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Abstract
Previous work on multimodal machine trans-
lation (MMT) has focused on the way of in-
corporating vision features into translation but
little attention is on the quality of vision mod-
els. In this work, we investigate the impact
of vision models on MMT. Given the fact that
Transformer is becoming popular in computer
vision, we experiment with various strong
models (such as Vision Transformer) and en-
hanced features (such as object-detection and
image captioning). We develop a selective at-
tention model to study the patch-level contribu-
tion of an image in MMT. On detailed probing
tasks, we find that stronger vision models are
helpful for learning translation from the visual
modality. Our results also suggest the need of
carefully examining MMT models, especially
when current benchmarks are small-scale and
biased. Our code could be found at https:
//github.com/libeineu/fairseq_mmt.

1 Introduction

Multimodal machine translation (MMT) has
emerged as an active field of research which mar-
ries the worlds of computer vision (CV) and natural
language processing (NLP) (Specia et al., 2016).
Early models of this kind produce a translation
given the fused representation of both the visual
and textual inputs (Caglayan et al., 2016; Libovický
and Helcl, 2017; Calixto and Liu, 2017). As ex-
pected, such a paradigm achieves promising BLEU
improvements and inspires the community to fol-
low up.

But soon researchers found that MMT systems
did not act as what they ordinarily designed: the
visual modality contributes to translation little. For
example, it is not harmful to MMT systems when
the input image is irrelevant to the text (Grönroos
et al., 2018; Lala et al., 2018), or even when the
vision features are absent (Elliott, 2018). More re-
cently, Wu et al. (2021) have pointed out that the
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use of the visual modality is a way of regulariza-
tion for training but not a complement to the text
modality. As another response to the analysis of
MMT, Caglayan et al. (2019) investigate how the
vision features correlate to the text. They find that
the input image helps translation when some of the
input words are masked.

Note that previous work has for the most part
focused on integrating off-the-shelf vision models
(such as ResNet-50) into MMT. The underlying
assumption here is that the existing vision models
are powerful enough to encode the image. This
implicitly ignores the quality of vision models in
representing images. But computer vision is facing
a new trend by moving from CNNs to Transformer
as the backbone model (Dosovitskiy et al., 2021;
Liu et al., 2021b; Carion et al., 2020). A natu-
ral question that arises is: how will MMT systems
behave if stronger vision models are adopted?

In this work, we address this question by a sys-
tematic study of using various vision models in
MMT, in particular using the most successful mod-
els in recent studies (such as Vision Transformer,
or ViT for short). We find that the patch method
used in Transformer-based vision models offers an
opportunity to detail the patch-level contribution of
the image. This leads us to develop a selective atten-
tion model to correlate words with image patches.
Beyond this, we introduce object-detection and
image captioning features into MMT for further
improvements of the vision models (Carion et al.,
2020; Fang et al., 2021).

Following Caglayan et al. (2019)’s work, we
design more detailed probing tasks to examine
to what degree the visual modality contributes to
MMT. We run an extensive set of experiments on
En-De and En-Fr MMT tasks. Our findings are

• Stronger vision models help. For example,
ViT can beat ResNet-50 on the probing tasks
though the superiority is not significant on
standard MMT data.
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SRC : a man in a red suit performing motorcycle stunts

Color a man in a [MASK_C] suit performing motorcycle stunts
Char. a [MASK_P] in a red suit performing motorcycle stunts
MASK1 a man in a red [MASK_N] performing motorcycle stunts
MASK2 a man in a red [MASK_N] performing [MASK_N] stunts
MASK3 a man in a red [MASK_N] performing [MASK_N] [MASK_NS]
MASK4 a [MASK_N] in a red [MASK_N] performing [MASK_N] [MASK_NS]

Table 1: An example of the proposed probing tasks. We replace the masked token by four symbols respectively.

