
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 571 - 582

May 22-27, 2022 c©2022 Association for Computational Linguistics

Few-Shot Class-Incremental Learning for Named Entity Recognition

Rui Wang1 Tong Yu2* Handong Zhao2 Sungchul Kim2

Subrata Mitra2 Ruiyi Zhang2 Ricardo Henao1

1Duke University 2Adobe Research
{rui.wang16,ricardo.henao}@duke.edu

{tyu,hazhao,sukim,sumitra,ruizhang}@adobe.com

Abstract

Previous work of class-incremental learning
for Named Entity Recognition (NER) relies
on the assumption that there exists abundance
of labeled data for the training of new classes.
In this work, we study a more challenging
but practical problem, i.e., few-shot class-
incremental learning for NER, where an NER
model is trained with only few labeled samples
of the new classes, without forgetting knowl-
edge of the old ones. To alleviate the prob-
lem of catastrophic forgetting in few-shot class-
incremental learning, we generate synthetic
data of the old classes using the trained NER
model, augmenting the training of new classes.
We further develop a framework that distills
from the NER model from previous steps with
both synthetic data, and real data from the cur-
rent training set. Experimental results show
that our approach achieves significant improve-
ments over existing baselines.

1 Introduction

Existing models of Named Entity Recognition
(NER) are usually trained on a large scale dataset
with predefined entity classes, then deployed for
entity extraction on the test data without further
adaptation or refinement. In practice, data of new
entity classes that the NER model has not seen
during training arrives constantly, thus it is desir-
able that the NER model can be incrementally up-
dated over time with knowledge of data for these
new classes. In this case, one challenge is that
the training data of old entity classes may not be
available due to privacy concerns or memory lim-
itations (Ma et al., 2020). Then, the model can
easily degrade in terms of the performance on old
classes when being fine-tuned with only annota-
tions of new entity classes, i.e., catastrophic for-
getting. In addressing this problem, previous work
in class-incremental learning for NER (Monaikul

*Corresponding Author

et al., 2021) regularizes the current model by dis-
tilling from the previous model trained on old (ex-
isting) classes, using text from the training dataset
of new classes. However, this requires abundance
of data in the new training dataset being used for
distillation. Such an assumption is usually unreal-
istic since the token-level annotations required by
NER training are labor-consuming and scarce, espe-
cially for the new unseen classes. In this paper, we
study a more realistic setting, i.e., few-shot class-
incremental learning for NER, where the model
(i) incrementally learns on new classes with few
annotations, and (ii) without requiring access to
training data for old classes.

There is very limited work in few-shot class-
incremental learning for NER. Such a setting is
more challenging compared with class-incremental
learning for NER. First, the few-shot datasets in
few-shot class-incremental learning may not con-
tain enough information for the trained model to
generalize during testing. Second, it is more chal-
lenging to solve the catastrophic forgetting prob-
lem in few-shot class-incremental learning when
data for old classes is not available and new data
is scarce. In class-incremental learning for NER
(Monaikul et al., 2021), the same training sequence
may contain entities of different classes. There-
fore, when the training dataset for new classes is
sufficiently large, its context, i.e., words labeled
as not from entities of new classes, may also con-
tain abundant entities of the old classes. That is,
the new training data can be regarded as an unla-
beled replay dataset of the existing entity classes.
In such case, we can simply address the problem
of catastrophic forgetting by distilling from the pre-
vious model (trained on old classes) to the current
one, using text from such a replay dataset (Mon-
aikul et al., 2021). However, in few-shot class-
incremental learning, we cannot expect to avoid
catastrophic forgetting by distilling with only the
few samples from the new training dataset, since

571

there may not exist sufficient (if any) entities of the
old classes.

In this paper, we propose a framework to enable
few-shot class-incremental learning for NER. As
mentioned above, since the few-shot dataset may
not contain enough entities of old classes as replay
data for distilling from the previous model, which
leads to catastrophic forgetting, we consider gen-
erating synthetic data of the old entity classes for
distillation. Such data is termed as synthetic replay.
Specifically, we generate synthetic data samples of
old classes by inverting the NER model. Given the
previous model trained on the old classes, we op-
timize the token embeddings of the synthetic data,
so that predictions from the previous model can
contain old entity classes, given the synthetic data
as input. In this way, the synthetic data is likely to
contain entities of old classes, and distilling from
the previous model with such data will thus encour-
age knowledge preservation of old classes. Ad-
ditionally, to ensure the synthetic (reconstructed)
data to be realistic, we propose to leverage the
readily available real text data for new classes, via
adversarially matching the hidden features of to-
kens from the synthetic data and those from the
real data. Note that the synthetic data generated
from such adversarial match with real data will
contain semantics that are close to the real text
data for new classes. Consequently, compared with
training with only the few samples of new classes,
the synthetic data will provide more diverse con-
text that are close to the samples of the few-shot
dataset, augmenting the few-shot training for the
new classes. Further, with the generated synthetic
data, we propose a framework that trains the NER
model with annotations of the new classes, while
distilling from the previous model with both the
synthetic data and real text from the new training
data. Our contributions of this work are summa-
rized as follows:

• We present the first work of studying few-shot
incremental learning for Named Entity Recog-
nition (NER), a more practical but challeng-
ing problem compared with class-incremental
learning for NER.

• We approach the problem by proposing a
framework that distills from the existing
model with both, real data of new entity
classes and synthetic data reconstructed from
the model as replay data of old entity classes.

Input Sequence:

PER O O O O O O O Step 1	:

Prediction : PER O LOC O O O TIME O

Emily from California was born in 1990 .

O O LOC O O O O O

O O O O O O TIME O

Step 2	:

Step 3	:

Figure 1: Hypothetical annotations for different time
steps in NER few-shot class-incremental learning and
the expected model prediction after training at step 3. In
our experiments, we do not assume the same sentence
is shared by datasets from different time steps.

• Experiments show that our method signifi-
cantly improves over existing baselines for
the task of few-shot class-incremental learn-
ing in NER.

2 Background

2.1 Problem Definition
Assume there is a stream of NER datasets
D1, . . . ,Dt, . . ., annotated with disjoint entity
classes, where t is the time step and Dt =

{(Xt
i , Y

t
i)}

|Dt|
i=1 contains ct entity classes. Here

Xt
i = [xti,1, · · · , xti,Ni

] and yti = [yti,1, · · · , yti,Ni
]

are the NER token and label sequences, respec-
tively, with length Ni, and |Dt| is the size of the
dataset. Dataset D1 is the base dataset, assumed of
reasonably large size for classes of step t = 1. The
datasets {Dt}t>1 are the few-shot datasets with
about K samples for each class. In few-shot class-
incremental learning, the NER model will be incre-
mentally trained with D1,D2, . . ., over time, with
data from Dt only available at the tth time step.
After being trained with Dt, the model will be eval-
uated jointly on all entity classes encountered in
D1, · · · ,Dt, i.e., we do not learn separate predic-
tion modules for each time step. Figure 1 shows an
example of annotations for different incremental
learning steps on classes of PER, LOC, and TIME.

In Figure 1, we should note that tokens that are
labeled as O in the current step are likely to contain
abundant entities from the previous classes. For
instance, tokens annotated as O in step 3 include
entities of previous classes, i.e., PER and LOC.
Therefore, when a large amount of training data is
available for the new classes, the new dataset can
be regarded as unlabeled replay data of previous
classes. As an example, in Monaikul et al. (2021),

572

(a)

London was attacked in 1943 .

𝑀!

(1) Masking the position
of TIME

𝑌"! : LOC O O O O [X] O

……

Top K predictionsO O O O O TIME O
𝑝!
𝑝"
𝑝#

Probabilities of
each prediction

……

𝑝!
𝑝"
𝑝#

(2) Copy
(3)

Insert

(4) Train

Annotations
of step 3

𝑌"" : O O O O O [X] O
𝑌"# : PER O O O O [X] O

𝑀"

𝑌"!$: LOC O O O O TIME O
𝑌""$: O O O O O TIME O
𝑌"#$: PER O O O O TIME O

(b)
Figure 2: (a) An example of Lsyn of Eq (4) at step 3 of Figure 1. (b) An example of distilling with Dt at step 3 of
Figure 1. M2 and M3 are models from step 2 and 3, respectively. We replace the predictions on the position of
“1943” from M2 with the correct annotation, “TIME”, from D3 before training on M3.

their performance of class-incremental learning on
CoNLL2003 has been comparable or even better
than training with full annotations of all the classes
encountered, by just distilling with the training data
of the new classes. However, in few-shot class-
incremental learning, the few training samples of
the current step may not contain enough entities of
the previous classes. In Section 4, we also discuss
the difference between few-shot class-incremental
and few-shot learning for NER.

3 Few-Shot Class-Incremental Learning
for NER

3.1 The Proposed Framework

Following Beltagy et al. (2019); Souza et al. (2019),
we use the BERT-CRF as our NER model, which
consists of a BERTbase (Devlin et al., 2018) en-
coder with a linear projection and a conditional ran-
dom field (CRF) (Lafferty et al., 2001) layer for pre-
diction. We denote M t as the NER model for step t.
M t is initialized from M t−1 to preserve knowledge
of old classes. For time step t > 1, M t is expected
to learn about the new classes from Dt, while
not forgetting the knowledge from {Dk}t−1

k=1. As-
sume we have already obtained a synthetic dataset
Dt

r = {Et,r
i , Y t,r

i }|D
t
r|

i=1 of previous entity classes
from {Dk}t−1

k=1, where Et,r
i = [et,ri,1, · · · , e

t,r
i,Ni

] and
Y t,r
i = [yt,ri,1, · · · , y

t,r
i,Ni

] are the reconstructed to-
ken embeddings and reference label sequence. Y t,r

i

is a randomly sampled label sequence containing
classes from the previous steps and Et,r

i is opti-
mized so the output from M t−1 with Et,r

i matches
Y t,r
i . We will discuss the construction of the syn-

thetic Dt
r in Section 3.2. Given the current training

data Dt and M t−1 that has been trained on Dt−1,
we propose to train M t by distilling from M t−1

with both the real data from Dt and synthetic data
from Dt

r. The challenge of such distillation is that
the predictions from M t and M t−1 are likely to
contain different set of labels, i.e., M t should also
predict with the new entity classes from Dt. This
is different from the standard setting of distillation,
where the teacher and student models share the
same label space (Hinton et al., 2015). In tackling
such a problem of label space discrepancy, we pro-
pose separate approaches of distillation for Dt and
Dt

r, respectively.

3.1.1 Distilling with Real Data Dt

The distillation from M t−1 to M t involves match-
ing the output distributions between M t to M t−1.
However, given an input sequence X from Dt, the
CRF layer outputs correspond to a sequence-level
distribution Pθ(Y |X), i.e., probabilities for all pos-
sible label sequences of X , the cardinality of which,
grows exponentially large with the length of X .
Therefore, it is infeasible to match with the exact
output distributions of CRF. Following the current
state-of-the-art approach of NER distillation (Wang
et al., 2020b), we approximate the sequence-level
output distribution of CRF with only its top S pre-
dictions. Specifically, for model M t−1, we have,

P̂Mt−1(Y |X) = [PMt−1(Ŷ1|X), . . . , (1)

PMt−1(ŶS |X), 1−
S∑

s=1

PMt−1(Ŷs|X)],

where {Ŷs}Ss=1 are the top S most probable pre-
dictions of label sequence from M t−1. We set
S = 10. In this way, the output from the CRF
of M t−1 becomes tractable. However, M t still
cannot be trained with such an output from M t−1.
This is because M t−1 was not trained with the

573

new classes in Dt. Therefore, when X is from Dt,
M t−1 will have wrong predictions on the tokens
labeled as being from entities of new classes. In
order to distill with M t−1, we propose a correc-
tion for {Ŷs}Ss=1. Figure 2(b) shows an example
of such a process. Specifically, on the positions of
the sequence where Dt has labeled as new classes,
we replace the predictions in {Ŷs}Ss=1 with the an-
notations from Dt. We denote the corrected set of
predictions as {Ŷ c

s }Ss=1. For training of M t, we
first calculate the predicted distribution of M t with
respect to {Ŷ c

s }Ss=1, as

P̂Mt(Y |X) =[PMt(Ŷ c
1 |X), · · · , PMt(Ŷ c

S |X),

1−
S∑

s=1

PMt(Ŷ c
s |X)], (2)

where we compute the predicted probabilities from
M t with regard to {Ŷ c

s }Ss=1 from M t−1. Then,
M t can be trained by minimizing the cross entropy
between P̂Mt−1(Y |X) and P̂Mt(Y |X) via

Lreal(Dt) = (3)

− 1

|Dt|
∑

X∈Dt

CE(P̂Mt−1(Y |X), P̂Mt(Y |X)),

where CE(·, ·) is the cross entropy function. Note
that the definition of O is different in Mt−1 and Mt.
Take Figure 2(b) as an example, the prediction of
O in step 2 corresponds to both O and TIME for
step 3, since TIME is not in the target entity classes
of step 2. However, from the annotation of step 3,
we know that tokens annotated as O are not TIME.
Therefore, we can safely assume that the prediction
of O in {Ŷ c

s }Ss=1 from M2 matches the definition
of O in M3, i.e., the semantics of O in {Ŷ c

s }Ss=1 is
the same for Mt and Mt−1.

3.1.2 Distilling with Synthetic Data Dt
r

Different from data in Dr, in which we know to-
kens annotated as O are not from the new classes,
data from Dt

r is reconstructed from Mt−1 and only
contains labels for the previous classes. Any token
predicted with "O" from M t−1 can be potentially
labeled as O or the new classes by M t. Therefore,
with Dt

r, it is unclear how to correct the output
of CRF from M t−1, i.e. {Ŷs}Ss=1, for training of
M t. By considering the above, we resort to another
approach that decomposes the output from CRF,
i.e., sequence level label distribution, into marginal
label prediction for each token, using the forward

and backward method in Lafferty et al. (2001). Fig-
ure 2(a) shows a graphic example of our distillation
loss Lsyn with Dt

r. Specifically, let Ct be the cumu-
lative number of possible labels for any given token
in NER at step t, i.e., Ct =

∑t
k=1 c

t, with ct be the
number of class in Dt. For each token with embed-
ding e, we define pte = [pte,O; p

t
e,Ct−1 ; p

t
e,ct] and

pt−1
e = [pt−1

e,O ; pt−1
e,Ct−1] as the predicted marginal

distribution of a token from M t and M t−1, re-
spectively. pte,O, p

t−1
e,O ∈ R are the probabilities

for class O, whereas pte,Ct−1 , p
t−1
e,Ct−1 ∈ RCt−1

are
the probabilities for entity classes encountered up
to step t − 1. Further, pte,ct ∈ Rct are probabili-
ties for the new classes in step t. Since O from
step t − 1 corresponds to the O and the ct new
classes in step t, we first collapse pte by comput-
ing p̂te = [sum(pte,O, p

t
e,ct); p

t
e,Ct−1−1], where we

merge the predictions of O and ct new classes. In
this way, p̂te will have the same dimension as pt−1

e .
Let Et

r be the set of embeddings for all tokens con-
tained in Dt

r. The distillation loss for Dt
r is

Lsyn(Dt
r) = Ee∈Et

r
KL(p̂te||pt−1

e), (4)

where KL(·||·) is the KL divergence.

3.1.3 General Objective
The general objective of M t for training at step t
is given by

Lt = Lreal(Dt) + αLsyn(Dt
r), (5)

where Lreal(·) and Lsyn(·) corresponds to distilla-
tion with the real data in Dt and synthetic data in
Dt

r, respectively, and α is a parameter balancing
between the losses for Dt and Dt

r. We set α = 1 in
the experiment.

3.2 Synthetic Data Reconstruction
Now we describe how to reconstruct Dt

r from
M t−1. Given a randomly sampled label sequence
Y containing the old entity classes from {Dk}k<t,
we seek to reconstruct the embedding sequence E
corresponding to its training data. In doing so, we
randomly initialize embeddings E, then optimize
the parameters of E with gradient descent so that
its output with M t−1 matches the expected label se-
quence Y . Formally, we optimize E by minimizing
the training loss of the CRF as

Lcrf = − logPMt−1(Y |E). (6)

One problem of such reconstruction is that the re-
sulting synthetic E may not be realistic. This will

574

result in a domain gap of training on the synthetic
data of old entities but testing on the real data. To
alleviate this problem, we propose to encourage
synthetic data to be more realistic by leveraging
the real data from Dt.

Let ht−1,syn
l (Et

r) be the hidden state from the
lth layer of the BERT encoder in M t−1, regarding
the set of synthetic token embeddings, Et

r. Simi-
larly, let ht−1,real

l (emb(Xt)) be the output hidden
states from the lth layer of M t−1, regarding the
set of real tokens, Xt, from Dt

r. Moreover, emb(·)
is the embedding layer. We propose to adversar-
ially match ht−1,syn

l (Et
r) and ht−1,real

l (emb(Xt))
so that hidden states from the real and synthetic
are not far away from each other. In this way, the
reconstructed embeddings from Dt

r are likely to be
more realistic. Specifically, let Ml be a binary dis-
criminator module, i.e., one layer linear projection
with sigmoid output, whose inputs are the real and
synthetic hidden states,

M∗
l = argminMl

− E
h∈ht−1,syn

l (Et
r)
logMl(h)

− E
h∈ht−1,real

l (emb(Xt))
log(1−Ml(h)),

Ladv
l = E

h∈ht−1,syn
l (Et

r)
log(1−M∗

l (h)). (7)

Finally, the loss for reconstructing Dt
r is

Lr = Lcrf + β
∑
l∈ls

Ll
adv, (8)

where ls = 2, 4, · · · , 12, i.e., we match every two
layers of the BERT encoder in M t−1. β is a balanc-
ing parameter and is default to 10 in the experiment.
Since we train M t with the reconstructed token em-
beddings from M t−1, we freeze the BERT token
embedding layer during training, so that M t−1 and
M t can share the same token embeddings. This
is also reasonable for the setting of few shot learn-
ing, since tuning all the model parameters with few
samples will result in overfitting.

Another problem we should consider is that the
real data Dt and synthetic data Dt

r may contain
different sets of entity classes, i.e., the few-shot
dataset Dt may not contain entities of old classes
in Dt

r. In this case, for the token embeddings of
old classes in Dt

r, s.t., {ei,j |yt,ri,j ̸= O}, matching
the hidden states of these embeddings with those
from Dt will distract these embedding from being
optimized into the entities of old classes, which
we will show in the experiments. Therefore, we
overload the definition of Et

r in (4) by excluding
embeddings of the old entity classes in Dt

r from

matching, i.e., Et
r = {ei,j |yt,ri,j = O}, while Xt

contains all the real tokens from Dt. Algorithm 1
shows the complete procedure for constructing Dt

r.
Since Dt

r contains entities of old classes from
previous steps, distilling with Lsyn(Dt

r) will help
preserving knowledge of old entity classes, i.e.,
avoiding catastrophic forgetting, without access-
ing the real data from previous steps. Additionally,
with Dt

r, M t is no longer trained with only few
samples from Dt, thus is less likely to overfit. This
is because Dt

r can construct a relative larger scale,
e.g., several thousand sentences, within the com-
putation limit. Additionally, the semantics of Dt

r

can be close to Dt, since their token embeddings
are closely matched. Thus, compared with train-
ing only with Dt, Dt

r provides more diverse text
information for M t during training. Moreover, the
entity of old classes from Dt

r can be regarded as
negative samples for training of the new classes in
Dt, thus reducing the confusion between old and
new classes for M t during training.

4 Related Work

Class-Incremental Learning: Different from con-
tinual learning, e.g., (Hu et al., 2018), which se-
quentially learn on different tasks (usually with
different classes) and requires task labels for pre-
diction, class-incremental learning aims at jointly
predicting with all the encountered classes without
knowing task labels. Sun et al. (2019); Ke et al.
(2021) have study continual learning for different
tasks of NLP. Recently, Monaikul et al. (2021) stud-
ies class-incremental learning for NER, building a
unified NER classifier for all the classes encoun-
tered over time. There are two problems regarding
this method. Firstly, Monaikul et al. (2021) only
works with a non-CRF-based model. However,
many current state-of-the-art NER models are built
with a CRF module (Liu et al., 2019; Chen et al.,
2020; Wang et al., 2021). