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Abstract

Pre-trained sequence-to-sequence models
have significantly improved Neural Machine
Translation (NMT). Different from prior
works where pre-trained models usually
adopt an unidirectional decoder, this paper
demonstrates that pre-training a sequence-
to-sequence model but with a bidirectional
decoder can produce notable performance
gains for both Autoregressive and Non-
autoregressive NMT. Specifically, we propose
CeMAT, a conditional masked language
model pre-trained on large-scale bilingual
and monolingual corpora in many languages.1

We also introduce two simple but effective
methods to enhance the CeMAT, aligned
code-switching & masking and dynamic
dual-masking. We conduct extensive experi-
ments and show that our CeMAT can achieve
significant performance improvement for
all scenarios from low- to extremely high-
resource languages, i.e., up to +14.4 BLEU on
low-resource and +7.9 BLEU on average for
Autoregressive NMT. For Non-autoregressive
NMT, we demonstrate it can also produce
consistent performance gains, i.e., up to +5.3
BLEU. To the best of our knowledge, this is
the first work to pre-train a unified model for
fine-tuning on both NMT tasks.

1 Introduction

Pre-trained language models have been widely
adopted in NLP tasks (Devlin et al., 2019; Radford
and Narasimhan, 2018). For example, XLM (Con-
neau and Lample, 2019) demonstrated that cross-
lingual pre-training is effective in improving neu-
ral machine translation (NMT), especially on low-
resource languages. These methods all directly pre-
train a bidirectional encoder or an unidirectional
decoder. The encoder and decoder in NMT models
are then independently initialized with them and

1Code, data, and pre-trained models are avail-
able at https://github.com/huawei-noah/
Pretrained-Language-Model/CeMAT

Approach Enc. Dec. Mono. Para.
mBERT (Devlin et al., 2019) • •
XLM (Conneau and Lample, 2019) • • •
MASS (Song et al., 2019) • → •
mBART (Liu et al., 2020) • → •
mRASP (Lin et al., 2020) • → •
CeMAT (Ours) • ⇐⇒ • •

Table 1: Comparison and summary of existing pre-
trained models for machine translation. Enc: encoder;
Dec: decoder; Mono: monolingual; Para: bilingual.
“•” denotes the corresponding model is pre-trained or
the corresponding data is used. “→” denotes the de-
coder of model is unidirectional, “⇐⇒” denotes the de-
coder is bidirectional.

fine-tuned (Guo et al., 2020; Zhu et al., 2020). Re-
cently, pre-training standard sequence-to-sequence
(Seq2Seq) models has shown significant improve-
ments and become a popular paradigm for NMT
tasks (Song et al., 2019; Liu et al., 2020; Lin et al.,
2020).

However, some experimental results from XLM
(Conneau and Lample, 2019) have shown that the
decoder module initialized by the pre-trained bidi-
rectional masked language model (MLM) (Devlin
et al., 2019), rather than the unidirectional causal
language model (CLM, Radford and Narasimhan,
2018), would achieve better results on Autore-
gressive NMT (AT). Especially, compared to ran-
dom initialization, initialized by GPT (Radford and
Narasimhan, 2018) might result in performance
degradation sometimes. We conjecture that when
fine-tuning on generation tasks (e.g., NMT), the
representation capability of the pre-trained models
may be more needed than the generation capability.
Therefore, during pre-training, we should focus on
training the representation capability not only for
the encoder, but also for the decoder more explic-
itly.

Inspired by that, we present CeMAT, a mul-
tilingual Conditional masked language prE-
training model for MAchine Translation, which
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[en] Cat sat on the mat

[en] We dance on the grass [de] Wir tanzen auf dem gras

Mono.

Para.

Original

[en] Cat sat on the mat

[en] [mask] sat on the [mask]

[en] We danse [mask] the grass [de] Wir [mask] auf dem [mask]

Mono.

Para.

Masked

[en] Kedi sat on the [mask]
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[en] who are you [de] Wer bist du
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Figure 1: The framework for CeMAT, which consists of an encoder and a bidirectional decoder. “Mono” denotes
monolingual, “Para” denotes bilingual. During the pre-training (left), the original monolingual and bilingual inputs
in many languages are augmented (the words are replaced with new words with same semantics or “[mask]”, please
see Figure 2 for more details) and fed into the model. Finally, we predict all the “[mask]” words on the source
side and target side respectively. For fine-tuning (right), CeMAT provides unified initial parameter sets for AT and
NAT.

consists of a bidirectional encoder, a bidirectional
decoder, and a cross-attention module for bridg-
ing them. Specifically, the model is jointly trained
by MLM on the encoder and Conditional MLM
(CMLM) on the decoder with large-scale monolin-
gual and bilingual texts in many languages. Table 1
compares our model with prior works. Benefiting
from the structure, CeMAT can provide unified
initialization parameters not only for AT task, but
also for Non-autoregressive NMT (NAT) directly.
NAT has been attracting more and more attention
because of its feature of parallel decoding, which
helps to greatly reduce the translation latency.