• Automatic evaluation on current MMT tasks
might not be a good indicator for the effec-
tiveness of MMT models. For example, mod-
els enhanced with object-detection and image
captioning features yield good BLEU scores
on the original MMT task but show modest or
no contributions on the probing tasks.

We hope that the results here can inspire more
research on exploring better vision models and eval-
uation methods for multimodal NLP.

2 Preliminary

We start with a description of the probing tasks.
It is followed by a design of vision features and
a selective attention mechanism for introducing
ViT-like representations into MMT.

2.1 Insufficient Text Generation
To know how an image contributes to translation, a
way is to mask some of the input words (call this
insufficient text) and force the translation model
to learn from the image. Following the previous
design of color deprivation and entity-based mask-
ing, we present detailed probing tasks which are
complementary to Caglayan et al. (2019)’s work.
In preliminary experiments1, we find that “color”,
“character” and “noun” are three kinds of words
which could be complemented according to the
visual modality once the corresponding texts are
masked. The following probing tasks are designed
accordingly.

Color-based Probing In training, all source
words referring to a color are replaced by a spe-
cial token [Mask_C]. There are 8, 919 sentences
involving color words, and nearly one third of them
involve more than one color. It is worth noting that
each color may have two or more translations due
to the rich morphology in German and French. For
example, the English “green” can be translated to

1We choose the Multi30K En-De and En-Fr datasets for
experiments.

“grün”, “grüne”, “grünes”, “grüner”, “grünen” and
“grünem” in German. We design two criteria to
measure the accuracy of translation. The first cri-
terion is strict. The correct translation requires
generating the same color and the same gender as
in reference translations. The second criterion is
relaxed and all translations expressing the same
color are correct.

Character-based Probing For character words,
we choose “man”, “woman”, “people”, “men”,
“girl” and “boy”. More than 60% sentences contain
character words in our training data, so they are
reasonable indicators of assessing the ability to in-
fer correct translations from the input image. Here
we use [MASK_P] for masking. Note that some
character words have more than two translations,
e.g. “people”, we also use the same evaluation
metric with the color-based probing task, including
relaxed and strict two criteria.

Noun-based Probing For more complex scenar-
ios, a sentence can be masked with several kinds of
ambiguous words, such as animals, clothing, and
vehicles, provided by Flickr30K (Plummer et al.,
2015). High-frequency words labeled with noun (or
nouns) are more likely to be masked as [MASK_N]
(or [MASK_NS])). See Table 1 for example insuffi-
cient text with different numbers of masks.

2.2 Various Vision Features
In addition to ResNet-50, we choose several
Transformer-based vision models.

• General Backbone. Vision Transformer (ViT)
and Swin Transformer are popular models in
computer vision (Dosovitskiy et al., 2021; Liu
et al., 2021b). We use ViT with various model
capacities to vary from weak to strong ViT
models.

• Object-detection. For pretrained object-
detection vision models, we choose DETR
(Carion et al., 2020) and QueryInst (Fang
et al., 2021) for their strong performance.
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Figure 1: The overview of selective attention multimodal Transformer when using ViT as the vision feature.

• Image Captioning. For image captioning
models, we choose CATR2 because it is a
Transformer-based image captioning architec-
ture and can be easily implemented on top of
ViT.

We form a number of vision features by combin-
ing the methods described above. More details are
presented in Section 3.

2.3 Selective Attention

ViT and related models perform in almost the same
way as Transformer in NLP (Vaswani et al., 2017).
Unlike the general models in CV, ViT does not
represent the image as a single vector. Instead, it
generates a sequence of patches for image repre-
sentation. An advantage of this design is that we
can use the attention mechanism to correlate image
patches to words. Thus, we present a selective at-
tention model to model the patch-level contribution
of the image. See Figure 1 for the architecture.

Text-only Transformer Transformer follows an
encoder-decoder paradigm (the purple region in
Figure 1) . The encoder is a stack of identical
layers. Each layer consists of a self-attention (SAN)
block and a feedforward network (FFN) block. The
decoder shares a similar design with the encoder,
but with an additional cross-attention block.

