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Abstract

Recent studies have achieved inspiring suc-
cess in unsupervised grammar induction us-
ing masked language modeling (MLM) as the
proxy task. Despite their high accuracy in
identifying low-level structures, prior arts tend
to struggle in capturing high-level structures
like clauses, since the MLM task usually only
requires information from local context. In
this work, we revisit LM-based constituency
parsing from a phrase-centered perspective. In-
spired by the natural reading process of hu-
man readers, we propose to regularize the
parser with phrases extracted by an unsuper-
vised phrase tagger to help the LM model
quickly manage low-level structures. For a bet-
ter understanding of high-level structures, we
propose a phrase-guided masking strategy for
LM to emphasize more on reconstructing non-
phrase words. We show that the initial phrase
regularization serves as an effective bootstrap,
and phrase-guided masking improves the iden-
tification of high-level structures. Experiments
on the public benchmark with two different
backbone models demonstrate the effective-
ness and generality of our method.

1 Introduction

The hierarchical structure of natural language plays
a key role in accurate language understanding,
but can be unfortunately overlooked when text is
treated as a plain sequence. To this end, consider-
able efforts have been made in integrating structural
inductive bias into neural language models (LM)
(Shen et al., 2018b; Wang et al., 2019; Shen et al.,
2020). Despite different implementations, the gen-
eral idea is to first apply a parsing module to in-
duce the soft grammar tree of the input text, and
then incorporate the induced tree into an encoding
model (e.g., Transformer (Vaswani et al., 2017)).
The model is optimized in an unsupervised manner
with masked language modeling (MLM) (Devlin
et al., 2019) as a common proxy task.

These models have shown inspiring success in
inducing meaningful parsing trees without human
annotation, but still face two challenging problems.
Firstly, the parsing module is randomly initialized
at the beginning of the training process. Subopti-
mal initial parsing accuracy can lead to problematic
structural constraints in the encoder model, and
further influence the training process and final per-
formance (Gimpel and Smith, 2012). Secondly,
the token-level language modeling task encourages
the model to focus on local structures, since the
reconstruction of a masked word mainly relies on
its local context. As a result, the learned model
achieves high accuracy in local constituents, like
noun phrases (NP), but significantly worse accu-
racy in high-level, long-distance structures, such
as subordinate clauses (SBAR) and prepositional
phrases (PP). On the PTB dataset, the most recent
structured language model (Shen et al., 2020) still
falls behind neural probabilistic context-free gram-
mar models (e.g., Kim et al. (2019b)) by over 4%
in average SBAR and PP recall.

In this work, we revisit the LM-based unsu-
pervised parsing models by providing a phrase-
centered perspective. We model the reading pro-
cess of a sentence in a stylized pipeline: when we
try to parse a sentence, instead of handling each
individual word, we first recognize the obvious
phrases, for instance, names, concepts, slogans, etc.
Some phrases are known beforehand, while some
are learned from the current context. We then treat
each phrase as a complete unit, and only need to fig-
ure out the high-level structures that connect these
phrases. Following this intuition, we mimic the
reading process with a three-stage learning frame-
work. In the first stage, we identify the multigram
phrases with the help of an unsupervised phrase
tagging model. The extracted phrase set guides the
parsing module to quickly manage the pattern of
short constituents at the early training stage. The
“warm-up” process does not require any external
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Figure 1: Illustration of LM-based unsupervised con-
stituency parsing. The parse tree is induced from a dis-
tance sequence generated by the distance estimator dθ,
which is jointly optimized with a distance-guided en-
coder from the masked language modeling task.