To better train the representation capability of
the model, the masking operations are applied in
two steps. First, some source words that have been
aligned with target words are randomly selected
and then substituted by new words of similar mean-
ings in other languages, and their corresponding tar-
get words are masked. We call this method aligned
code-switching & masking. Then, the remaining
words in both source and target languages will be
masked by dynamic dual-masking.

Extensive experiments on downstream AT and
NAT tasks show significant gains over prior works.
Specifically, under low-resource conditions (< 1M
bitext pairs), our system gains up to +14.4 BLEU
points over baselines. Even for extremely high-
resource settings (> 25M), CeMAT still achieves

significant improvements. In addition, experiments
on the WMT16 Romanian→English task demon-
strate that our system can be further improved
(+2.1 BLEU) by the Back-Translation (BT; Sen-
nrich et al., 2016a).

The main contributions of our work can be sum-
marized as follows:

• We propose a multilingual pre-trained model
CeMAT, which consists of a bidirectional en-
coder, a bidirectional decoder. The model is
pre-trained on both monolingual and bilingual
corpora and then used for initializing down-
stream AT and NAT tasks. To the best of our
knowledge, this is the first work to pre-train a
unified model suitable for both AT and NAT.

• We introduce a two-step masking strategy to
enhance the model training under the setting
of bidirectional decoders. Based on a multi-
lingual translation dictionary and word align-
ment between source and target sentences,
aligned code-switching & masking is firstly
applied. Then, dynamic dual-masking is used.

• We carry out extensive experiments on AT
and NAT tasks with data of varied sizes. Con-
sistent improvements over strong competitors
demonstrate the effectiveness of CeMAT.
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[en] We dance on the grass

[de] Wir tanzen auf dem gras

Spanish : danza
German : tanzen
French  : danse  

…

dance
2.𝐹𝐹𝑚𝑚(𝑥𝑥𝑚𝑚𝑖𝑖 )

[en] We danse on the grass [de] Wir [mask] auf dem gras

CSR CSM

[en] We danse [mask] the grass [de] Wir [mask] auf dem [mask]

DM DM

1.Aligned

Figure 2: The details of our two-step masking. We first obtain the aligned pair set Λ = {(“dance”,“tanzen”),...}
(marked with 99K) from the original inputs by looking up the cross-lingual dictionary (denote as 1.Aligned), and
then randomly select a subset (marked as “dance”99K“tanzen” with red color) from it, in the lower left of the figure.
For each element in the subset, we select a new word by Fm(xim), and perform CSR to replace the source fragment
(“danse” marked as red color) and CSM for target (“[mask]” marked as red color) respectively. Finally, we do the
DM process to mask the contents of the source and target respectively (“[mask]” marked as light-blue color).

2 Pre-training Approach

Our CeMAT is jointly trained by MLM and CMLM
on the source side and the target side, respectively.
The overall framework is illustrated in Figure 1.
In this section, we first introduce the multilingual
CMLM task (Section 2.1). Then, we describe
the two-step masking, including the aligned code-
switching & masking (Section 2.2) and the dynamic
dual-masking (Section 2.3). Finally, we present
training objectives of CeMAT (Section 2.4).

Formally, our training data consists of M
language-pairs D = {D1, D2, ..., DM}. Dk(m,n)
is a collection of sentence pairs in language Lm

and Ln, respectively. In the description below, we
denote a sentence pair as (Xm, Yn) ∈ Dk(m,n),
where Xm is the source text in the language Lm,
and Yn is the corresponding target text in the lan-
guage Ln. For monolingual corpora, we create
pseudo bilingual text by copying the sentence,
namely, Xm = Yn.

2.1 Conditional Masked Language Model
CMLM predicts masked tokens ymask

n , given a
source sentence Xm and the remaining target sen-
tence Yn\ymask

n . The probability of each yjn ∈
ymask
n is independently calculated:

P (yjn|Xm, Yn\ymask
n ). (1)

CMLM can be directly used to train a standard
Seq2Seq model with a bidirectional encoder, a uni-
directional decoder, and a cross attention. How-
ever, it is not restricted to the autoregressive feature
on the decoder side because of the independence
between masked words. Therefore, following prac-
tices of NAT, we use CMLM to pre-train a Seq2Seq
model with a bidirectional decoder, as shown in
Figure 1.