Gated Fusion Gated fusion mechanism is a pop-
ular technique for fusing representations from dif-
ferent sources (Wu et al., 2021; Zhang et al., 2020;
Lin et al., 2020; Yin et al., 2020). Given the text

2https://github.com/saahiluppal/catr

input X text and the image input X img, the text rep-
resentation H text and the image feature H img can
be defined as:

H text = TransformerEncoder(X text) (1)

H img = W ViT(X img) (2)

whereW is a projection matrix to convert the shape
of ViT(X img) into that of H text. Note that ViT(·)
can be replaced by other vision models, e.g. DETR,
Swin Transformer and etc. Then, the gate λ ∈
[0, 1] and the fuzed output are defined as:

λ = Sigmoid(UH text + V H img) (3)

HOut = (1− λ) ·H text + λ ·H img (4)

where U and V are trainable variables. λ controls
how much visual information is kept. Then, the
fusion vector HOut is fed into the decoder. See
the right side of the pink region in Figure 1 for an
illustration of the gated fusion models.

Selective Attention After obtaining the text and
image representations (or features), we use a single-
head attention network to correlate words with im-
age patches, where the query, key and value are
H text, H img and H img, respectively. Then the se-
lective attention output H img

attn is defined to be:

H
img
attn = Softmax(

QKT
√
dk

)V (5)

where dk is the same as the dimension of H text

because a single head is used. Then the fused rep-
resentation could be obtained by using Eqs. 3 and
4 and replacing H img with H img

attn.
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# Model Feature English→German English→French
Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

Text-only Transformer
1 Tiny - 41.02 68.22 33.36 62.05 29.88 56.64 61.80 81.02 53.46 75.62 44.52 69.43

Existing MMT Systems
2 Doubly-ATT ResNet 41.45 68.04 33.95 61.83 29.63 56.21 61.99 81.12 53.72 75.71 45.16 70.25
3 Imagination ResNet 41.31 68.06 32.89 61.29 29.90 56.57 61.90 81.20 54.07 76.03 44.81 70.35
4 UVR-NMT ResNet 40.79 - 32.16 - 29.02 - 61.00 - 53.20 - 43.71 -
5 Gated Fusion ResNet 41.96 67.84 33.59 61.94 29.04 56.15 61.69 80.97 54.85 76.34 44.86 70.51

Our MMT Systems
6 Gated Fusion ViT-Large 41.55 68.34 33.49 61.67 29.27 55.64 61.93 81.08 54.98 75.12 45.65 70.81
7 Selective Attn ViT-Large 41.84 68.64 34.32 62.32 30.22 56.91 62.24 81.41 54.52 76.30 44.82 70.63
8 7 + ViT-Tiny ViT-Tiny 40.74 67.20 32.48 60.46 28.10 55.19 61.44 80.91 53.31 75.65 45.82 70.75
9 7 + ViT-Small ViT-Small 40.86 67.64 33.62 61.61 29.72 56.94 61.78 81.30 54.21 76.04 45.28 70.89
10 7 + ViT-Base ViT-Base 41.93 68.55 33.60 61.42 31.14 56.77 62.48 81.71 54.44 76.46 44.72 71.20
11 7 + DETR DETR 42.23 68.94 34.14 61.57 30.13 57.01 62.14 81.45 55.17 76.40 45.10 70.38
12 7 + QueryInst QueryInst 41.90 68.64 34.90 62.27 30.20 56.89 62.33 81.26 54.97 76.61 45.56 70.64
13 7 + CATR CATR 42.50 68.81 34.28 61.81 29.59 56.36 62.79 81.75 55.44 76.57 45.27 70.73

Table 2: BLEU (left) and METEOR (right) scores of En→De and En→Fr tasks. Some of the results are from Wu
et al. (2021)’s work.

3 Experiments

3.1 Datasets

We conducted experiments on the widely used
Multi30K benchmark (Elliott et al., 2016). The
training and validation sets consisted of 29, 000 and
1, 014 instances, respectively. We reported the re-
sults on the Test2016, Test2017 and MSCOCO test
sets (Elliott et al., 2017). Note that MSCOCO is
more challenging for MMT models due to the out-
of-domain instances with ambiguous verbs. Fol-
lowing the setup in (Wu et al., 2021), we learned
a joint BPE code for 10, 000 merging operations
for both the source and target languages, resulting
in vocabularies of 9, 716 and 9, 548 entries for the
En-De and En-Fr tasks.

3.2 Experimental Setups

We followed the Wu et al. (2021)’s work to con-
duct experiments with Transformer-Tiny configu-
ration, which is more suited for small datasets like
Multi30K. Note that smaller models even obtain
higher BLEU scores than pervious MMT models.
Similar observations have been discussed when
building context-aware machine translation models
(Li et al., 2020). The model consists of 4 encoder
and decoder layers. The hidden size is 128 and the
filter size of FFN is 256. There are 4 heads in the
multi-head self-attention mechanism. We set the
dropout as 0.3 and the label smoothing as 0.1.

Our implementation was based on Fairseq (Ott
et al., 2019). For training, we used Adam Op-
timizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98 and ε = 10−8. We adopted the same

learning rate schedule as (Vaswani et al., 2017),
where the learning rate first increased linearly for
warmup = 2000 steps from 1e−7 to 5e−3. After
the warmup, the learning rate decayed proportion-
ally to the inverse square root of the current step.
Each training batch contained 4, 096 tokens. We
also adopted the early-stop training strategy (Zhang
et al., 2020) to avoid the overfitting issue.

For evaluation, we averaged the last 10 check-
points for more reliable results. The width of beam
size was set to 5. The performance was measured
by BLEU and METEOR for all test sets. Also, we
used accuracy for evaluation on the probing tasks.

3.3 Results

Table 2 summarizes the results on standard MMT
data. Each model was evaluated on three test sets
on two language pairs. We see, first of all, that
the improvements of previous methods (Rows 2-4)
over the tiny baseline are marginal in terms of both
BLEU and METEOR. This confirms the assump-
tion that the visual features are not fully used if
the text is complete (Caglayan et al., 2019). When
switching the vision features from ResNet (Row.5)
to ViT (Row.6), there are no significant BLEU
gains. Then, we test them on the proposed probing
tasks to examine the “real” contribution to MMT.

Color-based Probing Table 3 shows the accu-
racy on the color-based probing task. We see
that the accuracy improvement of the gated fusion
method is marginal by both restrict and relaxed cri-
teria. However, replacing ResNet with ViT yields
gains of over 8 accuracy points across three test
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Systems Test2016 Test2017 MSCOCO
Restrict Relaxed Restrict Relaxed Restrict Relaxed

English→German
Text-only Transformer 25.93 34.42 22.57 35.70 18.75 23.44
Gated Fusion + ResNet 27.23 (↑ 1.30) 35.51 (↑ 1.09) 23.10 (↑ 0.53) 37.01 (↑ 1.31) 21.88 (↑ 3.13) 25.00 (↑ 1.56)
Gated Fusion + ViT 35.08 (↑ 9.15) 42.48 (↑ 8.06) 25.46 (↑ 2.89) 41.73 (↑ 6.03) 25.00 (↑ 6.25) 31.25 (↑ 7.81)
Selective Attn + ViT 51.20 (↑ 25.27) 64.71 (↑ 30.29) 31.76 (↑ 9.19) 53.54 (↑ 17.84) 43.75 (↑ 25.00) 56.25 (↑ 32.81)

English→French
Text-only Transformer 30.72 33.12 34.91 38.85 23.44 29.69
Gated Fusion + ResNet 32.68 (↑ 1.96) 35.51 (↑ 2.39) 32.55 (↓ 2.36) 35.17 (↓ 3.68) 17.19 (↓ 6.25) 23.44 (↓ 6.25)
Gated Fusion + ViT 45.53 (↑ 14.81) 50.76 (↑ 17.64) 45.41 (↑ 10.50) 52.23 (↑ 13.38) 34.38 (↑ 10.94) 43.75 (↑ 14.06)
Selective Attn + ViT 62.96 (↑ 32.24) 68.85 (↑ 35.73) 49.34 (↑ 14.43) 55.38 (↑ 16.53) 43.75 (↑ 20.31) 53.12 (↑ 23.43)

Table 3: The accuracy of MMT systems when applied color-based probing.