resource, and effectively improves and stabilizes
the initial parsing accuracy. In the second stage,
the model is optimized through the original MLM
task. After this stage, the model is good at captur-
ing local structures, as stated above. In the third
stage, to push the model out of its comfort zone
and force it to learn about high-level structures, we
apply a simple and effective phrase-guided masked
language modeling task. Specifically, we extract
short phrases in the training sentences as the local
constituents identified by the model, which are rel-
atively “easy cases” for the model. We then sample
a part of the phrases, and exclude them from the
MLM task, so we are basically downsampling intra-
phrase words in the reconstruction task, and em-
phasizing non-phrase words that connect phrases.
The proposed method is general and can be applied
to arbitrary LM-based parsers in a plug-and-play
manner.
Contributions. The major contributions of this pa-
per are summarized as follows: (1) We point out
the major challenges faced by LM-based unsuper-
vised constituency parsing, and revisit the problem
with a phrase-centered perspective; (2) We propose
a novel framework with phrase-regularized warm-
up and phrase-guided mask language modeling,
that can be applied to general LM-based parsers
for improvement; (3) Experiments on the public
benchmark with two different base models demon-
strate the effectiveness of our method. Code and
data will be published for further research study.

2 Preliminary

In this section, we present our problem formula-
tion and briefly review the general framework of
LM-based unsupervised constituency parsing, as
illustrated in Figure 1.

Parsing as Distance Estimation. Constituency
parsing aims to assign an undirected constituency
tree to the input sentence, which illustrates how
different parts are hierarchically combined in the
sentence (Jurafsky, 2000). To enable end-to-end
model learning, following prior works (Wang et al.,
2019; Shen et al., 2020), the discrete parsing tree
is represented as a distance sequence dθ(s) =
{d1, d2, ..., dn−1}, where di is the distance score
between adjacent words wi and wi+1, parameter-
ized by model θ. Given the distance sequence, the
tree structure can be induced in a greedy manner:
starting from each single token as a leaf constituent,
we recursively merge two constituents with the min-
imum distance score into a large constituent. The
tree structure is hence uniquely determined by the
relative order of the distance sequence. Figure 1
shows a concrete example of the parse tree induc-
tion process from an estimated distance sequence.
Our goal is to learn a high-quality distance esti-
mator dθ from unlabeled text corpus that induces
accurate parsing trees.
Distance-guided Model Learning. For model
learning, the generated distance sequence is in-
jected into an encoding model (e.g., Transformer)
as structural bias to control information exchange
between words. Intuitively, two adjacent words
with smaller distance score are more likely to be-
long to the same constituent, and will exchange
more information to each other. The distance es-
timator dθ is jointly optimized with the distance-
guided encoder from the masked language model-
ing (MLM) task as a proxy. Formally, given a mask-
ing rate µ and a sentence s = {w1, w2, ..., wn}, a
mask sequence is sampled from uniform Bernoulli
sampling, where mi is a binary variable with
p(mi = 1) = µ. We then get the masked sentence
ŝ = {ŵ1, ..., ŵn} by replacing wi with a mask to-
ken where mi = 1. The MLM loss is computed
as:

`mlm(s) =

∑
wi∈Xmask

log p(wi|ŝ)
|Xmask|

,

where Xmask is the set of masked tokens. The en-
coding model is trained to minimize `mlm based on
the distance-constrained information aggregation.
We will introduce more details about the distance-
aware encoders in Section 4.

3 Framework Overview

In this work, we recognize and examine two ma-
jor challenges of LM-based grammar induction:
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Figure 2: An overview of the proposed framework. Given the training corpus, the training process consists of three
stages. Stage 1: phrase-regularized warm-up using the initial phrase set extracted by an off-the-shelf unsupervised
phrase mining module (Section 5); Stage 2: standard masked language model learning; Stage 3: extract a new
phrase set with the local constituents identified by the model itself, and apply phrase-guided masked language
model learning (Section 6).

(1) the randomly initialized distance estimator can
yield a suboptimal information exchange network
in the encoder in the cold start phase, which may
further lead to suboptimal parsing accuracy due to
error accumulation. (2) the token reconstruction
task mainly relies on the aggregation of local infor-
mation, thus can hardly guide the model to manage
high-level structures across long distances.

