
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 6227 - 6240

May 22-27, 2022 c©2022 Association for Computational Linguistics

ReACC: A Retrieval-Augmented Code Completion Framework

Shuai Lu1, Nan Duan1, Hojae Han2∗, Daya Guo3∗,
Seung-won Hwang2, Alexey Svyatkovskiy4

1Microsoft Research Asia 2Seoul National University
3Sun Yat-sen University 4Microsoft Devdiv

{shuailu,nanduan,alsvyatk}@microsoft.com
{stovecat,seungwonh}@snu.ac.kr

guody5@mail2.sysu.edu.cn

Abstract

Code completion, which aims to predict the
following code token(s) according to the code
context, can improve the productivity of soft-
ware development. Recent work has proved
that statistical language modeling with trans-
formers can greatly improve the performance
in the code completion task via learning from
large-scale source code datasets. However,
current approaches focus only on code context
within the file or project, i.e. internal context.
Our distinction is utilizing “external” context,
inspired by human behaviors of copying from
the related code snippets when writing code.
Specifically, we propose a retrieval-augmented
code completion framework, leveraging both
lexical copying and referring to code with sim-
ilar semantics by retrieval. We adopt a stage-
wise training approach that combines a source
code retriever and an auto-regressive language
model for programming language. We evalu-
ate our approach in the code completion task
in Python and Java programming languages,
achieving a state-of-the-art performance on
CodeXGLUE benchmark.

1 Introduction

With the growth of software engineering field,
large-scale source code corpus gives a chance to
train language models in code domain (Hindle
et al., 2016; Tu et al., 2014). And benefiting from
the large transformer models (Vaswani et al., 2017)
and pre-training techniques (Devlin et al., 2018;
Radford et al., 2018), a rapid progress has been
made in many code-related tasks like code search
(Feng et al., 2020; Guo et al., 2020), code summa-
rization (Clement et al., 2020; Ahmad et al., 2020),
bug fixing (Mashhadi and Hemmati, 2021; Drain
et al., 2021) and code completion (Svyatkovskiy
et al., 2020; Liu et al., 2020; Kim et al., 2021;
Clement et al., 2020).

∗Work done during internship at Microsoft.

Code completion is considered as an essential
feature towards efficient software development
in modern Integrated Development Environments
(IDEs). The task is formulated by predicting the
following code token(s) based on the code context.
Traditionally, code completion requires real-time
program analysis and recommends type-correct
code tokens (Tu et al., 2014). Recently, statisti-
cal language models trained on large-scale source
code data have shown high accuracy in the code
completion task. Primitive approaches take the
given context only (Liu et al., 2016; Karampatsis
et al., 2020), some methods use richer information,
e.g., adding code token types (Liu et al., 2020), ab-
stract syntax tree (AST) structures (Li et al., 2018;
Kim et al., 2021), or extended hierarchical context
(Clement et al., 2021). However, one key limita-
tion of existing methods is the scope of information
they utilize; all the information is bounded in the
given input file. This is unnatural from human per-
spective, as studies demonstrate that programmers
tend to reuse an existing code snippet by copying
part of code with or without minor modifications to
accelerate software development (Roy and Cordy,
2008; Baker, 2007), leading a software repository
usually containing 7-23% cloned codes (Svajlenko
and Roy, 2015).

Motivated by this phenomenon, in this paper,
we argue the utility of extending the information
scope beyond the input file, i.e., into a large code-
base. We conjecture that using codes with simi-
lar semantics as auxiliary information are benefi-
cial to predict the following code tokens. There-
fore, we propose ReACC – a Retrieval-Augmented
Code Completion framework (See Figure 1). The
code completion task under our framework can be
re-formulated by, given a source code corpus for
search and an unfinished code snippet to complete,
using the unfinished code as a query to retrieve
similar code snippets from search corpus, and pre-
dicting the following code tokens by reusing the

6227

 Retriever

def read_as_jsonl(self, json_file):
lines = open(json_file).readlines()
for line in lines:

content =

def read_jsonl(filename):
with open(filename) as f:

dataset = [json.loads(line) for line in f]
return dataset

 Generator ... = json.loads(line)

Source code
database

Unfinished code Retrieved similar code

Completed code

Figure 1: An illustration of ReACC framework. Given an unfinished code snippet to complete, ReACC first
retrieves the similar code from source code database. Then the similar code is concatenated with the unfinished
code, the completed code will be generated based on them.

retrieved code. ReACC consists of two core compo-
nents: (1) a dual-encoder model served as the code-
to-code search retriever (2) an auto-regressive lan-
guage model served as the code completion gener-
ator. ReACC adopts the stage-wise training strat-
egy which is widely used in other tasks like open-
domain question answering (Karpukhin et al., 2020;
Izacard and Grave, 2021), natural language to code
generation (Hashimoto et al., 2018; Parvez et al.,
2021), etc.

The simplest technique for retrieving code is to
build a sparse vector retriever like TF-IDF or BM25
(Robertson and Zaragoza, 2009) which are both
based on keyword matching algorithms. The sparse
retriever can capture lexical information and is sen-
sitive to the names of code identifiers. The dense
retriever, on the contrary, can capture syntactic and
semantic information by mapping a code snippet
to a dense vector. In the code completion task,
the code retriever is expected to comprehend the
source code’s intent in order to retrieve the semanti-
cally similar codes. On the other hand, considering
programmers are prone to copy-and-paste existing
code, the retriever should evaluate lexical similarity
as well. To that end, we adopt the hybrid retriever
(Karpukhin et al., 2020; Ma et al., 2021), which
combines results of dense and sparse retriever. We
employ a dual-encoder model architecture as the
dense retriever since the cross-encoder model has
a high computational complexity. To achieve a bet-
ter understanding ability, we initialize our dense
retriever with GraphCodeBERT (Guo et al., 2020),
which is a pre-trained BERT-based programming
language understanding model. Then we continue

pre-training the retriever by contrastive learning
to enhance sentence embedding. As the labeled
data containing similar code pairs is rare, we uti-
lize various transformations to generate programs
with similar functionality for data augmentation.

We implement the generator with a decoder-only
transformer model. To incorporate the external in-
formation from retrieved similar code, we concate-
nate the obtained code and code context as input.
The generator is initialized by CodeGPT-adapted
(Lu et al., 2021) which is a domain-adaptation
model from GPT-2 (Radford et al., 2018) pre-
trained on code corpus.

We evaluate our ReACC framework on two
benchmark datasets – CodeXGLUE (Lu et al.,
2021) and CodeNet (Puri et al., 2021), in Python
and Java programming languages. ReACC
achieves a state-of-the-art performance on both
datasets. The experimental results demonstrate that
external source code retrieved by our retriever is
useful for auto-completing the partial code.

To summarize, our main contributions are:

• We propose a retrieval-augmented method to
assist the code auto-completion task. 1

• To adapt to the code completion scenario,
where the retrieval query is an unfinished code
snippet, we propose the partial code-to-code
search task and create datasets for evaluation.

• We adopt semantic-preserving transforma-
tions for data augmentation to pre-train the
code retrieval model.

1Our codes are available at https://github.com/
celbree/ReACC

6228

https://github.com/celbree/ReACC
https://github.com/celbree/ReACC

2 Related Work

2.1 Code completion

Code completion is an essential task for code in-
telligence. Hindle et al. (2016) are the first to use
language model for code completion by N-gram
technique. Deep neural networks (Liu et al., 2016;
Alon et al., 2020; Karampatsis et al., 2020) and pre-
training approaches (Liu et al., 2020; Svyatkovskiy
et al., 2020) are later frequently utilized to accom-
plish this. Besides considering source code as code
token sequences, some research focuses on com-
pleting an abstract syntax tree (AST) by anticipat-
ing the next node in the flattened tree (Li et al.,
2018; Kim et al., 2021). Guo et al. (2021) com-
plete codes by generating sketches, i.e. code snip-
pets with “holes”. Svyatkovskiy et al. (2021) and
Clement et al. (2021), on the other hand, investi-
gate ways to improve the efficiency and long-range
modeling in the code completion task, respectively.

All of these works employ previously written
code context as inputs, along with AST structural
information or token types. But none of them has
attempted to leverage existing external code as aux-
iliary information.

2.2 Retrieval on code intelligence

Contrastive learning on code Inspired by the
great success of contrastive learning in other do-
mains (Wu et al., 2018; Reimers and Gurevych,
2019; Fang et al., 2020; Chen et al., 2020; He et al.,
2020; Radford et al., 2021; Gao et al., 2021), re-
searchers have deployed this technique to source
code for better code fragment understanding. Jain
et al. (2020) and Bui et al. (2021) propose Contra-
Code and Corder, respectively. Both models use
the self-supervised contrastive learning framework
and generate code snippets as data augmentations
via compiler-based semantic-preserving transfor-
mations. Their models have shown the effective-
ness of contrastive learning in code clone detection,
code search and code summarization tasks. SYN-
COBERT (Wang et al., 2022) and UniXcoder (Guo
et al., 2022) are both pre-training models that uti-
lize multi-modal data, including code, comment,
and AST, for better code fragment representation
through contrastive learning.

Retrieval for code-related tasks Many code in-
telligence tasks benefit from information retrieval
(Xia et al., 2017). A common scenario for informa-
tion retrieval in code domain is code search with

natural language description as a query (Arwan
et al., 2015; Gu et al., 2018; Cambronero et al.,
2019). As for other code intelligence tasks, Hayati
et al. (2018) propose an action subtree retrieval
method called ReCode for generating general-
purpose code. Hashimoto et al. (2018) propose
a retrieve-and-edit framework for code autocom-
pletion and code generation. Luan et al. (2019) pro-
pose Aroma, which utilizes code-to-code structural
search and intersecting candidate code snippets to
recommend relevant code given another code snip-
pet as a query. Both Wei et al. (2020) and Li et al.
(2021) leverage the retrieve-and-edit/refine frame-
work to improve model’s performance in code sum-
marization. Parvez et al. (2021) propose RED-
CODER, using a dense retriever trained on paired
NL-code pairs to retrieve relevant comments or
codes as a supplement for code summarization or
code generation tasks.

In most circumstances where a dense retriever
is utilized, a natural language comment is treated
as a query to retrieve code. In the code comple-
tion scenario, however, we focus on using code as
query, particularly partial code, which is a more
difficult task since there are few labeled data with
semantically similar code pairs and in partial code
search, semantics in query is incomplete.

3 Approach

We first introduce the formulation of retrieval-
augmented code completion task. Then we give
detailed descriptions on the retriever and gener-
ator in ReACC. We show how we continue pre-
training GraphCodeBERT (Guo et al., 2020) with
contrastive learning on code and how we address
the problem that there is no labeled data for pos-
itive instances of similar programs in section 3.2.
In section 3.3 we talk about the way to aggregate
retrieved code and code context in the generator.

3.1 Task Formulation

Assume that we have a source code database con-
taining a large collection of software repositories,
which consist of D source code files, f1, f2, ..., fD.
Following the Dense Passage Retriever (DPR)
model (Karpukhin et al., 2020), we split each of
the files into code fragments of equal lengths as the
basic retrieval units. Such splitting not only leads
to a better retrieval results as stated by Karpukhin
et al. (2020), but also supports extreme long code
files where each part of a file represents differ-

6229

def normalize(a):
ma = np.mean(a)
sa = np.std(a)
return (a-ma)/sa

def standardization(arr):
mu …

np.mean np.std

def normalize(a):
ma = np.mean(a)
sa

np.mean

def sort(a1, a2):
tmp …

sorted

Original code

Transformation

Positive example
Query

In-batch negatives

E n c o d e r

Minimize

Maximize

Truncate

Partial code

API seq

Figure 2: Illustration on the training process of the re-
triever in our proposed framework ReACC.

ent semantics. Thus we get M code fragments
as the retrieval database C = {c1, c2, ..., cM}. Let
X = {x1, x2, ..., xk} be the unfinished code writ-
ten previously, a retriever R : (X,C) → C re-
trieves the most similar code fragment cs in C.
The generator G predicts the following code to-
ken(s) Y = {xk+1, ..., xk+n}, where n = 1 in
the token-level code completion task, based on
context and retrieved code. Formally, P (Y) =∏n

i=1 P (xk+i|cs, x1:k+i−1).

3.2 Retriever

The retrieval module in ReACC is expected to re-
trieve semantically equivalent code given an in-
complete code. We adopt the hybrid retriever
(Karpukhin et al., 2020; Ma et al., 2021) frame-
work by combining scores of sparse and dense
retriever. The sparse retriever we use is BM25
(Robertson and Zaragoza, 2009) based on the im-
plementation of ElasticSearch2. As a term-based
retrieval method, BM25 considers each code frag-
ment as a code token sequence and employs bag-
of-words representations. The matching score com-
puted by BM25 indicts lexical similarity between
the query and document. As for the dense retriever,
it maps each code fragment to a d-dimension dense
vector. We construct it in this paper based on the
DPR model (Karpukhin et al., 2020). Figure 2 il-
lustrates the training process of the dense retriever
of ReACC. In the following, we will walk through
it in detail.

Dense Retriever Our dense retriever consists of
two bidirectional transformer-based encoders EC

and EQ. EC encodes each code fragment in the
retrieval database C and builds indexes for them.

2https://github.com/elastic/elasticsearch

The query is encoded by EQ. We take the represen-
tation of [CLS] token as output and the similarity
is computed by sim(q, c) = EC(c)

TEQ(q). Since
both EC and EQ take source code as inputs with
the only difference being whether they are partial
or not, the dual encoders share weights in ReACC.
At the training stage, following DPR (Karpukhin
et al., 2020), we adopt in-batch negatives to calcu-
late the contrastive loss by InfoNCE (Oord et al.,
2018):

L(q, c+, c−1 , c
−
2 , ..., c

−
m)

=− log esim(q,c+)

esim(q,c+) +
∑m

i=1 e
sim(q,c−i)

(1)

However, unlike DPR, we don’t employ "hard" neg-
atives which are retrieved from BM25. Because
programmers tend to copy tokens directly, a code
with distinct semantics but substantial lexical simi-
larity can help with code completion.

Data Augmentation The purpose of contrastive
learning of the dense retriever in ReACC is to learn
a representation of code fragments that keeps codes
with similar or equivalent semantics close and dis-
similar codes far apart. It requires numerous posi-
tive and negative code pairs. However, it is difficult
to identify similar programs based on an unlabeled
code corpus, e.g., certain widely used datasets (Al-
lamanis and Sutton, 2013; Raychev et al., 2016;
Husain et al., 2019) mined from GitHub reposito-
ries.

Searching semantically equivalent code requires
extra code compilation and execution costs (Mas-
salin, 1987; Churchill et al., 2019), which is un-
realistic in a large database. Instead of searching,
an alternative way is to create code snippets with
same functionalities for data augmentation. To do
so, we apply several semantic-preserving transfor-
mations to the original source code to construct a
set of variants. There exists several attempts to ap-
ply such transformation to code (Jain et al., 2020;
Rabin et al., 2021; Bui et al., 2021). In this paper,
we mainly adopt identifier renaming and dead code
(unreachable or unused code) insertion. Figure 3
shows an example of performing such transforma-
tions to a Python code.

• Identifier renaming is a method of renaming an
identifier with another. We only rename variable
and method names as other identifiers cannot
be changed arbitrarily like built-in types or API
calls. Different from previous works, we preserve

6230

import socket
def echo_server(client, timeout, bufsize):

try:
if timeout > 0:

client.settimeout(timeout)
get_buf = client.recv(bufsize)
client.send(get_buf)

except socket.timeout:
pass

client.close()

import socket
def get_mean(c, doc, local):

try:
if doc > 0:

c.settimeout(doc)
_user_id = c.recv(local)
c.send(_user_id)

except socket.timeout:
pass

c.close()

import socket
def echo_server(client, timeout, bufsize):

try:
if timeout > 0:

client.settimeout(timeout)
get_buf = client.recv(bufsize)
if True:

tmp = [x**2 for x in range(10)]
client.send(get_buf)

except socket.timeout:
pass

client.close()

original python code After renaming all variables After inserting dead code

Figure 3: An example of applying semantic-preserving transformations to Python code.

part of the lexical information while modifying
the names at the same time based on the con-
sideration that identifier names typically convey
the meanings for humans and lexical similarity
contributes a lot for retrieving (It is verified in
section 4.4). To do so, we mask all the identi-
fiers in a program and leverage GraphCodeBERT
(Guo et al., 2020) to predict each identifier like
in the masked language model task. The top-10
predictions (excluding the original identifier) are
selected as the candidate set for renaming.

• Dead code insertion is to insert a dead code into
a code fragment at a proper location. Dead code
is a code snippet which can never be reached (Xi,
1999) or is reachable but whose result can never
be used in any other computation (Debray et al.,
2000). In software engineering, dead code inser-
tion is one of the most common techniques for
code obfuscation (You and Yim, 2010), whose
goal is to modify a code to make it hard to un-
derstand but remain its functionality, which is
similar to our goal. We first randomly select vari-
able names which don’t appear in this program
and then use them to form a statement from a
predefined set of dead code (See Appendix A for
details), such as assignment, method invocations,
looping statement, conditional statement and so
on. We traverse the AST and identify all the state-
ments. Then we choose a statement at random
and insert the dead code after it, leading a new
subtree in the AST.

Input Format We integrate both the code token
sequence and the API usage sequence as inputs.
API usage sequence is highly related to the func-
tionality of a code snippet (Gu et al., 2016; Hu
et al., 2018). To improve the code representation,
we extract the API sequence and append it to the
source code token sequence. Finally, we use a ran-
dom truncation of the original code as the query

and the entire created program as the positive ex-
ample during training to address the problem on
how to retrieve based on incomplete semantics.

3.3 Generator
The output of retriever is the retrieved code cs. Con-
sidering cs is queried by code context x while our
target is the following code of x, so we propose
fragment alignment – using the next fragment c′s of
cs in the same file (we have split each file into code
fragments for retrieval as discussed in Section 3.1)
for completing the next fragment of x. Thus, the in-
put sequence for the generator is the concatenation
of c′s and x: x′ = c′s ⊕ x.

The generator module in ReACC supports any
model architecture that can perform code comple-
tion task. In our experiments, we adopt CodeGPT-
adapted (Lu et al., 2021), which is a decoder-only
transformer model pre-trained on Python and Java
datasets from CodeSearchNet (Husain et al., 2019)
via casual language model. CodeGPT-adapted has
shown promising results in the code completion
task in CodeXGLUE benchmark (Lu et al., 2021)
on two widely used code completion datasets.

4 Experiments: Code Clone Detection

In order to evaluate the effectiveness of the code-
to-code retrieval module in ReACC, we perform
code clone detection task which aims to retrieve
semantic equivalent programs. In this section, we
describe how we create the test dataset for this task
and how we evaluate the performance of ReACC’s
retriever.

4.1 Dataset
CodeNet (Puri et al., 2021) dataset consists of
a large collection of programs which are derived
from online judge websites. We respectively cre-
ate a code clone detection evaluation dataset from
CodeNet in Python and Java with zero-shot setting.

6231

Dataset Language Task Train Valid Test Desc.

CodeNet
(Puri et al., 2021)

Python Clone - - 15,594 Solutions for 2,072 problems
Java Clone - - 14,426 Solutions for 1,599 problems

Python Completion 2,636,118 32,984 10,000 For line-level completion

CodeXGLUE
(Lu et al., 2021)

Python Completion 95,000 5,000 50,000 / 10,000 Use PY150
Python† Completion 95,000 5,000 - / 20,000 Applying eWASH

Java Completion 12,934 7,176 8,268 / 3,000 Use JavaCorpus

Table 1: Dataset statistics. The two numbers in Test of CodeXGLUE denote the examples for token-level and
line-level code completion, respectively. † is a newly created test set, see the text for details.

We collect code solutions for thousands problems
and solutions for the same problem are considered
as semantically equivalence. The data statistics are
shown in Table 1.

Retrieval Training Set The dense retriever in
ReACC is pre-trained on CodeSearchNet dataset
(Husain et al., 2019), a large-scale source code
corpus extracted from GitHub repositories. We
employ 1.6M Java methods and 1.2M Python func-
tions from it.

4.2 Baseline Methods

CodeBERT (Feng et al., 2020) is a pre-trained
model for programming language, which is trained
on NL-PL pairs from CodeSearchNet dataset in six
programming languages.

GraphCodeBERT (Guo et al., 2020) is also pre-
trained on CodeSearchNet NL-PL pairs and con-
siders the inherent structure of code i.e. data flow.

4.3 Experiment Setup

The retrieval encoder is initialized with GraphCode-
BERT. It is continual pre-trained with both masked
language model objective and contrastive learning.
We use in-batch negatives with a batch size of 256.
With a learning rate of 5e-5, We train the retriever
for Python and Java for 30 epochs each.

We implement the code clone detection exper-
iment in the partial search way, which is ideally
adapted to code completion scenarios as it accepts
a partial program as a query while maintaining the
same goal.

4.4 Results

Table 2 shows the results in the zero-shot code
clone detection task on CodeNet dataset, with the
partial search setting. Models are measured by
MAP@K (Mean Average Precision at K), which
is the evaluation metric in the CodeXGLUE clone
detection task, and precision at 1, as we only care
about the most similar code for code completion.

From the comparison with other transformer-based
encoders, we can see CodeBERT and GraphCode-
BERT can hardly retrieve equivalent code. While
our model significantly outperforms them, which
indicts our model is capable of retrieving the se-
mantically equivalent code even when the query’s
semantics is incomplete.

We also find that BM25 performs splendidly in
this task, which is quite different from the per-
formance on other tasks like open-domian QA
(Karpukhin et al., 2020), code summarization
(Parvez et al., 2021), etc. The findings suggest that
semantically related codes are likely to be lexically
similar, which leads lexical similar to contribute
more for retrieval, making code-to-code search eas-
ier than text-to-code or question-to-passage search
using the term-based retrieval method.

5 Experiments: Code Completion

In this section, we evaluate ReACC on end-to-end
code completion.

5.1 Dataset

CodeXGLUE (Lu et al., 2021) is a benchmark
dataset containing 14 datasets for 10 diversified
code intelligence tasks. We use PY150 dataset
(Raychev et al., 2016) in Python and GitHub Java
Corpus dataset (Allamanis and Sutton, 2013) in
Java from it for code completion task. Table 1
shows the data statistics.

5.2 Baseline Methods

CodeGPT/CodeGPT-adapted (Lu et al., 2021)
are both pre-trained on Python and Java datasets
from CodeSearchNet. CodeGPT is trained from
scratch while CodeGPT-adapted is a domain adap-
tation model which is initialized by GPT-2 (Rad-
ford et al., 2019).

PLBART (Ahmad et al., 2021) is based on
BART (Lewis et al., 2020) architecture which em-
ploys denoising sequence-to-sequence (Seq2Seq)

6232

Model Python Java
MAP@100 Precision MAP@100 Precision

CodeBERT 1.47 4.75 1.15 4.58
GraphCodeBERT 5.31 15.68 4.54 16.05

BM25 10.32 23.17 8.67 25.85
ReACC-retriever 9.60 27.04 9.31 27.55

Table 2: Results on zero-shot code clone detection dataset created from CodeNet.

Model PY150 JavaCorpus
Perplexity Exact Match Edit Sim Perplexity Exact Match Edit Sim

GPT-2 - 41.73 70.60 - 27.50 60.36
CodeGPT 2.502 42.18 71.23 4.135 28.23 61.81

CodeGPT-adapted 2.404 42.37 71.59 3.369 30.60 63.45
CodeT5-base - 36.97 67.12 - 24.80 58.31

PLBART - 38.01 68.46 - 26.97 61.59
ReACC-bm25 2.312 46.07 73.84 3.352 30.63 64.28
ReACC-dense 2.329 45.32 73.95 3.355 30.30 64.43
ReACC-hybrid 2.311 46.26 74.41 3.327 30.70 64.73

Table 3: Results on the code completion task in CodeXGLUE

Exact Match Edit Sim
GPT-2 37.08 68.71

CodeGPT 37.21 69.00
CodeGPT-adapted 38.77 70.07

X-CodeGPT 39.41 70.97
ReACC-bm25 40.24 71.65
ReACC-dense 39.67 71.80
ReACC-hybrid 40.15 72.01

Table 4: Results on the new testset created from PY150
in CodeXGLUE

pre-training and is pre-trained on unlabeled data
across PL and NL.

CodeT5 (Wang et al., 2021) is also an encoder-
decoder pre-trained model which adapts T5 (Raf-
fel et al., 2019) architecture and considers the
identifier-aware token type information in code.

X-CodeGPT is a variant of CodeGPT which
adapts eWASH (Clement et al., 2021) to CodeGPT.
Clement et al. (2021) propose eWASH, a method
for leveraging the syntax hierarchy of source code
to give the model wider field of vision in a file
and achieving a new SOTA performance on the
CodeXGLUE code completion task. We reproduce
their method and develop X-CodeGPT by adapting
eWASH to CodeGPT-adapted.

5.3 Experiment Setup

Fine-tune We fine-tune CodeGPT-adapted on
PY150 and GitHub Java Corpus datasets, respec-
tively, and use it as the generator in ReACC. The
number of epochs for training PY150 is 30 and
Java Corpus is 10, with a batch size of 96 and a
learning rate of 2e-5. Except for X-CodeGPT, all

other baseline models are fine-tuned with the same
settings.

As for X-CodeGPT, we pre-train it with a train-
ing set extracted from CodeSearchNet in eWASH
format, where each example is a function body with
its corresponding extended context, as described
by Clement et al. (2021). Since eWASH requires
codes parsed into ASTs but codes in CodeXGLUE
have been tokenized and cannot be parsed, we build
a new dataset from PY150 to fine-tune X-CodeGPT
on CodeXGLUE. As a result, we download the ori-
gin files in PY150 and create a new dataset that
retains the train/valid/test split, as seen in Table 1.

Evaluation Following Lu et al. (2021), we con-
duct two code completion scenarios, token-level
and line-level completion, to measure models’ abil-
ity of predicting one and more tokens. Perplexity
is the evaluation metric for token-level comple-
tion, whereas exact match accuracy (EM) and edit
similarity are used for line-level completion. For
token-level completion, based on the consideration
of efficiency, instead of applying retrieval at each
step, we retrieve similar codes based on current
context after predicting the first 100 tokens, and
leverage it for further prediction.

Retrieval Database We use the training set of
PY150 and Java Corpus as retrieval database for
test. We don’t use the contrastive pre-training cor-
pus (i.e., CodeSearchNet) in order to avoid the du-
plication between CodeXGLUE and CodeSearch-
Net as they are both extracted from GitHub.

6233

Exact Match Edit Sim
CodeGPT-adapted 46.38 74.10

ReACC-bm25 55.88 79.62
ReACC-dense 64.21 84.57
ReACC-hybrid 64.74 84.93

Table 5: Results on the code completion task created
from CodeNet Python dataset

Hybrid Retriever A linear combination of
scores from BM25 and our dense retriever forms a
hybrid retriever. Specifically, we calculate the score
by sim(q, c) + α · BM25(q, c) and let α = 0.9
based on the results on dev set for both PY150 and
Java Corpus datasets.