Systems Test2016 Test2017 MSCOCO
Restrict Relaxed Restrict Relaxed Restrict Relaxed

English→German
Text-only Transformer 59.49 64.05 58.56 62.53 60.94 65.62
Gated Fusion + ResNet 60.06 (↑ 0.57) 64.91 (↑ 0.86) 56.08 (↓ 2.48) 59.06 (↓ 3.47) 61.72 (↑ 0.78) 65.23 (↓ 0.39)
Gated Fusion + ViT 66.33 (↑ 6.84) 70.76 (↑ 6.71) 67.00 (↑ 8.44) 71.46 (↑ 8.93) 71.09 (↑ 10.15) 75.78 (↑ 10.16)
Selective Attn + ViT 73.04 (↑ 13.55) 78.89 (↑ 14.84) 70.97 (↑ 12.41) 77.17 (↑ 14.64) 73.44 (↑ 12.50) 77.73 (↑ 12.11)

English→French
Text-only Transformer 63.48 65.48 61.04 62.53 64.84 67.19
Gated Fusion + ResNet 61.63 (↓ 1.85) 63.62 (↓ 1.86) 63.52 (↑ 2.48) 65.01 (↑ 2.48) 64.45 (↓ 0.39) 66.80 (↓ 0.39)
Gated Fusion + ViT 73.47 (↑ 9.99) 75.89 (↑ 10.41) 76.43 (↑ 15.39) 77.92 (↑ 15.39) 80.47 (↑ 15.63) 82.81 (↑ 15.62)
Selective Attn + ViT 78.89 (↑ 15.41) 81.31 (↑ 15.83) 78.16 (↑ 17.12) 79.65 (↑ 17.12) 79.69 (↑ 14.85) 81.64 (↑ 14.45)

Table 4: The accuracy of MMT systems when applied character-based probing.

sets on En-De task. Similar improvements are ob-
served on the En-Fr task. The finding here indicates
that stronger vision features are helpful for repre-
senting the visual information. Moreover, selective
attention can make better use of the ViT features,
achieving over 20 accuracy gains on three test sets.
This verifies the conjecture that the selective atten-
tion can further enhance the fused representation
for the ViT features.

Character-based Probing Table 4 shows simi-
lar results as in Table 3. ViT with selective at-
tention performs the best on most scenarios, it is
only slightly inferior to Gated Fusion + ViT on the
MSCOCO dataset. While the gated fusion method
with ResNet feature behaves far from desirable.
It even underperforms the text-only Transformer,
though the text-only Transformer is carefully reg-
ularized. A potential explanation is the character-
based probing task is more challenging than the
color-based probing task because it is more diffi-
cult for the model to find the correct corresponding
region of the masked character word and provide
useful signals to the text encoder.

Noun-based Probing Figure 2 plots the results
of noun-based masking. It again verifies the above
conjecture. The histograms in blue and red denote

the results on the En-De and En-Fr tasks, respec-
tively. The ViT features can significantly outper-
form the ResNet features across all masking meth-
ods on the two language pairs. We also observe
that the gap between the ResNet and ViT features is
gradually enlarged as more nouns are masked. This
confirms the results in (Dosovitskiy et al., 2021).

4 Analysis

4.1 How Vision Features Improve the MMT

We further explore the impact of model capacity.
Here, we report the results of ViT and Swin Trans-
former because they are strong models in recent
studies. Our conjecture here is that larger ViT/Swin
models can describe the image more accurately,
which enables the text encoder to receive richer
complementary information. Figure 3 depicts the
BLEU scores in progressive noun masking scenar-
ios. Intuitively, larger ViT and Swin models pro-
vide more complementary knowledge to complete
the insufficient text representations.

Nevertheless, a counterintuitive phenomenon is
the inferiority of Swin across all scenarios in the
same configuration, though it outperforms ViT on
most computer vision benchmarks. We attribute
the reason to the short length of the patch sequence.
In patch, ViT has a length of 577 (576 sequence
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Gated Fusion+ResNet: Gated Fusion+ViT_Large: Selective Attn+ViT_Large:

(a) Results on Test2016

(b) Results on Test2017

(c) Results on MSCOCO
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Figure 2: Comparison of systems 5-7 in Table 2 with limited textual context on three test sets. Blue/Red pillars
denote the results evaluated on the En-De and En-Fr tasks, respectively. We exhibit the BLEU scores of three MMT
models with different masking granularities. The shadow denotes the score obtained by text-only Transformer.
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Figure 4: BLEU scores [%] of various vision features on En-De Test2016.

segments and a special token CLS) when the image
resolution and the patch size are 384 × 384 and
16×16. However, Swin has a fixed sequence length
(49) restricted by the shifted window operation.
This leads to more fine-grained local features for
ViT, which is beneficial to the selective attention
mechanism for extracting more relevant pieces.

4.2 Impact of Learning Objectives

Then, we investigate the impact of the enhanced
vision features on MMT. Previous studies have al-
ready attempted to leverage object-detection fea-
tures (Zhao et al., 2020; Wang and Xiong, 2021)

but the observation here is slightly different. Be-
yond the object-detection pretrained features, we
also take the image captioning task into account.

Rows 11-13 in Table 2 summarize the results
of the three enhanced vision features on the stan-
dard MMT data, and Figure 4 depicts the results
on insufficient texts. Here we choose ViT-Tiny-
based models for comparison due to the similar
model capacity they own3. We see that not only
the object-detection (DETR and QueryInst), but
also the image captioning (CATR) pretrained fea-

3Only pretrained vision models in a 256 hidden-size are
available
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System Patch Reso. Leng. Color Probing Character Probing Noun Probing
Restrict Relaxed Restrict Relaxed Mask1 Mask2 Mask3 Mask4

ViT 16×16 384 576 49.67 64.49 74.32 79.46 36.59 32.08 29.47 27.29
ViT 16×16 224 196 50.11 61.87 68.47 74.32 36.27 31.49 29.70 26.51
ViT 32×32 384 144 49.02 63.18 70.19 76.03 35.53 30.50 28.28 26.20
ViT 32×32 224 49 48.80 61.00 68.19 73.47 35.14 30.30 28.12 25.19
Swin 4×4 224 49 43.57 54.47 70.04 75.18 36.12 30.91 27.52 25.89

Table 5: Comparison of various resolutions and patch sizes on the En-De (Test2016) probing tasks.

A boy plays in the leaves among the ducks .

A boy plays in the [MASK_NS] among the [MASK_NS] .

SRC:

MASK:
A woman is holding a small white statue .

A [MASK_P] is holding a small [MASK_C] [MASK_N] .

SRC:

MASK:

38
4
×

38
4

22
4
×

22
4

Figure 5: Attention maps of ViT in 384× 384 vs 224× 224 resolution and 16× 16 patch.

tures obtain superior performance compared with
ViT-tiny (Row 8) when the text is complete. It is
consistent with previous findings (Yin et al., 2020;
Zhao et al., 2020). However, the advantages do
not persist when switching to limited text scenarios.
A possible explanation is that these methods are
sensitive to the quality of the extracted objects. We
leave this as future work.