Although bilingual sentence pairs can be directly
used to train the model together with the conven-
tional CMLM (Ghazvininejad et al., 2019), it is
challenging for sentence pairs created from mono-
lingual corpora because of identical source and
target sentences. Therefore, we introduce a two-
step masking strategy to enhance model training
on both bilingual and monolingual corpora.

2.2 Aligned Code-Switching & Masking

We use aligned code-switching & masking strategy
to replace the source word or phrase with a new
word in another language, and then mask the corre-
sponding target word. Different from the previous
code-switching methods (Yang et al., 2020; Lin
et al., 2020) where source words always are ran-
domly selected and replaced directly, our method
consists of three steps:

1. Aligning: We utilize a multilingual transla-
tion dictionary to get a set of aligned words
Λ = {· · · , (xim, y

j
n), · · · } between the source

Xm and target Yn. The word pair (xim, y
j
n) de-

notes that the i-th word in Xm and j-th word
in Yn are translations of each other. For sen-
tence pairs created from monolingual corpora,
words in an aligned word pair are identical.

2. Code-Switching Replace (CSR): Given an
aligned word pair (xim, y

j
n) ∈ Λ, we first se-

lect a new word x̂ik in the languageLk that can
be used to replace xim in the source sentence
Xm,

x̂ik = Fm(xim)

where Fm(x) is a multilingual dictionary
lookup function for a word x in the language
Lm, x̂ik is a randomly selected word from the
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dictionary, which is a translation of xim in the
language Lk.

3. Code-Switching Masking (CSM): If the
source word xim in the aligned pair (xim, y

j
n)

is replaced by x̂ik, we also mask yjn in Yn by
replacing it with a universal mask token. Then,
CeMAT will be trained to predict it in the out-
put layers of the bidirectional decoder.

For aligning and CSR, we only use available mul-
tilingual translation dictionary provided by MUSE
(Lample et al., 2018). Figure 2 shows the process
of aligned code-switching & masking. According
to the given dictionary, “dance” and “tanzen” are
aligned, then a new French word “danse” is se-
lected to replace “dance”, and “tanzen” replaced
by “[mask]” (marked as red color).

During training, at most 15% of the words in the
sentence will be performed by CSR and CSM. For
monolingual data, we set this ratio to 30%. We use

(CSR(Xm),CSM(Yn))

to denote the new sentence pair after aligned code-
switching & masking, which will be further dynam-
ically dual-masked at random.

2.3 Dynamic Dual-Masking
Limited by the dictionary, the ratio of aligned word
pairs is usually small. In fact, we can only match
aligned pairs for 6% of the tokens on average in
the bilingual corpora. To further increase the train-
ing efficiency, we perform dynamic dual-masking
(DM) on both bilingual and monolingual data.

• Bilingual data: We first sample a masking
ratio υ from a uniform distribution between
[0.2, 0.5], then randomly select a subset of tar-
get words which are replaced by “[mask]”.
Similarly, we select a subset on the source
texts and mask them with a ratio of µ in a
range of [0.1, 0.2]. Figure 2 shows an exam-
ple of dynamic dual-masking on bilingual data.
We set υ ≥ µ to force the bidirectional de-
coder to obtain more information from the
encoder.

• Monolingual data: Since the source and target
are identical before masking, we sample υ =
µ from a range [0.3, 0.4] and mask the same
subset of words on both sides. This will avoid
the decoder directly copying the token from
the source.

Follow practices of pre-trained language models,
10% of the selected words for masking remain un-
changed, and 10% replaced with a random token.
Words replaced by the aligned code-switching &
masking will not be selected to prevent the loss of
cross-lingual information. We use

(DM(CSR(Xm)),DM(CSM(Yn)))

to denote the new sentence pair after dynamic dual-
masking, which will be used for pre-training.

2.4 Multilingual Pre-training Objectives
We jointly train the encoder and decoder on MLM
and CMLM tasks. Given the sentence pair

(X̂m, Ŷn) = (DM(CSR(Xm)),DM(CSM(Yn)))

from the masked corpora D̂, the final training ob-
jective is formulated as follows:

L = −
∑

(X̂m,Ŷn)∈D̂

λ
∑

yjn∈ymask
n

logP (yjn|X̂m, Ŷn)

+(1− λ)
∑

xi
m∈xmask

m

logP (xim|X̂m)

(2)
where ymask

n are the set of masked target words,
xmask
m are the set of masked source words, and λ is

a hyper-parameter to balance the influence of both
tasks. In our experiments, we set λ = 0.7.

