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Abstract

A recent study by Feldman (2020) proposed
a long-tail theory to explain the memorization
behavior of deep learning models. However,
memorization has not been empirically veri-
fied in the context of NLP, a gap addressed by
this work. In this paper, we use three different
NLP tasks to check if the long-tail theory holds.
Our experiments demonstrate that top-ranked
memorized training instances are likely atypi-
cal, and removing the top-memorized training
instances leads to a more serious drop in test
accuracy compared with removing training in-
stances randomly. Furthermore, we develop an
attribution method to better understand why a
training instance is memorized. We empirically
show that our memorization attribution method
is faithful and share our interesting finding that
the top-memorized parts of a training instance
tend to be features negatively correlated with
the class label.

1 Introduction

In recent years, there has been an increasing
amount of interest in the machine learning commu-
nity to understand the memorization behaviour of
deep neural network models. Studies have shown
that deep learning models often have sufficient ca-
pacities to “memorize” training examples (Zhang
et al., 2017; Arpit et al., 2017). A number of re-
cent studies tried to understand how memorization
helps generalization (Chatterjee, 2018; Feldman,
2020; Montanari and Zhong, 2020; Khandelwal
et al., 2020, 2021)

In NLP, memorization of training examples by
deep learning models is also often observed (Li and
Wisniewski, 2021; Lewis et al., 2021; Raunak et al.,
2021), and existing studies usually see memoriza-
tion as something that hinders generalization. For
example, Elangovan et al. (2021) tried to measure
the amount of “data leakage” in NLP datasets in
order to assess a model’s ability to memorize vs.
its ability to generalize.

However, recently Feldman (2020) proposed a
long-tail theory, which states that memorization is
necessary for generalization if the data follows a
long-tail distribution. This theory was later em-
pirically validated by Feldman and Zhang (2020),
but their validation was done in only the computer
vision domain. It is therefore interesting and useful
for us to study whether the long-tail theory also
holds in NLP; such validation would help us bet-
ter understand the utility of memorization in the
context of NLP.

The long-tail theory states that if the training
data form a long-tail distribution, where there are
many small “sub-populations” that are atypical in-
stances, and if these small sub-populations are also
present in the test data, then memorizing these atyp-
ical instances helps the model generalize to the test
data. In order to validate this long-tail theory in
the context of NLP, we follow the experiments and
analyses on image classification done by Feldman
and Zhang (2020). Specifically, we aim to answer
the following questions in this paper: (1) On a few
typical NLP tasks, are the training instances mem-
orized by deep learning models indeed atypical
instances? (2) Does memorizing these training in-
stances lead to lower generalization error on the
test instances?

In addition, observing that it is not always
straightforward to understand why a training in-
stance is being memorized, we study the following
novel research question: (3) Can we provide some
explanation about why a training instances is mem-
orized? To be more specific, can we attribute the
memorization score of a training instance to its in-
dividual tokens such that we can quantify which to-
kens require the most memorization by the model?

To answer these research questions, we first
adopt self-influence (Koh and Liang, 2017) as our
memorization scoring function. Compared with the
estimator proposed by Feldman and Zhang (2020),
our self-influence function is also theoretically mo-
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tivated but has the advantage that it is easy for
us to derive a memorization attribution method
for the third research question above. We present
the self-influence function in Section 2.1, and in
Section 2.2, we present our novel memorization
attribution method. We conduct experiments on
three NLP tasks: sentiment classification, natural
language inference (NLI) and text classification.

Our experiments and analyses demonstrate that
the training instances with the highest memoriza-
tion scores tend to be atypical, at least on senti-
ment classification and NLI. On all three tasks,
we find that removing the top-memorized train-
ing instances results in significantly dropped test
performance, and the drop is markedly higher com-
pared with removing a random subset of training
instances. We also evaluate our memorization at-
tribution method and find that our method can in-
deed identify input tokens that require the most
memorization. Finally, we apply our memorization
attribution method to sentiment classification and
to an image classification dataset, and we share the
interesting finding that the highly-memorized in-
put features tend to be those that are negatively
correlated with the class labels. Our code and
data are available at https://github.com/
xszheng2020/memorization.

2 Our Approach

To validate the long-tail theory in the context NLP,
let us first review the main claims of the theory.
First, the long-tail theory hypothesizes that training
instances with the same class label has a long-tail
distribution, with instances at the tail end being
those atypical instances that need to be memorized.
To verify this assumption, we first identify those
training instances that are memorized by a trained
deep learning model and then check if they are
indeed atypical. Specifically, we follow Feldman
and Zhang (2020) and adopt “self-influence” to
measure memorization, but we use the influence
function proposed by Koh and Liang (2017) to de-
fine self-influence. Second, the long tail theory
states that memorization of the atypical training in-
stances leads to lower generalization error, because
the atypical training instances belong to subpop-
ulations that also have presence in the test data.
To verify this statement, we check whether remov-
ing the memorized training instances would lead
to more significant performance drop on the test
data than removing a random sample of training

instances.
It is worth noting that the approach outlined

above follows the experiments conducted by Feld-
man and Zhang (2020) to validate the long tail
theory on image classification.

Furthermore, we want to pinpoint which parts
of a memorized instance are most critical for mem-
orization. In other words, since each training in-
stance is assigned a memorization score, can we
attribute the memorization score to different parts
of the input of this instance? This presumably can
help us better understand which parts of the input
need to be memorized the most. We follow the
idea from Integrated Gradients (IG) (Sundarara-
jan et al., 2017) and derive a formula to compute
memorization attribution.

2.1 Memorization: Self-Influence
The high level idea of Feldman (2020) to define
memorization is that memorization measures how
the prediction on a training instance z = (x, y)
(where x is the observation and y is the label)
changes when z is removed from the training data.
This notion is closely related to the influence func-
tion defined by Koh and Liang (2017), which mea-
sures how much the loss at a test point ztest is influ-
enced by a slight upweighting of a training instance
z in the training loss function. While influence
function is generally used to measure the influence
of a training instance on a test instance, if we use
it to measure the influence of a training instance
on itself, i.e., to measure “self-influence,” then this
self-influence corresponds to the general notion of
memorization defined by Feldman (2020).