To tackle the challenges, we revisit LM-based
unsupervised constituency parsing from a phrase-
centered perspective. We propose a three-stage
training framework, as shown in Figure 2. In the
first stage, we extract an initial phrase set using
an off-the-shelf unsupervised phrase tagger. The
extracted phrases serve as effective guidance to
help warm up the distance estimator to boost its
initial accuracy in the cold start phase. The model
then gradually gets rid of the help from the initial
phrase set and learns about local structures from the
original MLM task in the second stage. In the third
stage, we try to push the model out of its comfort
zone by moving the focus from local structures to
high-level structures. We extract a new phrase set
from the local constituents identified by the model
itself, which consists of “easy cases” for the model.
We then downsample the intra-phrase words for
the reconstruction task, and emphasize more on
the relatively harder reconstruction of non-phrase
words, which connect local constituents into high-
level structures. In following sections, we first

introduce the base encoding models we experiment
with, and then present more details of the proposed
framework.

4 Distance-guided Encoders

Our method can be applied to any encoder with
a distance estimator and distance-constrained in-
formation aggregation. In this work, we exam-
ine our method on two recently developed models,
TreeTransformer (Wang et al., 2019) and Struct-
Former (Shen et al., 2020), as our base models.
Both models extend the original Transformer en-
coder (Vaswani et al., 2017) by adding a structure-
aware attention term. Specifically, the original
Transformer computes the attention matrix A as

A = softmax(
QK>√
dhead

),

where aij ∈ A is the attention score between word
wi and wordwj ,Q is the query matrix,K is the key
matrix, and dhead is the attention head size. The
extended attention score in a structure-constrained
encoder is written as a′ij = qij · aij , where qij is
the structure-based attention score determined by
the distance sequence.

The two base encoders differ in their ways to
parameterize the distance function dθ and to define
the structure-based attention score qij .
TreeTransformer parameterizes the distance se-
quence with an additional attention module. The
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structure-based attention score qij represents the
probability that two words belong to the same con-
stituent, and is defined as

qij =

j−1∏
k=i

(1− dk).

Intuitively, words within a closer distance have
more information exchange in TreeTransformer.

Structformer parameterizes the distance sequence
with a Convolutional Neural Network. Struct-
Former uses a more complicated structure con-
straint: each constituent has a head word, and in-
formation can only be exchanged between the head
word and remaining child words in the constituent.
The structure-based attention score qij stands for
the probability that wi and wj can exchange in-
formation, which means wi is the head word of
any constituent containing wj , or vice versa. qij
is jointly determined by the distance sequence and
a syntacic height sequence. Ideally, the height of
each child word in a constituent should not exceed
the boundary distances. More details can be found
in the original paper (Shen et al., 2020).

To summarize, the distance estimator dθ deter-
mines the attention matrix in the encoder. Through
the MLM task, the model learns to optimize dθ
for more effective information aggregation. We
then induce the parse tree from the distance se-
quence generated by dθ in the parsing process. In
following sections, we introduce details about the
proposed phrase-regularized warm-up and phrase-
guided masked language modeling, which jointly
help train a better dθ.

5 Phrase-regularized Warm-up

Given a target sentence, we first extract spans that
are likely to be phrases. By definition, we seek
word sequences that consistently occur “consecu-
tively in the text, forming a complete semantic unit
in certain contexts” (Finch, 2016). The extracted
phrases are used as additional guidance for the dis-
tance estimator at the very beginning of the training
process. Specifically, we encourage the distance
estimator to assign smaller intra-phrase distances
than phrase boundary distances to draw a clear gap
on the phrase boundaries. Figure 3 shows a con-
crete example of intra-phrase and phrase boundary
distances. Here we introduce more details about the
unsupervised phrase extraction process and phrase
regularization for warm-up.

What is the longest river in the world

d1d1

w1w1 w2w2 w3w3 w4w4 w5w5 w6w6 w7w7 w8w8

d2d2 d3d3 d4d4 d5d5 d6d6 d7d7

ℓphrase = 1
4 ⋅ (max(0, d3 − d2) + max(0, d3 − d5)

+max(0, d4 − d2) + max(0, d4 − d5))
ℓphrase = 1

4 ⋅ (max(0, d3 − d2) + max(0, d3 − d5)
+max(0, d4 − d2) + max(0, d4 − d5))

Intra-phrase distances: {d3, d4}{d3, d4}
Boundary distances:

Phrase: “the longest river”
Unsupervised 

Phrase 
Mining {d2, d5}{d2, d5}

Figure 3: An example of phrase-regularized warm-
up. Given the example sentence with the tagged initial
phrase “the longest river”, we try to encourage the aver-
age intra-phrase distance to be smaller than the average
phrase boundary distance through a margin loss.