3 Pre-training Settings

Pre-training Data We use the English-centric
multilingual parallel corpora of PC322, and then
collect 21-language monolingual corpora from
common crawl3. In this paper, we use ISO lan-
guage code4 to identify each language. A “[lan-
guage code]” token will be prepended to the be-
ginning of the source and target sentence as shown
in Figure 2. This type of token helps the model
to distinguish sentences from different languages.
The detailed correspondence and summary of our
pre-training corpora can be seen in Appendix A.

Data pre-processing We directly learn a shared
BPE (Sennrich et al., 2016b) model on the entire
data sets after tokenization. We apply Moses to-
kenization (Sennrich et al., 2016b) for most lan-
guages, and for other languages, we use KyTea5

2https://github.com/linzehui/mRASP
3https://commoncrawl.org/
4https://www.loc.gov/standards/

iso639-2/php/code_list.php
5http://www.phontron.com/kytea/
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Lang-Pairs En-Kk En-Tr En-Et En-Fi En-Lv En-Cs En-De En-Fr Avg
Source WMT19 WMT17 WMT18 WMT17 WMT17 WMT19 WMT19 WMT14
Size 91k(low) 207k(low) 1.94M(medium) 2.66M(medium) 4.5M(medium) 11M(high) 38M(extr-high) 41M(extr-high)
Direction → ← → ← → ← → ← → ← → → →
Direct 0.2 0.8 9.5 12.2 17.9 22.6 20.2 21.8 12.9 15.6 16.5 30.9 41.4 17.1
mBART 2.5 7.4 17.8 22.5 21.4 27.8 22.4 28.5 15.9 19.3 18.0 30.5 41.0 21.2
mRASP 8.3 12.3 20.0 23.4 20.9 26.8 24.0 28.0 21.6 24.4 19.9 35.2 44.3 23.8
CeMAT 8.8 12.9 23.9 23.6 22.2 28.5 25.4 28.7 22.0 24.3 21.5 39.2 43.7 25.0
∆ +8.6 +12.1 +14.4 +11.4 +4.3 +5.9 +5.2 +6.9 +9.1 +8.7 +5.0 +8.3 +2.3 +7.9

Table 2: Comprehensive comparison with mRASP and mBART. Best results are highlighted in bold. CeMAT out-
performs them on AT for all language pairs but two directions. Even for extremely high-resource scenarios(denoted
as “extr-high”), we observe gains of up to +8.3 BLEU on En→De language pair.

for Japanese and jieba6 for Chinese, and a spe-
cial normalization for Romanian (Sennrich et al.,
2016a). Following Liu et al. (2020), we balance the
vocabulary size of languages by up/down-sampling
text based on their data size when learning BPE.

Model and Settings As shown in Figure 1, we
apply a bidirectional decoder so that it can utilize
left and right contexts to predict each token. We use
a 6-layer encoder and 6-layer bidirectional decoder
with a model dimension of 1024 and 16 attention
heads. Following Vaswani et al. (2017), we use
sinusoidal positional embedding, and apply layer
normalization for word embedding and pre-norm
residual connection following Wang et al. (2019a).

Our model is trained on 32 Nvidia V100 GPUs
for 300K steps, The batch size on each GPU is 4096
tokens, and we set the value of update frequency
to 8. Following the training settings in Trans-
former, we use Adam optimizer (ε = 1e− 6, β1 =
0.9, β2 = 0.98) and polynomial decay scheduling
with a warm-up step of 10,000.

4 Autoregressive Neural Machine
Translation

In this section, we verify CeMAT provides consis-
tent performance gains in low to extremely high
resource scenarios. We also compare our method
with other existing pre-training methods and fur-
ther present analysis for better understanding the
contributions of each component.

4.1 Fine-Tuning Objective

The AT model consists of an encoder and a uni-
directional decoder. The encoder maps a source
sentence Xm into hidden representations which are
then fed into the decoder. The unidirectional de-
coder predicts the t-th token in a target languageLn

conditioned on Xm and the previous target tokens

6https://github.com/fxsjy/jieba

y<t
n . The training objective of AT is to minimize

the negative log-likelihood:

L(θ) =∑
(Xm,Yn)∈D(m,n)

|Yn|∑
t=1

− logP (ytn|Xm, y
<t
n ; θ)

(3)

4.2 Experimental Settings

Benchmarks We selected 9 different language
pairs and then use CeMAT to fine-tune on them.
They are divided into four categories according
to their data size: low-resource (< 1M), medium-
resource (> 1M and < 10M), high-resource (>
10M and < 25M), and extremely high-resource (>
25M). See Appendix B for more details.

Configuration We adopt a dropout rate of 0.1
for extremely high-resource En→Fr, En→De
(WMT19); for all other language pairs, we set the
value of 0.3. We fine-tune AT with a maximum
learning rate of 5e − 4, a warm-up step of 4000
and label smoothing of 0.2. For inference, we use
beam search with a beam size of 5 for all transla-
tion directions. For a fair comparison with previous
works, all results are reported with case-sensitive
and tokenized BLEU scores.

4.3 Results and Analysis

Main Results We fine-tune AT systems initial-
ized by our CeMAT on 8 popular language pairs,
which are the overlapping language pairs in exper-
iments of mBART (Liu et al., 2020) and mRASP
(Lin et al., 2020). Table 2 shows the results. Com-
pared to directly training AT models, our systems
with CeMAT as initialization obtain significant im-
provements on all four scenarios. We observe gains
of up to +14.4 BLEU and over +11.4 BLEU on
three of the four tasks on low-resource scenarios,
i.e., En↔Tr. Without loss of generality, as the scale
of the dataset increases, the benefits of pre-training

6383

https://github.com/fxsjy/jieba


models are getting smaller and smaller. How-
ever, we can still obtain significant gains when the
data size is large enough (extremely high-resource:
> 25M), i.e. +8.3 and +2.3 BLEU for En→De
and En→Fr respectively. This notable improve-
ment shows that our model can further enhance
extremely high-resource translation. Overall, we
obtain performance gains of more than +8.0 BLEU
for most directions, and finally observe gains of
+7.9 BLEU on average on all language pairs.

We further compare our CeMAT with mBART
(Liu et al., 2020) and mRASP (Lin et al., 2020),
which are two pre-training methods of current
SOTA. As illustrated in Table 2, CeMAT outper-
forms mBART on all language pairs with a large
margin (+3.8 BLEU on average), for extremely
high-resource, we can obtain significant improve-
ments when mBART hurts the performance. Com-
pared to mRASP, we achieve better performance
on 11 out of the total 13 translation directions, and
outperforms this strong competitor with an average
improvement of +1.2 BLEU on all directions.

Comparison with Existing Pre-training Models
We further compare our CeMAT with more existing
multilingual pre-trained models on three popular
translation directions, including WMT14 En→De,
WMT16 En↔Ro. Results are shown in Table 3.
Our CeMAT obtains competitive results on these
languages pairs on average, and achieves the best
performance on En→Ro.

Our model also outperforms BT (Sennrich et al.,
2016a), which is a universal and stable approach
to augment bilingual with monolingual data. In
addition, when combining back-translation with
our CeMAT on Ro→En, we obtain a significantly
improvement from 36.8 to 39.0 BLEU, as shown
in Table 3. This indicates that our method is com-
plementary to BT.

The Effectiveness of Aligned Code-Switching
and Masking We investigate the effectiveness of
aligned code-switching & masking as shown in Ta-
ble 4. We find that utilizing aligned code-switching
& masking can help CeMAT improve the perfor-
mance for all different scenarios with gains of +0.5
BLEU on average, even though we can only match
the aligned word pairs for 6% of the tokens on av-
erage in the bilingual corpora. We presume the
method can be improved more significantly if we
adopt more sophisticated word alignment methods.

The Effectiveness of Dynamic Masking In the
pre-training phase, we use a dynamic strategy when
doing dual-masking on the encoder and decoder
respectively. We verify the effectiveness of this
dynamic masking strategy. As illustrated in Table 4
and Appendix C, we achieve significant gains with
margins from +0.4 to +4.5 BLEU, when we ad-
justed the ratio of masking from a static value to
a dynamically and randomly selected value. The
average improvement on all language pairs is +2.1
BLEU. This suggests the importance of dynamic
masking.

Lang-Pairs En→ De En→ Ro Ro→ En Ro→ En
Size 4.5M 597K 597K ( +BT )
Direct 29.3 34.3 34.0 36.8
mBART - 37.7 37.8 38.8
mRASP 30.3 37.6 36.9 38.9
MASS 28.9 – – 39.1
XLM 28.8 – 35.6 38.5
mBERT 28.6 – – –
CeMAT 30.0 38.0 37.1 39.0

Table 3: Comparison with recent multilingual
pre-training models on WMT14 En→De, WMT16
En↔Ro. We reach comparable results on all three di-
rections. When combining back-translation, we further
obtain gains of +2.2 BLEU on Ro→En.

