also causes the problem of translationese and
results in inaccuracy evaluation on UNMT perfor-
mance. We attribute the problem to the data gap
between training and inference and identify two
data gaps, i.e., style gap and content gap. We con-
duct the experiments to evaluate the impact of the
data gap on translation performance and propose
the online self-training method to alleviate the data
gap problems. Our experimental results on multi-
ple language pairs show that the proposed method
achieves consistent and significant improvement
over the strong baseline XLM and MASS models
on the test sets with natural input.
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A Training Details

A.1 Training Details of SNMT Model

Training Data We use WMT16 parallel data for
En-De and En-Ro and WMT14 for En-Fr. We
randomly undersample the full parallel corpus. The
final sizes of En-De and En-Fr training corpus are
2M respectively, the size of En-Ro corpus is 400k.

Model We initialize the model parameter by
XLM pre-trained model and adopt 2500 to-
kens/batch to train the SNMT model for 40 epochs.
We select the best model by BLEU score on the
validation set mentioned in §5.1. Note that in order
to avoid introducing other factors, our SNMT mod-
els are bidirectional, which is consistent with the
UNMT models.

A.2 Training Details of UNMT Model

Training data Table 14 lists the monolingual
data used in this study to train the UNMT models12.
We filter the training corpus based on language and
remove sentences containing URLs.

Model We adopt the pre-trained XLM models re-
leased by Lample and Conneau (2019) and MASS
models released by Song et al. (2019) for all lan-
guage pairs. In order to better reproduce the re-
sults for MASS on En-De, we use monolingual
data to continue pre-training the MASS pre-trained
model for 300 epochs and select the best model by
perplexity (PPL) on the validation set. We adopt
2500 tokens/batch to train the UNMT model for 70
epochs and select the best model by BLEU score
on the validation set.

Hyper-parameter The target of self-training
samples is the translation of the model, which may
be noisy in comparison with the reference. There-
fore, we adopted the strategy of linearly increasing
λS and keeping it at a small value to avoid nega-
tively affecting the online back-translation train-
ing. We denote the beginning and final value
of λS by λ0S and λ1S , respectively. We tune the
λ0S within {0, 1e−3, 1e−2, 2e−2} and λ1S within
{5e−3, 5e−2, 1e−1, 1.5e−1} based on the BLEU
score on validation sets.

12All the data is available at
http://www.statmt.org/wmt20/translation-task.html ex-
cept for En-De which we will release in our github
repo.

Data Lang. # Sent. Source

En-De
En 50.0M

Song et al. (2019)
De 50.0M

En-Fr/Ro
En 179.9M

NC07-17
Fr 65.4M
Ro 2.8M NC07-17 + WMT16

Table 14: Data statistics for En-X translation tasks. “M”
denotes millions. “NC” denotes News Crawl.

B Sacrebleu Results

To be consistent with previous works (Lample
and Conneau, 2019; Song et al., 2019; Nguyen
et al., 2021), we use multi-bleu.perl script
in the main text to measure translation perfor-
mance. However, Post (2018) has pointed out that
multi-bleu.perl requires user-supplied pre-
processing, which cannot be directly compared and
provide a sacreBLEU 13 tool to facilitate this. Al-
though we adopted the same preprocessing steps
for all models, we still report BLEU scores calcu-
lated with sacreBLEU 14 in this section. Tables 15
to 19 show the sacreBLEU results of Tables 2, 4, 8,
9 and 13, respectively.

C Translation Examples

Table 20 presents several example translations that
the UNMT model outputs the hallucinated transla-
tions, which are biased towards the target language.

13https://github.com/mjpost/sacrebleu
14BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.1
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Model En-Fr En-De En-Ro Avg.
⇒ ⇐ ⇒ ⇐ ⇒ ⇐

Full Test Set
SNMT 37.3 33.4 29.7 33.8 33.8 32.4 33.4
XLM 36.3 34.3 27.4 34.1 34.8 32.4 33.2

MASS 36.6 34.7 27.3 35.1 35.2 33.0 33.7

Target-Original Test Set / Translated Input
SNMT 36.1 32.2 25.7 36.9 38.3 28.0 32.9
XLM 37.8 36.2 26.9 42.0 42.2 34.1 36.5

MASS 37.9 37.3 27.3 42.7 43.2 35.2 37.3

Source-Original Test Set / Natural Input
SNMT 37.3 33.8 32.5 28.6 29.5 35.7 32.9
XLM 33.8 30.2 26.8 22.5 27.6 30.2 28.5

MASS 34.2 30.1 26.3 23.6 27.5 30.4 28.7

Table 15: SacreBLEU results of Table 2.

Model Natural De Translated De∗

BLEU ∆ BLEU ∆

SNMT 28.6 – 44.9 –
UNMT 22.5 -6.1 42.0 -2.9

Table 16: SacreBLEU results of Table 4.

Testset Model Approach En-Fr En-De En-Ro Avg. ∆⇒ ⇐ ⇒ ⇐ ⇒ ⇐
Our Implementation

Full set
XLM

UNMT 36.3 34.3 27.4 34.1 34.8 32.4 33.2 –
+Self-training 36.7 34.9 28.3 34.6 36.3 33.7 34.1 +0.9

MASS
UNMT 36.6 34.7 27.3 35.1 35.2 33.0 33.7 –
+Self-training 36.8 35.0 29.1 35.5 36.6 33.7 34.4 +0.7

Trg-Ori
XLM

UNMT 37.8 36.2 26.9 42.0 42.2 34.1 36.5 –
+Self-training 38.0 37.5 26.7 42.1 42.9 33.8 36.8 +0.3

MASS
UNMT 37.9 37.3 27.3 42.7 43.2 35.2 37.3 –
+Self-training 37.7 37.0 27.9 42.5 43.0 34.9 37.2 -0.1

Src-Ori
XLM

UNMT 33.8 30.2 26.8 22.5 27.6 30.2 28.5 –
+Self-training 34.4 30.1 28.2 23.2 29.7 32.4 29.7 +1.2

MASS
UNMT 34.2 30.1 26.3 23.6 27.5 30.4 28.7 –
+Self-training 34.9 30.7 28.9 24.9 30.3 31.5 30.2 +1.5

Table 17: SacreBLEU results of Table 8.

Model WMT19 WMT20 Avg. ∆
+Approach ⇒ ⇐ ⇒ ⇐

XLM
+UNMT 25.8 24.1 21.8 26.3 24.5 –
+Offline ST 26.0 23.9 22.0 25.8 24.4 -0.1
+CBD 27.4 25.2 23.0 26.7 25.6 +1.1
+Online ST 27.4 25.8 22.8 27.1 25.8 +1.3

MASS
+UNMT 26.0 24.3 22.1 26.5 24.7 –
+Offline ST 26.4 24.2 22.1 26.4 24.8 +0.1
+CBD 27.4 25.2 22.9 26.6 25.5 +0.8
+Online ST 27.7 25.7 22.8 27.4 25.9 +1.2

Table 18: SacreBLEU results of Table 9.

Approach WMT19 WMT20

⇒ ⇐ ⇒ ⇐

XLM
UNMT 25.8 24.1 21.8 26.3

+ST 27.4 25.8 22.8 27.1
+KD 32.4 30.6 27.9 29.7

MASS
UNMT 26.0 24.3 22.1 26.5

+ST 27.7 25.7 22.8 27.4
+KD 31.8 30.5 30.1 30.6

Table 19: SacreBLEU results of Table 13.
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Source Mindestens ein Bayern-Fan wurde verletzt aus dem Stadion transportiert .
Reference At least one Bayern fan was taken injured from the stadium .
UNMT At least one Scotland fan was transported injured from the stadium .

Source Übrigens : München liegt hier ausnahmsweise mal nicht an der Spitze .
Reference Incidentally , for once Munich is not in the lead .
UNMT Remember , Edinburgh is not at the top of the list here for once .

Source Justin Bieber in der Hauptstadt : Auf Bieber-Expedition in Berlin
Reference Justin Bieber in the capital city : on a Bieber expedition in Berlin
UNMT Justin Bieber in the capital : On Bieber-inspired expedition in NYC

Source Zum Vergleich : In diesem Jahr werden in Deutschland 260.000 Einheiten fertig .
Reference In comparison , 260,000 units were completed in this year in Germany.
UNMT To date , 260,000 units are expected to be finished in the UK this year .

Source
Deutschland schiebe ein Wohnungsdefizit vor sich her , das von Jahr zu Jahr
größer wird .

Reference Germany has a housing deficit which increases every year .

UNMT
The U.S. was shooting ahead of a housing deficit that is expected to grow from year
to year .

Table 20: Example translations in WMT16 De⇒En. the UNMT model outputs the hallucinated translations which
are biased towards the target language En.
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