Phrase Extraction. Without introducing any ex-
ogenous resource, we apply the core phrase min-
ing module of the UCPhrase model (Gu et al.,
2021), which does not require any complicated
model training. Specifically, within each docu-
ment D, its core phrase PD is defined as the set
of max frequent n-grams in D. For each phrase
wi:j = {wi, ..., wj} ∈ PD, “frequent” means it
has to occur in the document for at least τ times.
“max” means there does not exist any “super phrase”
w′ ⊇ wi:j in the same document. Such document-
level max frequent n-grams are shown to have rea-
sonably high quality and preserve contextual com-
pleteness. Uninformative sequences are filtered by
a corpus-oriented stopword list generated by TF-
IDF ranking. The extracted phrase set serves as
effective regularization for the randomly initialized
parsing model in early training steps. Note that
the phrase extraction module can be replaced by
any phrase tagger. Here we show that even phrases
extracted by this simple heuristic tagger can bring
clear improvement.

Phrase Regularization. Given the target sentence
s = {w1, w2, ..., wn} and its initial phrase set Ps,
we encourage the parser to generate smaller dis-
tance scores between intra-phrase words than the
distance scores on the phrase boundaries. For-
mally, we compute the phrase distance loss for
each phrase wi:j = {wi, ..., wj} ∈ Ps as the av-
erage margin loss between intra-phrase distance
scores and phrase boundary distance scores:

`phrase(wi:j) =

1

|wi:j |

j−1∑
k=i

max(0, dk − di−1) + max(0, dk − dj)

2
.
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The phrase distance loss for the entire sentence is

`phrase(s) =
1

|Ps|
∑

wi:j∈Ps

`phrase(wi:j).

For StructFormer, we replace the intra-phrase dis-
tances into the intra-phrase heights to satisfy its
structure constraint as introduced in Section 4.

The overall loss function at training step t is
formed as:

`(s) = `mlm(s) + λt · `phrase(s),

which is basically the original masked language
modeling loss `mlm regularized by the phrase dis-
tance loss `phrase with coefficient λt. For smooth
transition, we apply a step-wise linear coefficient
decay. At training step t, we have λt = λ0 · (1−
t/T1), so that we apply full regularization at the
very beginning, and then gradually remove the reg-
ularization until the model learns completely from
the MLM task. In experiments, we set T1 to the
number of steps in one training epoch by default.

6 Phrase-guided Masked Language
Modeling

The masked language modeling task mainly re-
lies on the aggregation of local context information
around the masked word. For instance, in the exam-
ple sentence presented in Figure 2, the prediction of
“longest” mainly depends on its neighbor “river”.
Hence, the parser can quickly manage the structure
of short phrases as they are closely related to the
optimization proxy. High-level long constituents,
however, can hardly be captured in this process.
From this perspective, the sentence parsing task can
then be divided into two parts: parsing the struc-
tures of short phrases, and capturing high-level
long structures that connect short phrases. The
former can be learned from the intra-phrase word
reconstruction task, and the latter depends on the
modeling of other non-phrase words.

Following this intuition, we propose simple and
effective phrase-guided masked language modeling
to emphasize the reconstruction of words outside of
local constituents. Specifically, we parse the train-
ing sentences with the learned model, and treat all
local constituents (e.g., with fewer than 4 tokens)
from the generated parsing trees. Given a sentence
with tagged local phrases, we first apply uniform
Bernoulli sampling on the phrases with probability
µp. The sampled phrases are excluded from the

MLM task: words inside of the sampled phrases
will not be masked. All rest words are sampled
for masking with the original masking rate µ. For-
mally, given a sentence s with the tagged phrase
set Ps, the probability of word wi being masked in
the MLM task is computed as:

P (mi = 1) =

{
(1− µp) · µ, wi ∈ ∪Ps
µ, otherwise.