5 Non-autoregressive Neural Machine
Translation

In this section, we will verify the performance of
our CeMAT on the NAT, which generates transla-
tions in parallel, on widely-used translation tasks.

5.1 Fine-Tuning Objective

As illustrated in Figure 1, NAT also adopts a
Seq2Seq framework, but consists of an encoder
and a bidirectional decoder which can be used to
predict the target sequences in parallel. The train-
ing objective of NAT is formulated as follows:

L(θ) =
∑

(Xm,Yn)∈D(m,n)

|Yn|∑
t=1

− logP (ytn|Xm; θ)

(4)

In this work, we follow Ghazvininejad et al.
(2019), which randomly sample some tokens ymask

n

for masking from target sentences and train the
model by predicting them given source sentences
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Lang-Pairs En-Kk En-Tr En-Et En-Fi En-Lv Avg
Direction → ← → ← → ← → ← → ←
CeMAT 8.8 12.9 23.9 23.6 22.2 28.5 25.4 28.7 22.0 24.3 22.0
. w/o Aligned CS masking 8.0 12.3 23.6 23.1 22.1 28.0 24.8 28.1 21.4 24.1 21.5
. w/o Aligned CS masking & Dynamic 7.2 8.7 21.2 20.4 20.8 26.8 24.4 27.5 16.9 20.2 19.4

Table 4: Verification of the effectiveness of different techniques. “. w/o Aligned CS masking” denotes that we
pre-train CeMAT without aligned code-switching & masking algorithm. “. w/o Aligned CS masking & Dynamic”
means that we further abandon the use of dynamic setting for dual-masking, where we only use a fixed masking
ratio with 0.15 for the encoder and decoder. More details can be found in Appendix C. We can see two methods
are all critical components.

and remaining targets. The training objective is:

L(θ) =
∑

(Xm,Yn)∈D(m,n)∑
yjn∈ymask

n

− logP (yjn|Xm, Yn\ymask
n ; θ)

(5)

During decoding, given an input sequence to
translate, the initial decoder input is a sequence of
“[mask]” tokens. The fine-tuned model generates
translations by iteratively predicting target tokens
and masking low-quality predictions. This process
can make the model re-predict the more challeng-
ing cases conditioned on previous high-confidence
predictions.

5.2 Experimental Settings
NAT Benchmark Data We evaluate on three
popular datasets: WMT14 En↔De, WMT16
En↔Ro and IWSLT14 En↔De. For a fair com-
parison with baselines, we only use the bilingual
PC32 corpora to pre-train our CeMAT. We only use
knowledge distillation (Gu et al., 2018) on WMT14
En↔De tasks.

Baselines We use our CeMAT for initialization
and fine-tune a Mask-Predict model (Ghazvinine-
jad et al., 2019) as in Section 4. To better quantify
the effects of the proposed pre-training models, we
build two strong baselines.

Direct. We directly train a Mask-Predict model
with randomly initialized parameters.

mRASP. To verify that our pre-trained model
is more suitable for NAT, we use a recently pre-
trained model mRASP (Lin et al., 2020) to fine-
tune on downstream language pairs.

Configuration We use almost the same config-
uration as the pre-training and AT except the fol-
lowing differences. We use learned positional em-
beddings (Ghazvininejad et al., 2019) and set the
max-positions to 10,000.

5.3 Main Results

The main results on three language pairs are pre-
sented in Table 5. When using CeMAT to initialize
the Mask-Predict model, we observe significant
improvements (from +0.9 to +5.3 BLEU) on all
different tasks, and finally obtain gains of +2.5
BLEU on average. We also achieve higher results
than the AT model on both En→De (+2.8 BLEU)
and De→En (+0.9 BLEU) directions on IWSLT14
datasets, which is the extremely low-resource sce-
narios where training from scratch is harder and
pre-training is more effective.

As illustrated in Table 5, on all different tasks,
CeMAT outperforms mRASP with a significant
margin. On average, we obtain gains of +1.4 BLEU
over mRASP. Especially under low-resource set-
tings on IWSLT14 De→En, we achieve a large
gains of +3.4 BLEU over mRASP. Overall, mRASP
shows limited improvement (+0.4 to +1.9 BLEU)
compared to CeMAT. This also suggests that al-
though we can use the traditional pre-training
method to fine-tune the NAT task, it does not bring
a significant improvement like the AT task because
of the gap between pre-training and fine-tuning
tasks.