5.4 Results

Table 3 and Table 4 compare different base-
line models on code completion task in the
CodeXGLUE Python and Java datasets. ReACC
framework with the hybrid retriever outperforms
consistently than other baselines on all datasets,
which proves our conjection that the “external” con-
text is beneficial to the code completion task. The
comparison with X-CodeGPT in Table 4 demon-
strates that utilizing “external” context could be
more useful than making the most of the current
code file. Among three configurations of the re-
triever in ReACC, hybrid retriever performs best
on almost all metrics except the exact match score
in the new test set of PY150.

From Table 3, we can observe that comparing the
two datasets, the improvement in the PY150 dataset
is greater than that in the Java Corpus dataset. The
reason for this is that the retrieval database for
Java (i.e., the training set) is much smaller. The
CodeXGLUE Java Corpus dataset contains only
12,934 files for training so that it’s more difficult to
retrieve similar code from them.

Another finding is that BM25 shows compara-
ble results with dense retriever and even performs
better in perplexity and exact match metrics. The
findings indict that the code completion task can
benefit from both semantically and lexically similar
codes.

5.5 Analysis

ReACC in specific domain Both PY150 and
Java Corpus datasets are extracted from GitHub
repositories which are distributed in a wide domain.
As some people frequently write codes in a more
specific domain, e.g., data mining/pattern recogni-

EM Edit Sim
ReACC-dense 45.32 73.95
Retriever
- identifier renaming 44.91 73.14
- dead code insertion 45.11 73.57
- API sequence 44.77 73.01
- query truncation 43.93 72.65
Generator
- fragment alignment 45.08 73.56

Table 6: Ablation study for both retriever and generator
module. Experiments are run in CodeXGLUE PY150
dataset.

tion domain for Kaggle3 users, algorithm domain
for ACM community, etc. To evaluate ReACC in
a specific code domain, we construct a code com-
pletion Python dataset from CodeNet, which can
be considered in algorithm domain. Table 5 reveals
that ReACC significantly outperforms CodeGPT-
adapted in CodeNet by 10% and 18% absolute
improvement in edit similarity and exact match,
respectively. According to the findings, ReACC is
more effective in a specific domain. We also no-
tice that ReACC with dense retriever outperforms
BM25 significantly in CodeNet. It can be explained
by the fact that in algorithm domain, semantically
similar code may be more valuable than for code
completion lexically similar code.

Ablation study To further understand how our
training options affect model performance, we con-
duct ablation experiments. As seen in Table 6,
when data argumentation and training strategies in
retriever or generator are eliminated, the metrics
degrade. The most essential factor among them is
query truncation. Comparing the two semantic-
preserving transformations, identifier renaming
contributes more than dead code insertion.When
fragment alignment is removed from generator, i.e.
using the retrieved code snippet itself for generator,
performance suffers slightly.

ReACC vs GitHub Copilot GitHub Copilot4 is
a powerful technique for code completion which
uses OpenAI Codex (Chen et al., 2021) as the
model backend. We run some qualitative examples
with its extension in VSCode, which are shown in
the Appendix B. It worth noting that Codex is more
powerful than CodeGPT since it is a large-scale pre-
trained model that is trained on all source codes
in GitHub based on GPT-3 (Brown et al., 2020).
However, in some cases, ReACC with CodeGPT as

3https://www.kaggle.com/
4https://copilot.github.com/

6234

the generator outperforms Copilot. And in 6 Copi-
lot itself can benefit from ReACC when it takes
advantage of ReACC’s retriever, which indicates
the effectiveness of retrieval-augmented method for
strong generative models.

6 Conclusion

We propose ReACC, a retrieval-augmented code
completion framework that utilizes “external” con-
text for the code completion task by retrieving se-
mantically and lexically similar codes from existing
codebase. We pre-train a dual-encoder as a retriever
for partial code search, which retrieves code frag-
ments given a partial code. Our method can adopt
any architecture that can perform code completion
as the generator. On the CodeXGLUE benchmark,
ReACC achieves a state-of-the-art performance in
the code completion task.

Acknowledgements

This work is supported by Microsoft Research Asia
and IITP grants (2021-0-01696, High Potential In-
dividuals Global Training Program)

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668.

Miltiadis Allamanis and Charles Sutton. 2013. Mining
source code repositories at massive scale using lan-
guage modeling. In 2013 10th Working Conference
on Mining Software Repositories (MSR), pages 207–
216. IEEE.

Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav.
2020. Structural language models of code. In In-
ternational Conference on Machine Learning, pages
245–256. PMLR.

Achmad Arwan, Siti Rochimah, and Rizky Januar
Akbar. 2015. Source code retrieval on stackover-
flow using lda. In 2015 3rd International Confer-
ence on Information and Communication Technol-
ogy (ICoICT), pages 295–299. IEEE.

Brenda S Baker. 2007. Finding clones with dup: Anal-
ysis of an experiment. IEEE Transactions on Soft-
ware Engineering, 33(9):608–621.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021.
Self-supervised contrastive learning for code re-
trieval and summarization via semantic-preserving
transformations. In Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 511–521.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learning
met code search. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, pages 964–974.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Berkeley Churchill, Oded Padon, Rahul Sharma, and
Alex Aiken. 2019. Semantic program alignment
for equivalence checking. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1027–
1040.

Colin Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
Pymt5: Multi-mode translation of natural language
and python code with transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
9052–9065.

Colin B Clement, Shuai Lu, Xiaoyu Liu, Michele Tu-
fano, Dawn Drain, Nan Duan, Neel Sundaresan,
and Alexey Svyatkovskiy. 2021. Long-range mod-
eling of source code files with ewash: Extended
window access by syntax hierarchy. arXiv preprint
arXiv:2109.08780.

Saumya K Debray, William Evans, Robert Muth, and
Bjorn De Sutter. 2000. Compiler techniques for
code compaction. ACM Transactions on Program-
ming languages and Systems (TOPLAS), 22(2):378–
415.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

6235

Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel
Sundaresan. 2021. Generating bug-fixes using pre-
trained transformers. In Proceedings of the 5th
ACM SIGPLAN International Symposium on Ma-
chine Programming, pages 1–8.

Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan
Ding, and Pengtao Xie. 2020. Cert: Contrastive
self-supervised learning for language understanding.
arXiv preprint arXiv:2005.12766.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.
Deep code search. In 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE),
pages 933–944. IEEE.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep api learning. In Proceed-
ings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 631–642.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data
flow. In International Conference on Learning Rep-
resentations.

Daya Guo, Alexey Svyatkovskiy, Jian Yin, Nan Duan,
Marc Brockschmidt, and Miltiadis Allamanis. 2021.
Learning to complete code with sketches. In Inter-
national Conference on Learning Representations.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy Liang. 2018. A retrieve-and-edit frame-
work for predicting structured outputs. In Proceed-
ings of the 32nd International Conference on Neu-
ral Information Processing Systems, pages 10073–
10083.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Av-
varu, Pengcheng Yin, Anthony Tomasic, and Gra-
ham Neubig. 2018. Retrieval-based neural code gen-
eration. arXiv preprint arXiv:1808.10025.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9729–9738.

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong
Su, and Premkumar Devanbu. 2016. On the natu-
ralness of software. Communications of the ACM,
59(5):122–131.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018. Summarizing source code with trans-
ferred api knowledge. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, pages 2269–2275.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436.

Gautier Izacard and Édouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, pages 874–880.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph E Gonzalez, and Ion Stoica. 2020. Con-
trastive code representation learning. arXiv preprint
arXiv:2007.04973.

Rafael-Michael Karampatsis, Hlib Babii, Romain
Robbes, Charles Sutton, and Andrea Janes. 2020.
Big code!= big vocabulary: Open-vocabulary mod-
els for source code. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering
(ICSE), pages 1073–1085. IEEE.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish
Chandra. 2021. Code prediction by feeding trees
to transformers. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE),
pages 150–162. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi
Jin. 2021. Editsum: A retrieve-and-edit framework
for source code summarization.

Jian Li, Yue Wang, Michael R Lyu, and Irwin King.
2018. Code completion with neural attention and
pointer networks. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence,
pages 4159–25.

6236

Chang Liu, Xin Wang, Richard Shin, Joseph E Gonza-
lez, and Dawn Song. 2016. Neural code completion.

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-
task learning based pre-trained language model for
code completion. In Proceedings of the 35th
IEEE/ACM International Conference on Automated
Software Engineering, pages 473–485.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen,
and Satish Chandra. 2019. Aroma: Code recommen-
dation via structural code search. Proceedings of the
ACM on Programming Languages, 3(OOPSLA):1–
28.

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy
Lin. 2021. A replication study of dense passage re-
triever. arXiv preprint arXiv:2104.05740.

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying
codebert for automated program repair of java sim-
ple bugs. arXiv preprint arXiv:2103.11626.

Henry Massalin. 1987. Superoptimizer: a look at the
smallest program. ACM SIGARCH Computer Archi-
tecture News, 15(5):122–126.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and
summarization. arXiv preprint arXiv:2108.11601.

Ruchir Puri, David S Kung, Geert Janssen, Wei
Zhang, Giacomo Domeniconi, Vladmir Zolotov, Ju-
lian Dolby, Jie Chen, Mihir Choudhury, Lindsey
Decker, et al. 2021. Project codenet: A large-scale
ai for code dataset for learning a diversity of coding
tasks. arXiv preprint arXiv:2105.12655.

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang,
Yijun Yu, Lingxiao Jiang, and Mohammad Amin
Alipour. 2021. On the generalizability of neural
program models with respect to semantic-preserving
program transformations. Information and Software
Technology, 135:106552.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Veselin Raychev, Pavol Bielik, and Martin Vechev.
2016. Probabilistic model for code with decision
trees. ACM SIGPLAN Notices, 51(10):731–747.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Now Publishers Inc.

Chanchal K Roy and James R Cordy. 2008. An empiri-
cal study of function clones in open source software.
In 2008 15th Working Conference on Reverse Engi-
neering, pages 81–90. IEEE.

Jeffrey Svajlenko and Chanchal K Roy. 2015. Evalu-
ating clone detection tools with bigclonebench. In
2015 IEEE international conference on software
maintenance and evolution (ICSME), pages 131–
140. IEEE.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
Code generation using transformer. In Proceed-
ings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages
1433–1443.

Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi,
Maik Riechert, Juliana Vicente Franco, and Mil-
tiadis Allamanis. 2021. Fast and memory-efficient
neural code completion. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repos-
itories (MSR), pages 329–340. IEEE.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.
2014. On the localness of software. In Proceedings
of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages
269–280.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

6237

Xin Wang, Fei Mi Yasheng Wang, Pingyi Zhou, Yao
Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin
Jiang. 2022. Syncobert: Syntax-guided multi-modal
contrastive pre-training for code representation.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin.
2020. Retrieve and refine: exemplar-based neural
comment generation. In 2020 35th IEEE/ACM In-
ternational Conference on Automated Software En-
gineering (ASE), pages 349–360. IEEE.

Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance-level discrimination. arXiv
preprint arXiv:1805.01978.

Hongwei Xi. 1999. Dead code elimination through de-
pendent types. In International Symposium on Prac-
tical Aspects of Declarative Languages, pages 228–
242. Springer.

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh
Kochhar, Ahmed E Hassan, and Zhenchang Xing.
2017. What do developers search for on the web?
Empirical Software Engineering, 22(6):3149–3185.

Ilsun You and Kangbin Yim. 2010. Malware obfusca-
tion techniques: A brief survey. In 2010 Interna-
tional conference on broadband, wireless comput-
ing, communication and applications, pages 297–
300. IEEE.

A Predefined Dead Code

We define a set of dead code to choose from for
both Python and Java. We focus on four kinds
of common statements, i.e., declaration statement,
expression statement, conditional statement and
looping statement. Examples are shown in figure
4. To generate a dead code snippet, we can use
one kind of them or combine different statements
together.

B Qualitative Examples

Figure 5 and figure 6 show qualitative examples
of generated code by different models. ReACC +
Copilot denotes ReACC framework with Copilot
as the generator.

6238

Category Python Java

Declaration

var1 = 1 int var1 = 1;

var1, var2, var3 = 1, [2,3], "name" String var2 = "abc";

int[] var3;

Expression

var1+var2 var1 += 2;

var2.extend(var3) var2.append("def");

sorted(var2) var3[0]--;

Conditional statement

var1 = 1
if var1 < 10:

several random simple
statements here
else:

statements here

int var = 4;
if (var1 < 10){

// compound statement
}

var1 = 1 if True else 2

Looping statement

for var1 in range(10):
statements here

for (int var = 0; var < 10; var++) {
// compound statement

}

var1 = 10
while var1 > 0:

statements here
var1 -= 1

int var1 = 5;
while (var1 > 0){

// compound statement
var1--;

}

Figure 4: Examples of predefined set of dead code. Vars are randomly selected from other files. Literals like strings
and integers are also generated at random. For conditional and looping statements, several simple statements (i.e.,
declaration and expression) are generated to fill the body.

Input from __future__ import unicode_literals
import calendar
import datetime
from django.utils import http as http_utils
from daydreamer.tests.views.core import http
class TestCase(http.TestCase):

def format_etag(self, etag):
return

Retrieved code from datetime import datetime
from django.test import TestCase
from django.utils import unittest
from django.utils.http import parse_etags, quote_etag, parse_http_date
FULL_RESPONSE = ''
ETAG = ''
EXPIRED_ETAG = ''
class ConditionalGet(TestCase):

...

CodeGPT etag Edit Sim: 26

ReACC http_utils.format_etag(etag) Edit Sim: 87

Copilot '"%s"' % etag Edit Sim: 25

ReACC + Copilot '"%s"' % etag Edit Sim: 25

Ground Truth http_utils.quote_etag(etag)

Figure 5: An qualitative example from PY150 test set. The input code comes from https:
//github.com/skibblenybbles/django-daydreamer/blob/master/daydreamer/tests/
views/behaviors/http/base.py

6239

https://github.com/skibblenybbles/django-daydreamer/blob/master/daydreamer/tests/views/behaviors/http/base.py
https://github.com/skibblenybbles/django-daydreamer/blob/master/daydreamer/tests/views/behaviors/http/base.py
https://github.com/skibblenybbles/django-daydreamer/blob/master/daydreamer/tests/views/behaviors/http/base.py

Input import ...
logger = borg.get_logger(__name__, default_level = "INFO")

def evaluate_split(run_data, alpha, split, train_mask, test_mask):
training = run_data.masked(train_mask).collect_systematic([4])
testing = run_data.masked(test_mask).collect_systematic([4])
model = borg.models.MulEstimator(alpha = alpha)(training, 10, training)
score = numpy.mean(borg.models.run_data_log_probabilities(model, testing))

...

def main(out_path, bundle, workers = 0, local = False):
def yield_jobs():

run_data = borg.storage.RunData.from_bundle(bundle)
validation =

Retrieved code import ...
logger = borg.get_logger(__name__, default_level = "INFO")

def evaluate_split(run_data, model_name, mixture, independent, instance_count,
train_mask, test_mask):

testing = run_data.masked(test_mask).collect_systematic([4])
training_all = run_data.masked(train_mask)
training_ids = sorted(training_all.ids, key = lambda _: numpy.random.rand())

...

def main(out_path, experiments, workers = 0, local = False):
logger.info("", len(experiments))
get_run_data = borg.util.memoize(borg.storage.RunData.from_bundle)
def yield_jobs():

for experiment in experiments:
logger.info("preparing experiment: %s", experiment)
run_data = get_run_data(experiment["run_data"])
validation = sklearn.cross_validation.ShuffleSplit(len(run_data), 32,

test_fraction = 0.1, indices = False)
max_instance_count = numpy.floor(0.9 * len(run_data)) - 10
instance_counts = map(int, map(round,

numpy.r_[10:max_instance_count:24j]))
...

CodeGPT borg.storage.RunData.from_bundle(run_data) Edit Sim: 40

ReACC sklearn.cross_validation.ShuffleSplit(len(run_data), 32,
test_fraction=0.1, indices=False)

Edit Sim: 77

Copilot run_data.masked(run_data.get_validation_mask()) Edit Sim: 41

ReACC + Copilot sklearn.cross_validation.ShuffleSplit(len(run_data), 32,
test_fraction = 0.1, indices = False)

Edit Sim: 77

Ground Truth sklearn.cross_validation.KFold(len(run_data), 10, indices=False)

Figure 6: An qualitative example from PY150 test set. The input code comes from https://github.com/
borg-project/borg/blob/master/borg/experiments/mul_over_alpha.py

6240

https://github.com/borg-project/borg/blob/master/borg/experiments/mul_over_alpha.py
https://github.com/borg-project/borg/blob/master/borg/experiments/mul_over_alpha.py