By doing so, we try to push the model out of its
comfort zone of local structure learning, and en-
courage it to focus more on how the local con-
stituents are connected.
Discussion. Another natural idea to achieve simi-
lar intuition is to apply phrase-level reconstruction
through whole-phrase masking. Namely, we mask
the entire phrase so that the model cannot make
prediction merely based on information aggregated
through local structures, but can only rely on cross-
phrase structures to gather information. We test
this intuition in two ways: (1) replace each token in
the phrase with a mask token, and apply standard
MLM; (2) replace the entire phrase with one mask
token, and apply autoregressive phrase reconstruc-
tion with a decoder similar to Raffel et al. (2020).
Interestingly, results from both implementations
show that whole-phrase masking can hurt the accu-
racy of unsupervised parsing. A possible reason is
that reconstructing the entire masked phrase relies
on deep semantic knowledge rather than just syn-
tactic structures. We list this finding here and leave
it as a potential research problem.

7 Experiments

Dataset and Evaluation. Following prior studies
(Shen et al., 2018b; Wang et al., 2019; Shen et al.,
2020), we train all models on the plain text of the
PTB corpus (Mikolov et al., 2010) and evaluate
them on the WSJ test set (Taylor et al., 2003), in
which punctuations are removed.

We follow the standard evaluation for unsuper-
vised parsing: given a predicted parsing tree, we
fetch all of its subtrees (nested constituents), and
compare with those from the gold tree to com-
pute the F1 score. We also report recall scores
of the typed constituents in gold trees, including
noun (NP), verb (VP), prepositional (PP), adjec-
tive (ADJ), adverb (ADV) phrases and subordinate
clauses (SBAR). The precision score for each type
is not available in the unsupervised setting since
the predicted constituents do not have types.
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Methods F1 (%)

PRPN (Shen et al., 2018a) 37.4
ON-LSTM (Shen et al., 2018b) 47.7
URNNG (Kim et al., 2019c) 52.4
C-PCFG (Kim et al., 2019b) 55.2
Neural L-PCFGs (Zhu et al., 2020) 55.3

TreeTransformer (Wang et al., 2019) 47.9
+ PMLM 48.7
+ PRW 49.0
+ PRW + PMLM 49.3

StructFormer (Shen et al., 2020) 54.0
+ PMLM 54.1
+ PRW 55.3
+ PRW + PMLM 55.7

Table 1: Unlabeled F1 score (%) for unsupervised con-
stituency parsing on WSJ test set.

Method NP VP ADJ ADV SBA PP

PRPN 59.2 46.7 44.3 32.8 50.0 57.2
ON-LSTM 64.5 41.0 38.1 31.6 52.5 54.4
C-PCFG 74.7 41.7 40.4 52.5 56.1 68.8

TreeTransformer 63.7 37.1 32.3 56.8 37.0 49.7
+ PMLM 63.5 37.9 31.7 56.8 38.0 50.4
+ PRW 64.2 36.3 27.9 53.8 36.2 53.0
+ PRW + PMLM 64.2 37.2 29.6 53.7 35.9 53.3

StructFormer 73.7 43.2 53.4 70.5 51.8 64.5
+ PMLM 73.6 43.7 53.4 69.3 51.9 64.6
+ PRW 74.0 44.9 52.9 69.9 52.7 69.4
+ PRW + PMLM 74.2 45.1 53.2 69.3 53.9 70.1

Table 2: Recall scores (%) of typed gold constituents.