We further compare the dynamic performance
on three language pairs during iterative decoding,
as shown in Appendix D. We only need 3 to 6
iterations to achieve the best score. During the it-
eration, we always maintain rapid improvements.
In contrast, mRASP obtains the best result after 6
to 9 iterations. We also observe a phenomenon that
the performance during iterations is also unstable
on both mRASP and Mask-Predict, but CeMAT
appears more stable. We conjecture that our pre-
trained model can learn more related information
between words in both the same and different lan-
guages. This ability alleviated the drawback of
NAT assumptions: the individual token predictions
are conditionally independent of each other.
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Source IWSLT14 WMT16 WMT14 Avg
Lang-Pairs En→De De→En En→Ro Ro→En En→De De→En
Transformer (Vaswani et al., 2017) 23.9 32.8 34.1 34.5 28.0 32.7 31.0
Mask-Predict (Ghazvininejad et al., 2019) 22.0 28.4 31.5 31.7 26.1 29.0 28.1
mRASP (Lin et al., 2020) 23.9 30.3 32.2 32.1 26.7 29.8 29.2
CeMAT (Ours) 26.7 33.7 33.3 33.0 27.2 29.9 30.6

Table 5: Comprehensive comparison with two strong baselines. “mRASP” denotes using mRASP to initialize
Mask-Predict, “CeMAT (Ours)” denotes using our CeMAT to initialize. We obtain consistent and significant
improvements on all language pairs, outperforming AT on IWSLT14 tasks. Best non-autoregressive results are
highlighted in bold.

6 Related Work

Multilingual Pre-training Task Conneau and
Lample (2019) and Devlin et al. (2019) proposed to
pre-train a cross-lingual language model on multi
language corpora, then the encoder or decoder of
model are initialized independently for fine-tuning.
Song et al. (2019), Yang et al. (2020) and Lewis
et al. (2020) directly pre-trained a Seq2Seq model
by reconstructing part or all of inputs and achieve
significant performance gains. Recently, mRASP
(Lin et al., 2020) and CSP (Yang et al., 2020) apply
the code-switching technology to simply perform
random substitution on the source side. Another
similar work, DICT-MLM (Chaudhary et al., 2020)
introduce multilingual dictionary, pre-training the
MLM by mask the words and then predict its cross-
lingual synonyms. mRASP2 (Pan et al., 2021) also
used code-switching on monolingual and bilingual
data to improve the effectiveness, but it is essen-
tially a multilingual AT model.

Compared to previous works: 1) CeMAT is the
first pre-trained Seq2Seq model with a bidirectional
decoder; 2) We introduce aligned code-switching &
masking, different from traditional code-switching,
we have two additional steps: align between source
and target, and CSM; 3) We also introduce a dy-
namic dual-masking method.

Autoregressive Neural Machine Translation
Our work is also related to AT, which adopts an
encoder-decoder framework to train the model
(Sutskever et al., 2014). To improve the perfor-
mance, back-translation, forward-translation and
related techniques were proposed to utilize the
monolingual corpora (Sennrich et al., 2016a; Zhang
and Zong, 2016; Edunov et al., 2018; Hoang et al.,
2018). Prior works also attempted to jointly train a
single multilingual translation model that translates
multi-language directions at the same time (Firat
et al., 2016; Johnson et al., 2017; Aharoni et al.,

2019; Wu et al., 2021). In this work, we focus on
pre-training a multilingual language model, which
can provide initialization parameters for the lan-
guage pairs. On the other hand, our method can use
other languages to further improve high-resource
tasks.

Non-autoregressive Neural Machine Trans-
lation Gu et al. (2018) first introduced a
transformer-based method to predict the complete
target sequence in parallel. In order to reduce
the gap with the AT model, Lee et al. (2018) and
Ghazvininejad et al. (2019) proposed to decode the
target sentence with iterative refinement. Wang
et al. (2019b) and Sun et al. (2019) utilized aux-
iliary information to enhance the performance of
NAT. One work related to us is Guo et al. (2020),
which using BERT to initialize the NAT. In this
work, CeMAT is the first attempt to pre-train a mul-
tilingual Seq2Seq language model on NAT task.

7 Conclusion

In this paper, we demonstrate that multilingually
pre-training a sequence-to-sequence model but
with a bidirectional decoder produces significant
performance gains for both Autoregressive and
Non-autoregressive Neural Machine Translation.
Benefiting from conditional masking, the decoder
module, especially the cross-attention can learn the
word representation and cross-lingual representa-
tion ability more easily. We further introduce the
aligned code-switching & masking to align the rep-
resentation space for words with similar semantics
but in different languages, then we use a dynamic
dual-masking strategy to induce the bidirectional
decoder to actively obtain the information from the
source side. Finally, we verified the effectiveness
of these two methods. In the future, we will inves-
tigate more effective word alignment method for
aligned code-switching & masking.
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B Statics of Five Different Scenarios

We present dataset statistics for fine-tuning corpora
in Table 7.