Adopting the influence function defined by Koh
and Liang (2017), we define the memorization
score for a training instance z as follows:

Mremove(z)
def
= −dP (y|x; θ̂ϵ,−z)

dϵ

∣∣∣∣
ϵ=0

, (1)

where θ̂ϵ,−z represents the parameters of the model
trained with the instance z down-weighted by
ϵ, P (y|x; θ) is the conditional probability using
θ. Thus Mremove(z) is the amount of change of
P (y|x; θ) when the instance z is down-weighted
by a small amount ϵ.

After several steps of derivation (details to be
given in Appendix A), the computation of Eqn 1
follows the following formula:

Mremove(z) = −∇θP (y|x; θ̂)⊤H−1

θ̂
∇θL(z, θ̂),

(2)
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where θ̂ is the parameters of the model trained
with all instances, L is the loss function (cross
entropy in our implementation) and Hθ̂ =
1
n

∑n
i=1∇2

θL(zi, θ̂), where (z1, z2, . . . , zn) are the
training instances.

2.2 Memorization Attribution

In order to better understand why an instance is
memorized, we propose a fine-grained notion of
memorization at “feature” level instead of instance
level, i.e., to attribute the memorization score of an
instance to its individual features. Our proposed
memorization attribution method is general and can
be applied to any input representation. For NLP
tasks, this means we attribute the memorization
score defined above to each token of the input se-
quence. For images, this would be to attribute the
memorization scores to pixels.

For this memorization attribution, we borrow the
idea from Integrated Gradients (IG) (Sundararajan
et al., 2017), which is a gradient-based attribution
method for understanding which parts of a test in-
stance are more responsible for its prediction. In
particular, the IG method requires an uninformative
baseline input x′ as a reference point. Similarly,
here we also assume a baseline x′. This baseline
is supposedly an instance that does not have any
influence on any test instance, and in our imple-
mentation, we use an sequence of the same length
as x but consisting of only the [MASK] tokens.

We first consider the influence of replacing
z = (x, y) with the baseline z′ = (x′, y) (which is
similar to perturbation-based influence from (Koh
and Liang, 2017)):

Mreplace(z)
def
= −

dP (y|x; θ̂ϵ,z′,−z)

dϵ

∣∣∣∣
ϵ=0

, (3)

where θ̂ϵ,z′,−z represents the parameters resulting
from moving ϵ mass from z to z′, i.e., adding z′

to the training data and giving it a weight of ϵ in
the loss function while reducing the weight of the
original z by ϵ. Thus Mreplace(z) is the amount of
change of P (y|x; θ) when a small amount ϵ of z is
replaced by the uninformative z′.

It is worth pointing out that we can regard
Mreplace(z) as an alternative way of measuring
the amount of memorization of z, similar to how
perturbation-based influence is an alternative way
of measuring influence in (Koh and Liang, 2017).

With similar derivation steps, the computation
of Eqn 3 is as follows:

Mreplace(z) = −s⊤
(
∇θL(z, θ̂)−∇θL(z

′, θ̂)
)
,

(4)
where s = H−1

θ̂
∇θP (y|x; θ̂). (For more details,

please refer to Appendix B.)
The advantage of using this alternative measure

of memorization is that Mreplace(z) can be decom-
posed into a linear combination of scores, each cor-
responding to a single token in the input sequence.
For NLP applications, the input x usually corre-
sponds to an embedding matrix X ∈ RN×d (where
N is the number of tokens and d is the embedding
dimensions). We can show that

Mreplace(z) = −
N∑
t=1

d∑
l=1

rt,l(Xt,l −X′
t,l),

(5)
where r =

[∫ 1
α=0

dg(X′+α(X−X′))
dx dα

]
s and

g(X) = ∇θL((X, y), θ̂), which can be efficiently
computed by the hessian-vector product (Pearlmut-
ter, 1994). For more details, please refer to Ap-
pendix B.

The memorization attribution of the t-th token is
thus given by −

∑d
l=1 rt,l × (Xt,l −X′

t,l).

3 Experiments

With the memorization score defined in Eqn 2 and
the memorization attribution score defined in Eqn 5,
we now conduct experiments to answer the three
research questions raised in Section 1.

3.1 Experiment Settings
We conduct our experiments on the following three
datasets:
SST-2 (Socher et al., 2013): This is a dataset for
sentence-level binary (positive vs. negative) sen-
timent classification. It consists of 6,920 training
instances, 872 development instances and 1,821
test instances.
SNLI (MacCartney and Manning, 2008): This is a
dataset for natural language inference, which aims
to predict the entailment relation (contradiction,
neutral or entailment) between a premise and a
hypothesis. We combine the contradiction and
neutral classes into a single non-entailment class,
and randomly sample 10k training instances, 6,658
development instances and 6,736 test instances.
Yahoo! Answers (Zhang et al., 2015): This is
a collection of question-answer pairs categorized
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into 10 topic-based classes. We randomly sample
10k training instances, 10k development instances
and 10k test examples.

In addition, we also use CIFAR-10 (Krizhevsky
et al., 2009), which is a dataset for 10-class image
classification. We randomly sample 10k training
instances, 5k development instances and 10k test
instances. For some tasks, we down-sample the
training set because influence function is known to
be expensive to compute.

For all NLP tasks, we adopt the pre-trained
Distill-BERT model (Sanh et al., 2019) that con-
sists of 6 transformer layers, where each layer con-
sists of 12 attention heads. We use the final hidden
state of the [CLS] token for classification.1 For
CIFAR-10, we extract visual grid features using
a pre-trained ResNet50 (He et al., 2016) first and
then train a MLP classifier on top of that.