Compared Models. Our baseline methods include
three major types of unsupervised parsing method.
PRPN (Shen et al., 2018a), ON-LSTM (Shen
et al., 2018b) and URNNG (Kim et al., 2019c)
are recurrent neural network based methods. They
are trained by recurrent language modeling loss,
where the model is asked to predict the next token
given the previous context. C-PCFG (Kim et al.,
2019b) and Neural L-PCFGs (Zhu et al., 2020)
are neural network augmented methods based on
the traditional probabilistic context-free grammar
framework, where a set of weighted linguistic
rules are learned for tree generation. TreeTrans-
former (Wang et al., 2019) and StructFormer (Shen
et al., 2020) are the backbone models we apply
in our study, as introduced in Section 4. For our
method, we report performances of three variants
based on each base model: the performance with
phrase-regularized warm-up (+PRW), the perfor-
mance with the phrase-guided masked language
modeling (+PMLM), and the performance with
both (+PRW+PMLM).

Figure 4: Illustration of how the F1 score grows with
more training steps in the first epoch. We present the
curves of the original TreeTransformer (base, dashed
lines) and the curves with phrase-regularized warm-up
(base+PRW, solid lines) under different masking rates.

Reproduction Details. We use the published
StructFormer and TreeTransformer implementa-
tions with their default hyperparameters and op-
timizers as our backbone models. The learning
rate is controlled with a linear scheduler for both
models, which starts from the original learning
rate, and applies a linear learning rate decay until
it reaches 0.0 at the last training step. The initial
coefficient λ0 for PRW is set to 0.02 for both mod-
els. The phrase masking rate µp for PMLM is set
to 0.9. The total number of training steps is fixed,
and PMLM is included after 80% of training steps.
Training and evaluation are conducted on NVIDIA
RTX A6000 GPUs. We report average results from
four random seeds (1, 11, 111, 1111). Results from
both backbone models are reproduced in the same
machine as variants with our methods for fair com-
parison. Results from other baseline models are
taken from Shen et al. (2020).

7.1 Performance Comparison

Table 1 shows average F1 scores for the com-
pared methods on the WSJ test set. Both PRW
and PMLM bring improvements in the F1 score.
Specifically, PRW increases the F1 score by +1.1%
and +1.3% on TreeTransformer and StructFormer
respectively; PMLM increases the F1 score by
+0.8% and +0.1% respectively; When applied to-
gether, PRW and PMLM bring improvement on F1
score by 1.4% and 1.7% respectively. Compared
with other parsing models, the enhanced models
have very competitive performances. The proposed
method helps StructFormer achieve at least compa-
rable F1 score with the state-of-the-art model based
on neural linguistic rule learning (C-PCFG).
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Ground Truth

StructFormer

+PRW

+PRW
+PMLM

Figure 5: Comparison between the parsing trees generated by different models on the same input sentence.

Table 2 provides a more in-depth view of the
performance change of each type of constituents.
Consistent with our intuition, PRW improves the
recall of local constituents like NP, and PMLM
improves the recall of compositional constituents
like VP, SBA and PP. To our surprise, PRW also
brings strong improvement in PP, which means
the better accuracy in local structure parsing may
have a positive impact on high-level structures as
well. StructFormer achieves state-of-the-art PP
recall with the help of PRW and PMLM.

7.2 How does phrase-regularized warm-up
help initialization?

PRM brings strong performance gain, and we are
curious about whether the strength of such enhance-
ment, if any, starts from the initial training steps as
our design, and how the strength changes with dif-
ferent masking rates. Intuitively, a larger masking
rate may make the initial parsing task even harder,

since there is less information available. Figure 4
shows the F1 curves of the base TreeTransformer
model and the enhanced variant with PRW under
different masking rates. We observe that, PRW al-
ways brings significant improvement in the initial
parsing performance. Different masking rates do
not bring very clear differences in the initial perfor-
mance of the base model. However, the strength of
enhancement from PRW becomes more significant
as the masking rate gets higher, which verifies our
intuition, that the guidance from the initial phrase
set may be more valuable with less information
available to the initial parser.

7.3 Case Study

To better understand the effectiveness of PRW and
PMLM, we conduct case study of the generated
parsing trees, as shown in Figure 5. Consider the
subtree in the green square. The real noun phrase
in the ground truth is “takeover candidates”, while
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StructFormer mistakenly merges “spotting” and
“takeover” first. The model with PRW identifies the
correct noun phrase. The improved initialization
with phrase regularization does enhance the parser
in its ability to identify short phrases.