C Detailed Ablation Experiments

We show more detailed results of the ablation ex-
periments on two language pairs in Table 8.

D Performance with Iterations for NAT

We present the dynamic performance on three
language-pair datasets during iterative decoding
in Figure 3, 4, 5, 6, 7 and 8.
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Figure 3: The performance of IWSLT14 En2De when
decoding with different number of iterations.
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Figure 4: The performance of IWSLT14 De2En when
decoding with different number of iterations
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Figure 5: The performance of WMT16 En2Ro when
decoding with different number of iterations.
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Figure 6: The performance of WMT16 Ro2En when
decoding with different number of iterations.
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Figure 7: The performance of WMT14 De2En when
decoding with different number of iterations.
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Figure 8: The performance of WMT14 En2De when decoding with different number of iterations.

ISO Language Bilingual Monolingual ISO Language Bilingual Monolingual

Gu Gujarati 11K 815K Ko Korean 1.4M –
Be Belarusian 24K – Ms Malay 1.6M –
My Burmese 28K – Ru Russian 1.8M 9.9M
Mn Mongolian 28K – Fi Finnish 2M 9.9M
Af Afrikaans 40K – Ja Japanese 2M 3.4M
Eo Esperanto 66K – It Italian 2M 9.9M
Kk Kazakh 122K 1.8M Es Spanish 2.1M 9.9M
Sr Serbian 133K 3.7M Et Estonian 2.2M 5.3M
Mt Maltese 174K – Lt Lithuanian 2.3M 2.8M
Ka Kannada 198K – Lv Latvian 3.0M 11.3M
He Hebrew 330K – Bg Bulgarian 3.1M 9.9M
Tr Turkish 383K 9.9M Vi Vietnamese 3.1M –
Ro Romanian 770K 20M De German 4.6M 15M
Cs Czech 814K 9.9M Zh Chinese 21M 4.4M
Ar Arabic 1.2M – Fr French 36M 15M
El Greek 1.3M 8.3M En English – 15M
Hi Hindi 1.3M 9.9M

Table 6: A list of 32 Enlish-centric language pair datasets. Among them, 21 languages have corresponding mono-
lingual data. In this work, we using the ISO code represent the language name, and put them at the beginning of
the source and target.
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Lang-Pairs Source Size Category

En-Kk WMT19 97K low-resource
De-En IWSLT14 159K low-resource
En-Tr WMT17 207K low-resource
En-Ro WMT16 597K low-resource
En-Et WMT18 1.9M medium-resource
En-Fi WMT17 2.7M medium-resource
En-Lv WMT17 4.5M medium-resource
En-De WMT14 4.5M medium-resource
En-Cs WMT19 11M high-resource
En-De WMT19 38M extremely high-resource
En-Fr WMT14 41M extremely high-resource

Table 7: The statistical information of the language pairs on low- / medium- / high- / extremely high-resource for
the machine translation task.

Lang-Pairs Kk-En Et-En Avg
Direction → ← → ←
w/ Bilingual 7.8 5.5 24.4 19.1 14.2
w/ Monolingual 5.4 5.4 23.5 18.9 13.3
w/ Bi- & Monolingual 9.0 5.6 25.2 19.0 14.7
w/o Aligned CS masking 8.4 5.1 24.3 18.2 14.0
w/o Dynamic (masking:0.15) 7.3 4.4 23.5 17.7 13.2
w/o Dynamic (masking:0.35) 8.8 5.6 23.7 18.1 14.1

Table 8: Verification of the effectiveness of different techniques on two language pairs: Kk-En and Et-En. “w/
Bilingual” denotes that we use only bilingual data when pre-training CeMAT; “w/ Monolingual” denotes that
we use only monolingual data when pre-training CeMAT; “w Bi- & Monolingual” denotes that when pre-training
CeMAT, we use both bilingual and monolingual data; “w/o Aligned CS masking” denotes that we pre-train CeMAT
without aligned code-switching & masking algorithm; “w/o Dynamic (masking:0.15)” means that we use a fixed
masking ratio with 0.15 for dual-masking; “w/o Dynamic (masking:0.35)” means that we use a fixed masking
ratio with 0.35 for dual-masking to make a more fair comparison with dynamic masking. To save computational
resources, we use Transformer-base to obtain all the results of this experiment.
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