4.3 Impact of Resolution and Patch Size

It is well-known that higher resolutions are ben-
eficial to the accuracy improvement in computer
vision tasks (Dosovitskiy et al., 2021). Despite
the success of the Transformer architecture, re-
cent studies show that the success of ViT mainly
comes from the successful use of the patch schema
(Dosovitskiy et al., 2021). Here, we compare MMT
systems with different resolutions and patch sizes
based on ViT-Base. The results on three prob-
ing tasks (see Table 5) again confirm the above
assumption that fine-grained vision features are
more suited for the selective attention. Also, the
attention map visualized in Figure 5 demonstrates
that high resolution with fine-grained patch schema
can attend to correct regions of the image for each
masked token. For example, both models pay the
right attention to the masked character and noun,
but the model with low resolution fails to detect the

right region of color. The finding here may shed
light to other multimodal tasks, such as VQA.

4.4 Incongruent Decoding

Incongruent decoding is a widely used manner to
evaluate whether the visual modality contributes
to the text (Caglayan et al., 2019, 2021). Table 6
shows that incongruent decoding causes obvious
BLEU drops except for the ResNet feature. ViT
beats the ResNet with gated fusion. It yields higher
BLEU scores with congruent decoding and exhibits
a larger BLEU drop with incongruent decoding.
We also find that the ViT features learned from
scratch are also insensitive to the visual modality.
This is reasonable that the learned vision systems
are not sufficiently strong due to the data scarcity
of Multi30K. Thus the visual modality acts more
like noise signals. In addition, focusing on the
results of pretrained selective attention + ViT, the
gap between congruent and incongruent decoding
gradually becomes larger.

We also investigate whether the ensemble vision
features can help. Concretely, we choose ViT and
CATR to independently generate the fused repre-
sentations with the text feature, and then the ensem-
ble feature is obtained based on them. We see that
the ensemble vision feature performs the best on
the congruent decoding, and achieves the largest
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System Mask1 Mask2 Mask3 Mask4

Cong. Icong. Cong. Icong. Cong. Icong. Cong. Icong.
Transformer-Tiny 34.37 - 29.12 - 24.03 - 21.64 -

Gated Fusion + ResNet Pretrained 34.90 34.88 28.94 28.08 24.18 22.56 21.74 20.79
Gated Fusion + ViT Pretrained 35.61 33.77 30.40 25.43 27.58 19.79 25.30 16.66

Selective Attn + ViT Pretrained 36.59 32.88 32.08 25.58 29.47 20.42 27.29 15.80
Scratch 34.91 34.81 28.91 28.91 23.40 23.40 19.63 19.63

Selective Attn + DETR Pretrained 35.54 33.92 29.61 27.20 26.06 21.65 23.94 18.88
Selective Attn + CATR Pretrained 36.17 33.13 31.15 26.40 27.58 20.72 25.50 16.98
Select. Attn + ViT + CATR Pretrained 36.97 32.98 32.45 24.71 30.30 19.92 28.14 16.09

Table 6: The impact of incongruent decoding for the noun masking strategy. Here Cong./Icong. denotes congruent
and incongruent decoding, respectively. The results (BLEU [%]) were measured on En-De Test2016.

SRC: a brown-haired [man] in a [green] [shirt] plays a [trumpet] outdoors .
REF: ein mann mit braunen haaren in einem grünen hemd spielt im freien trompete .
MK : a brown-haired [MASK_P] in a [MASK_C] [MASK_N] plays a [MASK_N] outdoors .
CNN: eine braunhaarige frau in einem roten kleid spielt im freien gitarre .

(a brown-haired woman in a red dress plays a guitar outdoors.)
ViT: ein braunhaariger mann in einem grünen hemd spielt im freien trompete .

(a brown-haired man in a green shirt plays a trumpet outdoors.)

SRC: a [boy] is leaning on a [car] with [flowers] on the [hood] .
REF: ein junge lehnt sich an ein auto mit blumen auf der motorhaube .
MK : a [MASK_P] is leaning on a [MASK_N] with [MASK_NS] on the [MASK_N] .
CNN: ein mann lehnt an einer wand mit bäumen auf der straße .

(a man is leaning on a wall with trees on the street.)
ViT: ein kind lehnt sich an einem auto mit blumen auf dem gehweg .

(a child is leaning on a car with flowers on the sidewalk.)

Table 7: Qualitative examples from two complex scenarios. Strikethrough and bold words present the incorrect
and good lexical choices. Underline denotes the acceptable but not totally right translation.

BLEU gaps on four masking scenarios compared
with other systems. These results again indicate
that stronger visual contexts indeed help.

4.5 Case Study

Finally, we compare several real cases. We choose
gated fusion (CNN) (Wu et al., 2021) and selective
attention + ViT_Base (ViT) for comparison. The
qualitative examples in Table 7 demonstrate that
the visual modality is complementary rather than
redundant if the text is insufficient. To figure out
whether the German translation is right or not, we
provide the human-translation results. First, we
see the top half case of Table 7, ViT can fill in
the masked entities and generate the correct trans-
lations even four entities were masked. Unfortu-
nately, CNN incorrectly judges the man as a woman.
Also, it cannot distinguish the right color of shirt
due to the complex background. When given a
more complex image (the bottom half case), it is
still a challenge for ViT to generate the right trans-
lation. The observation here inspires us to design
a more powerful fusion method. Also, the data

scarcity problem is a root issue to prevent us from
further improving the cross-modal translation qual-
ity.

5 Related Work

Multimodal machine translation is a cross-domain
task in the field of machine translation. Early at-
tempts mainly focused on enhancing the MMT
model by better incorporation of the vision features
(Calixto and Liu, 2017; Elliott and Kádár, 2017;
Delbrouck and Dupont, 2017). However, directly
encoding the whole image feature brings additional
noise to the text (Yao and Wan, 2020; Liu et al.,
2021a). To address the above issue, Yao and Wan
(2020) proposed a multimodal self-attention to con-
sider the relative difference of information between
two modalities. Similarly, Liu et al. (2021a) used a
Gumbel Softmax to achieve the same goal.

Researchers also realize that the visual modality
may be redundant. Irrelevant images have little
impact on the translation quality, and no significant
BLEU drop is observed even the image is absent
(Elliott, 2018). Encouraging results appeared in
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Caglayan et al. (2019)’s work. They pointed out
that the visual modality is still useful when the lin-
guistic context is scarce, but is less sensitive when
exposed to complete sentences. More recently, Wu
et al. (2021) attributed the BLEU gain on MMT
tasks to the regularization training, and they again
emphasized the imperative of constructing proper
insufficient textual input. It is worthy to note that
the proposed probing task is an improved version
based upon previous work (Caglayan et al., 2019;
Wu et al., 2021). We also opensource the prepro-
cessed data and the corresponding scripts for the
subsequent researchers to experiment on.

Another line of research is to explore large-scale
cross-modal pretraining models. In this way, the
MMT task is regarded as a downstream task. For
example, CLIP (Radford et al., 2021) is a general
cross-modal pretraining model, which learns to
perform a wide variety of tasks via natural lan-
guage prompting. Caglayan et al. (2021) presented
a MMT-specific pretraining model which combines
the translation language modeling with masked re-
gion classification objectives. In this work, we
make a systematic study on whether stronger vision
features are helpful. We also extend the research
to enhanced features, such as object-detection and
image captioning, which are complementary to pre-
vious work.

6 Conclusions

In this work, we show that stronger vision features
(e.g. ViT-like models) strengthen MMT systems
on three proposed probing tasks. We present a
selective attention method for ViT-based models to
make better use of the patch-level representation.
The result here shows a promising line of research
on developing better vision models for multimodal
tasks. As far as we know, this is the first attempt
to build MMT systems with Transformer only. In
future work, we are willing to investigate whether
it is possible to use a single set of parameters to
encode the vision and text modalities.
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