The subtree in the blue square shows an ex-
ample of high-level constituent structure, where
“takeovers aren’t totally gone” forms a clause to-
gether with “that”. StructFormer merges “that”
with “takeovers” and breaks the clause. The origi-
nal MLM task mainly focuses on local structures,
and may prioritize potential local constituents
(“that takeovers” can form a noun phrase from a
local view). PRW cannot fix this issue, but PMLM
helps make the right decision. This verifies our in-
tuition, that PMLM encourages the model to learn
about the structure of non-phrase words, and to
capture better high-level structures.

Limitations. Note that in Figure 5, all models
cannot resolve the structure ambiguity between
“Mario Gabelli an expert” and “an expert at ...”.
It indicates that the current unsupervised methods
may have little understanding of semantic and com-
monsense knowledge. Both structures make sense
to the model. Weakly-supervised, or knowledge-
enhanced learning may alleviate the problem.

8 Related Work

The study of unsupervised constituency parsing can
be traced back to 50 years ago (Booth, 1969; Salo-
maa, 1969). We highlight some recent progresses
that are closely related to our work:

1) Adding syntactic inductive bias into modern
neural network models. ON-LSTM (Shen et al.,
2018b) allows hidden neurons to learn long-term
or short-term information by a novel gating mech-
anism and activation function. In URNNG (Kim
et al., 2019c), amortized variational inference was
applied between a recurrent neural network gram-
mar (RNNG) (Dyer et al., 2016) decoder and a
tree structure inference network, which encourages
the decoder to generate reasonable tree structures.
TreeTransformer (Wang et al., 2019) adds extra
locality constraints to the Transformer encoder’s
self-attention to encourage the attention heads to
follow a tree structure such that each token can
only attend on nearby neighbors in lower layers
and gradually extend the attention field to further to-
kens when climbing to higher layers. StructFormer
(Shen et al., 2020) propose a joint dependency and
constituency parser, then uses the dependency adja-

cency matrix to constraint the self-attention heads
in transformer models.

2) Using neural network to parameterize linguis-
tic models. The compound PCFG (Kim et al.,
2019b) achieves grammar induction by maximizing
the marginal likelihood of the sentences which are
generated by a probabilistic context-free grammar
(PCFG). Neural L-PCFG (Zhu et al., 2020) demon-
strated that PCFG can benefit from modeling lexi-
cal dependencies. NBL-PCFG (Yang et al., 2021)
took a step further by directly modeling bilexical
dependencies and reducing both learning and repre-
sentation complexities of LPCFGs. DIORA (Droz-
dov et al., 2019) proposed using inside-outside dy-
namic programming to compose latent representa-
tions from all possible binary trees. The represen-
tations of inside and outside passes from the same
sentences are optimized to be close to each other.

3) Extracting syntactic structure from pretrained
language models. Kim et al. (2019a) extract trees
from pretrained transformers. Using the model’s
representations for each word in the sentence,
they score fenceposts (positions between words)
by computing distance between the two adjacent
words. They parse by recursively splitting the tree
at the fencepost with the largest distance.

4) Leveraging statistic features to identify con-
stituents. Cao et al. (2020) use constituency tests,
that specify a set of transformations and use an
unsupervised neural acceptability model to make
grammaticality decisions. Clark (2001) proposed
to identify constituents based on their span statis-
tics, e.g. mutual information between left and right
contexts of the span.

9 Conclusion

In this work, we study the role of phrases in
language model-based unsupervised constituency
parsing. We propose a phrase-centered framework
with novel phrase-regularized warm-up and phrase-
aware masked language modeling. Experiments
with two different base models demonstrate the
effectiveness of the proposed methods. Compre-
hensive case study is conducted for straightforward
understanding of the advantages of our model. Al-
though this work mainly focuses on the task of
unsupervised parsing, the presented idea and obser-
vation can be valuable in more general context. We
plan to follow this line of work and further incorpo-
rate our method in long-range structured language
model learning in the future.
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