We use the SGD optimizer, setting the learning
rate, momentum and batch size to 0.01, 0.9 and 32,
respectively. We tune other hyper-parameters on
the development set manually.

Although influence function is model-dependent
and therefore models trained with different ran-
dom seeds may produce different memorization
scores for the same training instance, we found
that in practice, ranking training instances based on
memorization scores obtained from models trained
by different random seeds produces similar rank-
ings across different models. Thus, we only con-
sider a single model checkpoint for computing our
self-influence based memorization scores in the
following experiments. (See Appendix C for the
exact description.) For memorization attribution,
the number of Riemann Sum steps is set to be 50.

3.2 Checking Memorized Instances

Group Negative Positive

Top-10% 35.80 74.00

All 23.24 86.39

Bottom-10% 14.92 94.52

Table 1: The average percentage of positive phrases over
(1) the top-10% memorized positive/negative instances,
(2) all positive/negative instances, and (3) the bottom-
10% memorized positive/negative instances.

1Following Han et al. (2020); Guo et al. (2021), we
“freeze" the word embedding layer and the first 4 transformer
layers, only fine-tuning the last 2 transformer layers and the
final projection layer because of the computation limits.

In the first set of experiments, we use our self-
influence-based memorization scoring function as
defined in Eqn. 1 to rank the training instances.

Our goal is to check if the top-memorized in-
stances are indeed atypical instances. However, it
is difficult to measure the typicality of instances.
We note that in the prior work (Feldman and Zhang,
2020) where the authors tried to validate the long-
tail theory on computer vision datasets, there was
not any quantitative experiment, and the authors
relied only on qualitative analysis (i.e., manual in-
spection of the top-ranked instances) to show that
memorized instances tend to be atypical. In our ex-
periments, we perform two kinds of checking: (1)
First, we adopt qualitative evaluation as Feldman
and Zhang (2020) did on both SST-2 and SNLI. For
Yahoo! Answers, however, because each instance
contains a long document, it is not easy for humans
to judge whether or not an instance is atypical. (2)
Second, we define quantitative measures of typi-
cality on sentiment analysis because annotations
are available on this dataset and these annotations
allow us to define some form of typicality.

SST-2
For SST-2, we judge whether or not the top-ranked
memorized instances are atypical in two ways: (1)
The first is based on a heuristic metric. We check
the percentage of positive phrases in an instance,
where phrase-level sentiment polarity labels are
from the annotations provided by SST-2. Intu-
itively, a typical positive sentence should have a
relatively high percentage of positive phrases and a
typical negative sentence should have a relatively
low percentage of positive phrases. We collect such
statistics from SST-2 based on the phrase-level an-
notations and found that this is to a large extent
true. For example, more than 75% of positive sen-
tences have at least 78.31% of positive phrases and
more than 75% of negative sentences have at most
35.73% of positive phrases. (See Appendix D for
details.) Therefore, by checking the percentage
of positive phrases inside a positive or negative
instance, we can in a way judge whether that in-
stance is typical or atypical. When calculating the
percentage of positive phrases inside a sentence,
we apply Laplace smoothing. (2) We also manually
inspect the top-ranked and bottom-ranked training
instances based on the memorization scores and
use our human knowledge to judge whether the top-
ranked ones are atypical while the bottom-ranked
ones are typical.
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Negative Positive

Content Mem Content Mem

Starts out with tremendous promise, introducing an intriguing and alluring premise,
only to fall prey to a boatload of screenwriting cliches that sink it faster than a leaky
freighter

14.83
The director, Mark Pellington, does a terrific job conjuring up a sinister, menacing
atmosphere though unfortunately all the story gives us is flashing red lights, a
rattling noise, and a bump on the head

14.28

Mr. Wollter and Ms. Seldhal give strong and convincing performances, but neither
reaches into the deepest recesses of the character to unearth the quaking essence of
passion, grief and fear

13.65 This is a fascinating film because there is no clear-cut hero and no all-out villain 14.18

This is a monumental achievement in practically every facet of inept filmmaking:
joyless, idiotic, annoying, heavy-handed visually atrocious, and often downright
creepy

11.01 The film is reasonably entertaining, though it begins to drag two-thirds through,
when the melodramatic aspects start to overtake the comedy 11.04

Sadly, Full Frontal plays like the work of a dilettante 0.00 The large-format film is well suited to capture these musicians in full regalia and
the incredible IMAX sound system lets you feel the beat down to your toes 0.00

A mess 0.00
P.T. Anderson understands the grandness of romance and how love is the great
equalizer that can calm us of our daily ills and bring out joys in our lives that we
never knew were possible

0.00

The images lack contrast, are murky and are frequently too dark to be decipherable 0.00 together writer-director Danny Verete’s three tales comprise a powerful and
reasonably fulfilling gestalt 0.00

Table 2: Top-3 and Bottom-3 memorized training examples from the SST-2 task. Note that there are many examples
having zero memorization score, we randomly sample 3 out of them.

Non-Entail Entail

Content Mem Content Mem

P: A man in a bright pastel blue overcoat plays a unique instrument by the corner
of a building with a sign propped against a bag in front of him
H: A man plays a guitar outside

18.85 P: An older man in a white shirt is playing a keyboard
H: A man is playing the piano 23.24

P: A young boy in a yellow rash guard is walking on the shore carrying a surfboard
H: A boy is walking on the boardwalk 17.51

P: A woman in a white and light green jacket and another woman in a purple shirt
, both wearing hats , sit at a table watching a cooking fire
H: A woman in a white and light green jacket

18.94

P: Someone wearing a blue shirt is riding a bike with a child ’ s seat on the front
of it
H: A person is riding a bike on the street

15.52 P: A man sits on a folding chair outside while listening to music on his iPod
H: There is a man on a chair listening to music on an mp3 player 18.89

P: A brunette woman does a wheelie on a white bicycle with purple tires
H: A woman rides her motorcycle to town 0.00 P: A married man is taking pictures while standing in a crowd of people

H: There are people in a crowd 0.00

P: A baseball player hitting a home run
H: The cat eats sheep 0.00 P: A man recreates a joust from mid - evil times

H: A person created something 0.00

P: A child in a vest and hat is posing for a picture
H: A child is eating his lunch 0.00 P: A boy is wearing a red towel standing on the beach

H: A person is at the beach 0.00

Table 3: Top-3 and Bottom-3 memorized training examples from the SNLI task. Note that there are many examples
having zero memorization score, we randomly sample 3 out of them.

Table 1 shows the average percentage of positive
phrases in the top-10% of the memorized positive
(or negative) training instances and the bottom-10%
of the memorized positive (or negative) training in-
stances. As a reference point, we also show the
average percentage over all positive (or negative)
training instances. We can see that the top-10%
memorized instances indeed are atypical. Specif-
ically, those negative sentences with high mem-
orization scores have a high percentage of posi-
tive phrases on average (35.80%), clearly higher
than the average percentage of positive phrases of
all negative instances (23.24%). This makes the
top-memorized negative instances very different
from typical negative instances. On the other hand,
the bottom-10% negative instances (i.e., those in-
stances that are not memorized) have clearly much
lower percentage of positive phrases (14.92%),
which is what we expect for typical negative in-
stances. Similar observations can be made with
the positive training instances. Overall, the results
in Table 1 suggest that indeed the top-memorized
training instances in SST-2 are atypical.

Next, we manually inspect the top-ranked and
bottom-ranked training instances of SST-2 in Ta-

ble 2. We can see that the top-ranked memorized
instances tend to express their overall opinions in
an indirect way. These sentences often contain a
contrast between positive and negative opinions.
We therefore believe that they are atypical for senti-
ment classification. On the other hand, the bottom-
ranked instances, i.e., those with 0 memorization
scores, tend to directly expression their opinions
with strong opinion phrases, and we believe these
represent common instances.

SNLI

For the task of natural language inference, it is hard
to come up with a heuristic metric like the one used
for sentiment classification. We therefore focus on
manual inspection of the top-ranked and bottom-
ranked training instances. In Table 3 we show the
top-3 and bottom-3 memorized training instances
from SNLI. We can see from the table that in the
top-ranked memorized non-entailment instances,
the hypothesis tends to be much shorter than the
premise and there tends to be no obvious contradic-
tion. In contrast, the bottom-ranked non-entailment
instances tend to be contradictions where there are
obvious contradictory words/phrases in the premise

6269



and the hypothesis, such as “bicycle” vs. “motor-
cycle,” “player” vs. “cat” and “posing for a picture”
vs. “eating his lunch.” We hypothesize that the
top-ranked non-entailment instances are atypical
because they do not have obvious signals of non-
entailment such as the contradictory word pairs we
see in the bottom-ranked non-entailment instances.
For entailment cases, we find that the top-ranked in-
stances often contain word pairs that are synonyms
but are rare in the training data. For example, we
find that the word pair “keyboard” and “piano” ap-
pears only two times in the training data, which
implies that this instance is an atypical example.
Similarly, we find that the word/phrase pair “iPod”
and “mp3 player” appear only once in the train-
ing data. On the other hand, the bottom-ranked
entailment instances tend to be those where the hy-
pothesis contains less information than the premise,
which may be a common type of entailment in-
stances.

3.3 Marginal Utility of Memorized Instances

In the second set of experiments, we check whether
memorizing those training instances with the high-
est memorization scores leads to better perfor-
mance on the unseen test data. To do so, we com-
pare the performance of the model on test data
when top-ranked memorized training instances are
removed during training versus the performance
when the same number of randomly selected train-
ing instances are removed. If memorization is ben-
eficial for the test data, then we would expect to see
larger performance drop when top-ranked memo-
rized training instances are removed than when
random training instances are removed. There-
fore, the amount of performance drop represents
the marginal effect of the memorized instances on
the test accuracy. We show the test accuracy in
Figure 1 when X% of the training instances are
removed, where we set X to a few different values.
We re-train the model 5 times and show the aver-
age test accuracy as well as the standard deviation.
We also show the lowest absolute memorization
score of the top-X% of training instances in Fig-
ure 1. For reference, here we also use CIFAR-10 to
verify that our self-influence estimation using the
influence function works similarly to the influence
estimator used by Feldman and Zhang (2020).

We can observe the following from Figure 1: (1)
On CIFAR-10 (Figure 1(d)), we see that clearly
the test accuracy drops more significantly when

top-ranked memorized training instances instead of
random training instances are removed. Because
Feldman and Zhang (2020) reported the same ob-
servation, this suggests that our memorization score
based on the influence function proposed by Koh
and Liang (2017) works similarly to the memoriza-
tion estimator used by Feldman and Zhang (2020).
This verifies the reliability of our memorization
scoring function. (2) On SST-2, Yahoo! Answers
and SNLI, we can see that consistently when the
same percentage of training instances are removed,
removing top-ranked memorized instances has a
clearly bigger impact on the test accuracy com-
pared with removing random instances. For exam-
ple, on SST-2, the marginal utility of the top-30%
memorized training example is about 1.44 percent-
age points (vs. 0.70 percentage points for random
subset of 30% of training examples).

This verifies that on SST-2, Yahoo! Answers and
SNLI, memorizing those training instances could
help improve the performance on the test data.

3.4 Evaluating Memorization Attribution

In this section, we evaluate whether our memoriza-
tion attribution method is faithful, i.e., whether
it indeed picks up tokens that have higher self-
influence.

Intuitively, if the memorization attribution
method detects those memorized tokens in a train-
ing instance faithfully, then removing these tokens
in that instance should result in a lower influence
I of the perturbed instance on its original form
(details to be given in Appendix A). We therefore
define a metric called Reduction Rate as follows:

1

|Z|
∑
z∈Z

I(z, z)− I(z\attr, z)

I(z, z)
, (6)

where Z is the set of top memorized training in-
stances and z\attr is the perturbed input where the
top-k% memorized tokens are replace by the base-
line token [MASK]. We can see that this Reduc-
tion Rate measures how much self-influence has
been reduced after the top-memorized tokens are
replaced with [MASK].2

Figure 2 demonstrates the significant effect of
the removal of the top-memorized tokens from the
top-memorized training instances. One could ask
whether this effect is solely due to the input pertur-
bation. To answer this question we include in the

2We consider only top-10% memorized instances due to
computation constraints.
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Figure 1: For each dataset, the top figure shows the test accuracy after we remove the top-X% memorized training
instances or the same number of randomly selected training instances. The test accuracy is averaged over 5 runs of
retraining with different random seeds, and standard deviation is shown with the bars. The bottom figure shows the
lowest memorization score of the top-X% of the memorized training instances.
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(c) CIFAR-10

Figure 2: For each dataset, the top figure shows the reduction rate of removing the top-k% memorized tokens and of
removing the same number of randomly selected training tokens.

comparison the reduction rate of random attribu-
tion, i.e., we randomly remove some tokens from
the training instances. We can see that removing
tokens picked up by our memorization attribution
method results in a much larger Reduction Rate
until almost 90% of the tokens are removed. This
result suggests that our memorization attribution
method can indeed identify those tokens in a train-
ing instance that have high self-influence on that
instance.

3.5 Examples of Memorization Attribution

To better understand why certain training instances
are memorized, we apply our memorization attribu-
tion method to SST-2, Yahoo! Answers and CIFAR-
10. We do not discuss our memorization attribution
method applied to the NLI task because we find that
it is not easy to interpret the results. In some other
studies (e.g., Han et al. (2020)), people have also
reported different behaviours of NLI from tasks
relying on shallow features such as sentiment clas-
sification and topic-based text classification.

We find that on SST-2, Yahoo! Answers and

CIFAR-10, in most cases our memorization attribu-
tions are easy to be interpreted by humans. In par-
ticular, without any cherry-picking, we select those
instances with the highest memorization scores to
present. We find that interestingly, for both SST-2
and CIFAR-10, the trained deep learning model
tends to memorize those parts of an instance that
are negatively correlated with the class label of that
instance, as shown in Table 4 and Figure 3.3 On
SST-2, for example, the model needs to memorize
positive phrases such as “tremendous promise” and
“intriguing and alluring” that show up in an overall
negative instance. On CIFAR-10, we observe that
for images that are easily mis-classified, the model
memorizes those pixels that are associated with the
wrong class label, or in other words, pixels that are
negatively correlated with the correct class label.
For example, the “cat” image shown in Figure 3
looks like a frog. The model memorizes those pix-
els (shown in red) around the tummy of the cat

3For Yahoo! Answers, because each instance is long, due
to the space limit, we show the memorization attributions in
the Appendix E.
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Content Label

starts out with tremendous promise introducing an intriguing and alluring premise only to fall prey to
a boatload of screenwriting cliches that sink it faster than a leaky freighter Neg

mr wollter and ms seldhal give strong and convincing performances but neither reaches into the
deepest recesses of the character to unearth the quaking essence of passion grief and fear Neg

this is a monumental achievement in practically every facet of inept filmmaking joyless idiotic
annoying heavy handed visually atrocious and often downright creepy Neg

the director mark pellington does a terrific job conjuring up a sinister menacing atmosphere though
unfortunately all the story gives us is flashing red lights a rattling noise and a bump on the head Pos

this is a fascinating film because there is no clear cut hero and no all out villain Pos
the film is reasonably entertaining though it begins to drag two thirds through when the melodramatic
aspects start to overtake the comedy Pos

Table 4: The top-3 memorized training instances for each class from SST-2. Highlighted words are those with
high attribution values (red for positive memorization attribution and blue for negative memorization attribution) as
computed by our memorization attribution method.

plane car bird cat deer dog frog horse ship truck

Figure 3: The top-1 memorized training instance for each class from CIFAR-10. Highlighted patches are those
having high attribution values (red for positive memorization attribution and blue for negative memorization
attribution) as computed by our memorization attribution method.

because those pixels make the image look like a
frog image. Similarly, in the “dog” image, which
looks like a horse, the memorized pixels (shown
in red) are around the body of the dog, and these
pixels make the image look like a horse image. On
the other hand, the dog’s head in this image, which
is a typical dog’s head, has negative memorization
attribution scores, which means it does not need to
be memorized.

Given the interesting results above, we believe
that model developers can gain insights about what
a model finds hard to learn from other training in-
stances (and thus has to memorize), and model
developers can subsequently take actions like up-
weighting memorized instances or collecting sim-
ilar data to improve the performance on certain
subpopulations if desired.

4 Related Work

The long-tail theory: The long-tail theory pro-
posed by Feldman (2020) is relatively new and has
not been systematically validated in NLP. Our work
is the first to empirically check the validity of this
theory on NLP tasks. Raunak et al. (2021) used
the long-tail theory to explain hallucinations under
source perturbations in Neural Machine Transla-

tion. They assume the theory holds in NMT rather
than validating the theory itself as we do. Kong and
Chaudhuri (2021) investigated the memorization
phenomenon for Variational Auto-Encoder also via
self-influence.

Memorization vs. generalization: It is well-
known that deep learning models possess strong
capabilities to memorize training instances (Zhang
et al., 2017; Arpit et al., 2017). In the context
of NLP, Li and Wisniewski (2021) showed that
BERT is more likely to memorize shallow pat-
terns from the training data rather than uncover
abstract properties. Some recent work has tried to
combine interpolation methods with deep learning
methods to generalize via memorization (Khandel-
wal et al., 2020, 2021). However, previous work
using interpolation methods did not explain why
memorization is necessary in the first place. Our
work follows the long-tail theory that views mem-
orization as beneficial to generalization when the
data follows a certain type of long-tail distribution.
There has also been some work studying “forget-
ting,” which is related to memorization (Toneva
et al., 2018; Yaghoobzadeh et al., 2021). How-
ever, in this paper we do not study this “forgetting”
phenomenon.
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Influence functions: Influence functions have
been studied for large-scale deep neural networks
by Koh and Liang (2017) and gained much atten-
tion in recent years. In the context of NLP, Han et al.
(2020) explored the usage of influence functions
to explain model predictions and unveil data arti-
facts. Meng et al. (2020) proposed a combination
of gradient-based methods and influence functions
to examine training history and test stimuli simul-
taneously. Our work, however, adopts influence
function as a tool to measure memorization.

5 Conclusions

In this paper, we empirically examine a recently
proposed long-tail theory in the context of NLP.
We use sentiment classification, natural language
inference and text classification to check the valid-
ity of the long-tail theory in NLP. We also propose
a memorization attribution method to reveal which
parts of an instance are being memorized. There
are two major takeaway messages: (1) Our experi-
ments empirically validated the long-tail theory on
the three NLP datasets, showing that memorization
is important for generalization, offers an alternative
view and helps NLP researchers to see the value of
memorization. (2) Our attribution method can be a
tool to help model developers better understand the
memorization behaviours of a model and possibly
further improve the model.

6 Ethical Considerations

Our work empirically validated the long-tail theory
in the context of NLP, offering an alternative view
to the relationship between memorization and gen-
eralization. This will help NLP researchers see the
value of memorization. However, previous work
showed that neural networks can be vulnerable to
privacy attacks such as membership inference at-
tacks because these models are able to memorize
training instances, and sometimes sensitive private
information may be contained in the training in-
stances (Shokri et al., 2017; Zhang et al., 2017;
Feldman and Zhang, 2020). Thus, there is a trade-
off between the accuracy of a model and the privacy
of the data. In other words, although memorization
can help reduce generalization error (as we showed
in this paper), it also increases the vulnerability of
the system to privacy attacks, which raises ethical
concerns.

The computation of influence functions used in
our work is massive because of the computation of

inverting the hessian matrices. To reduce the com-
putation costs, i.e., power consumption, we may
adopt other influence estimators like TracIn (Pruthi
et al., 2020), which is hessian-free and thus faster.
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A Derivation of the Memorization Scores

For clarity, here we repeat the derivation of In-
fluence Functions by Koh and Liang (2017) and
provide self-influence functions as its special case.
Note that self-influence functions are used as our
memorization scores.

Given training points z1, ..., zn, where zi =
(xi, yi), xi is the observation and yi is the label,
we train a predictor via minimizing the empirical
risk R(θ)

def
= 1

n

∑n
i=1 L(zi, θ) to pick parameters

θ ∈ Θ. I.e., the optimal parameters are obtained
by θ̂ = argminθ∈ΘR(θ). We assume that R is
twice-differentiable and strongly convex.

i.e.,

Hθ̂

def
= ∇2R(θ̂) =

1

n

n∑
i=1

∇2
θL(zi, θ̂) (7)

exists and is positive definite. This guarantees the
existence of H−1

θ̂
, which we will use in the follow-

ing derivation.
The high-level idea of Influence Functions is to

approximate leave-one-out retraining, which corre-
sponds to a removing operation, via computing the
parameter change if z were up-weighted or down-
weighted by some small amount ϵ.

If we up-weight the training point z, the per-
turbed parameters θ̂ϵ,z can be written as

θ̂ϵ,z = argmin
θ∈Θ

(R(θ) + ϵL(z, θ)) . (8)

Consider the parameter change ∆ϵ = θ̂ϵ,z −
θ̂, and note that, as θ̂ does not depend on ϵ, the
quantity we want to compute can be written in
terms of it:

dθ̂ϵ,z
dϵ

=
d∆ϵ

dϵ
. (9)

Since θ̂ϵ,z is a minimizer of Eqn 8, let us examine
its first-order optimality condition:

0 = ∇R(θ̂ϵ,z) + ϵ∇L(z, θ̂ϵ,z). (10)

Let us define f(θ) to be ∇R(θ) + ϵ∇L(z, θ).
Next, since θ̂ϵ,z → θ̂ as ϵ → 0, we perform a

Taylor expansion on f(θ̂ϵ,z). Given Taylor’s For-
mula f(θ +∆θ) = f(θ) + f ′(θ)∆θ + o(∆θ), we
have:

0 = f(θ̂ϵ,z)

= f(θ̂ +∆ϵ)

≈ f(θ̂) + f ′(θ̂)∆ϵ

= [∇R(θ̂) + ϵ∇L(z, θ̂)]

+ [∇2R(θ̂) + ϵ∇2L(z, θ̂)]∆ϵ,

(11)

where we have dropped the term o(∥∆ϵ∥).
Solving for ∆ϵ, we get ∆ϵ ≈ −[∇2R(θ̂) +

ϵ∇2L(z, θ̂)]−1[∇R(θ̂) + ϵ∇L(z, θ̂)].
Since θ̂ minimizes R, we have ∇R(θ̂) = 0.

Then we have:

∆ϵ ≈ −[∇2R(θ̂) + ϵ∇2L(z, θ̂)]−1ϵ∇L(z, θ̂).
(12)

Referring to (Henderson and Searle, 1981), we
have:

(A+B)−1 = (I +A−1B)−1A−1

= A−1 −A−1B(I +A−1B)−1A−1

= A−1 −A−1B(A+B)−1,
(13)

which only requires A and A+B to be nonsingular
matrix. As mentioned above, the matrices that we
are considering are positive definite. The determi-
nant of a positive definite matrix is always positive,
so a positive definite matrix is always nonsingular.

Substituting A = ∇2R(θ̂) and B = ϵ∇2L(z, θ̂)
and dropping o(ϵ) terms, we have

∆ϵ ≈ −∇2R(θ̂)
−1∇L(z, θ̂)ϵ. (14)

Combining with Eqn 7 and Eqn 9, we conclude
that:

dθ̂ϵ,z
dϵ

∣∣∣∣
ϵ=0

= −H−1

θ̂
∇L(z, θ̂). (15)

We instead down-weight the training point z to
keep consistency with our memorization attribution
method introduced later, the perturbed parameters
θ̂ϵ,−z can be written as

θ̂ϵ,−z = argmin
θ∈Θ

(R(θ)− ϵL(z, θ)) . (16)

It is easy to see that

dθ̂ϵ,−z

dϵ

∣∣∣∣
ϵ=0

= H−1

θ̂
∇L(z, θ̂). (17)

Next, we apply the chain rule to measure how
down-weighting z changes functions of θ̂.

I(z, ztest)
def
=

dF (ytest, xtest; θ̂ϵ,−z)

dϵ

∣∣∣∣
ϵ=0

= ∇θF (ytest, xtest; θ̂)
⊤dθ̂ϵ,−z

dϵ

∣∣∣∣
ϵ=0

= ∇θF (ytest, xtest; θ̂)
⊤H−1

θ̂
∇θL(z, θ̂),

(18)
where F is usually the loss function.
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While influence function is generally used to
measure the influence of a training instance on a
test instance, if we use it to measure the influence
of a training instance on itself, i.e., to measure self-
influence, then this self-influence corresponds to
the general notion of memorization defined by Feld-
man (2020); Feldman and Zhang (2020). Based
on this notion, we set F as the negative estimated
conditional probability −P (y|x; θ) and define the
memorization score for a training instance z as
follows:

Mremove(z)
def
= −dP (y|x; θ̂ϵ,−z)

dϵ

∣∣∣∣
ϵ=0

= −∇θP (y|x; θ̂)⊤dθ̂ϵ,−z

dϵ

∣∣∣∣
ϵ=0

= −∇θP (y|x; θ̂)⊤H−1

θ̂
∇θL(z, θ̂).

(19)

B Derivation of Memorization
Attribution

In order to better understand why an instance is
memorized, we propose a fine-grained notion of
memorization at “feature” level instead of instance
level, i.e., to attribute the memorization score of an
instance to its individual features.

To conduct attribution, a natural requirement is
to introduce a baseline. Thus we first consider
a variant of the Influence Functions that approxi-
mates the resulting effect of replacing a training
point z with a baseline training point z′, which is
similar to the perturbation-based influence by Koh
and Liang (2017).

The perturbed parameter θ̂ϵ,zδ,−z can be written
as:

θ̂ϵ,z′,−z = argmin
θ∈Θ

(
R(θ) + ϵL(z′, θ)− ϵL(z, θ)

)
.

(20)
Similar to the derivation shown the previous sec-

tion, we can derive the following definition of a
memorization score based on such perturbation:

Mreplace(z)
def
= −

dP (y|x; θ̂ϵ,z′,−z)

dϵ

∣∣∣∣
ϵ=0

= −∇θP (y|x; θ̂)⊤
dθ̂ϵ,z′,−z

dϵ

∣∣∣∣
ϵ=0

= −s⊤
(
∇θL(z, θ̂)−∇θL(z

′, θ̂)
)
,

(21)
where s = H−1

θ̂
∇θP (y|x; θ̂).

We now show that Mreplace(z) can be decom-
posed into a linear combination of scores, each cor-
responding to a single token in the input sequence.
For NLP applications, the input x usually corre-
sponds to an embedding matrix X ∈ RN×d (where
N is the number of tokens and d is the embedding
dimensions). Let us denote ∇θL

(
(·, y), θ̂

)
as g(·)

and consider the path integral along a straight line
between X and X′, yielding

g(X)− g(X′) = H ′(X−X′), (22)

where H ′ =
[∫ 1

α=0
dg(X′+α(X−X′))

dx dα
]

and could
be efficiently approximated by Riemann Sum as
suggested by Sundararajan et al. (2017).

The reason of using path integral rather than the
gradient at the input X is that a function’s gradient
may saturate around the input and integrating along
a path can alleviate this issue. As for the reasons
of choosing a straight line between the input and
the baseline, first of all, it is obviously the simplest
path. Besides, using a straight line allows the Inte-
grated Gradients to meet the Symmetry-Preserving
property. For more details, please check the origi-
nal paper on IG (Sundararajan et al., 2017).

Substituting Eqn (22) into Eqn (21), we get

Mreplace(z) = −s⊤
(
g(X)− g(X′)

)
= −s⊤H ′(X−X′)

= −r⊤(X−X′)

= −
N∑
t=1

d∑
l=1

rt,l(Xt,l −X′
t,l),

(23)

where r = H ′s, which could be efficiently com-
puted by the the hessian-vector product (Pearlmut-
ter, 1994).

C The Effect of Different Checkpoints

Our self-influence-based memorization score is de-
pendent on the model used to compute the influence
function. A model trained with different random
seeds will have different self-influence values, so
there is inherently some stochasticity in the mea-
surement of influence or self influence.

To address this issue, on SST-2, we train the
model using different random seeds to obtain three
checkpoints and compute the corresponding memo-
rization scores. We found that the instance rankings
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produced by these different checkpoints are highly
correlated, based on Spearman’s Rank Correlation
Coefficient, as shown in Table 5. Thus, we only
consider one checkpoint when computing the mem-
orization scores.

a b c

se
ed

a 1.00 0.99 0.98
b 0.99 1.00 0.99
c 0.98 0.99 1.00

Table 5: Spearman’s rank correlation coefficients be-
tween different rankings of the training instances pro-
duced by different checkpoints of the trained model on
SST-2.

D The Distribution of Positive Phrase
Fraction

For the task of sentiment classification, i.e., the ex-
periments on SST-2, we hypothesize that a typical
positive sentence should have a relatively high per-
centage of positive phrases and a typical negative
sentence should have a relatively low percentage
of positive phrases. Note that here we consider
phrase-level sentiment instead of word-level sen-
timent because we want to take into account the
negation phenomena such as the phrase “not bad"
expressing a positive sentiment although the word
“bad” contains a negative sentiment. To support our
hypothesis, we conduct the following quantitative
experiment.

Given the phrase-level sentiment annotations
provided by the SST-2 dataset (Socher et al., 2013),
for every instance z, we count how many positive
phrases and negative phrases it contains, respec-
tively. Then, we turn the absolute counts into a
relative fraction:

frac(z)c =
count(z)c + k∑

c′∈{neg,pos} (count(z)c′ + k)
, (24)

where count(z)c is the number of phrases with sen-
timent c in instance z, and add-k-smoothing is used
to avoid division by zero. Here k is set as 0.01.

We plot the distributions of positive phrase frac-
tions for both positive instances and negative in-
stances. The results are shown in Figure 4. The
results demonstrate that if we use the positive frac-
tion to characterize the SST-2 data, then SST-2 in-
stances of each class follow a long-tail distribution,
and in the main body of our paper, we show that
the top-memorized positive and negative instances
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Figure 4: The distribution of positive phrase fraction on
SST-2.

likely lie in the tail end of the two distributions,
judging by their average positive fraction value.

E Examples of Memorization Attribution

Some examples of Memorization Attribution on
Yahoo! Answers are shown in Table 6. In partic-
ular, without any cherry-picking, we select those
instances with the highest memorization scores to
present. We can observe that on Yahoo! Answers,
for most cases, the model tends to memorize those
atypical parts of an instance. For example, the
model needs to memorize the word “business" that
shows up in an instance labeled as “Health" and
the word “sports" in the “Education & Reference"
instance. However, one might wonder why words
like “football" and “field" received high memoriza-
tion scores for the example in “Sports". Although
we are not certain, we hypothesize that this might
be due to the fact that the span “football field" is
atypical for the “Sports” category, because we find
that this span shows up in only 2 instances out of
1000 “Sports" instance in our training set.
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Content Label

why are americans . . . ? ; why are americans so obsesed with saying " god bless america " . i mean
there is no other country in the world that says that . why must god bless them when they have been
involved in nearly every war to date . i ’ m not trying to insult them or anything but why do they do it
? ; we are a nation under god , we was founded from it . . . it is our of respect of leader of our country
before us , and the great leader in heaven god . .

Society & Culture

is it possible for seven 375 pound men to stand on top of a bus and pee while it races down the hi -
way ? ; they would be belted in of course for safety reasons , so the formula is seven 375 pound men
, seat - belted on top of a bus , peeing at 75 miles per hour , into a head - wind of 10 mph , at a 30
degree angle , what is the end velocity of the pee ? ? ; first of all it wont look too good . . . thats a lot
of pee ! ! ! next , they must have on water proff clothing , it will

Science & Mathematics

what would you do ? ; i have an opportunity to take over a business in the womans health field , with
a solid cash flow but part of the deal means i must take over an additional location that has a negative
cash flow . i have enough money to pay for the business and a little left over to satisfy a shortfall in
operating cash flow of just the one . i did not factor anything in for the second location with a negative
operating cash flow . the crunch is that i can not have one without the other . the important thing is to
know that i am only short operating capitol for one location . . . . should

Health

my hs son plays two hs sports - hardly find time for h / w - i want to send him to prep school to imprv
his grades ; i want him to have a high sat / act as well high gpa to go in to college . i hear that prep
boarding schools can be expensive . i need help ! ; i know this will sound cold and uncaring but really
it ’ s not . if he ’ s having probs with sports and keeping grades up . . . take away the sports privileges .
school work should be his main focus , then sports . my son is in a

Education & Reference

out of all the schools in nigeria that have computers , how many have internet access ? ; i ’ m looking
into some overseas development ideas . do you know roughly what percentage have internet access (
most or just a few ) ? ; my school in nigeria had internet service , it is the best school i have seen till
today . . .

Computers & Internet

where does the term grid iron originate and how did it get applied to a football field . ? ; what is the
original meaning of gridiron . who applied it to a football field and why ? ; hi there . . . here is the
answer i found from the word detective site : the use of " gridiron " as a metaphor for the football field
, and , by extension , to the game itself , dates back to 1897 . the original " gridirons " were just that :
grids made of iron , used to cook fish or meat over an open fire . early

Sports

what kind of math would i need to be a real estate appraiser ? ; what kind of math would i need to be a
real estate appraiser ? the job as says needs strong math skills ; geometry ( area of a circle , rectangle
, triangle , volume of a rectangle , etc . . . ) plus percentages , percentage of change . some minor
algebra to find the unknown vairable in the percentage calcs . that ’ s about it .

Business & Finance

does anyone know any electro bands ? ; does anyone know of any good electro bands suck as metric
and robots in disguise ? ; hmmm . . . how about : particle lotus pnuma trio soulive brother ’ s past look
for these bands and lots of others at : http : / / www . archive . org / details / etree

Entertainment & Music

how can make a guy know that i like him ? ; there ’ s this guy that takes a class with me . he ’ s really
nice and we talk every day . i like wrestling and he does too and we talk about that until the class starts
after that , i don ’ t see him anymore until we have the class again . what should do to make him notice
that i like him ? help pleasee ! ! ! ; well u should try to stop him in the hall and try to say hi also when
u see him try to flirt a little just make sure its not too much a

Family & Relationships

can anyone tell me the address . . . ? ; to reach the dixie chicks by ? this is a serious question , so please
don ’ t post whether or not you support them about their comments on bush . all i need is the address
. thank you ! ; hello , i was not able to find an actual address , but i did find their website where you
can sign up for their mailing list and i did find this information as well : the dixie chicks have very
recently changed management . i do not yet have a new address for fan mail . once one is available , i
will post

Politics & Government

Table 6: The top-1 memorized training instances for each class from Yahoo! Answer. Highlighted words are
those with high attribution values (red for positive memorization attribution and blue for negative memorization
attribution) as computed by our memorization attribution method.
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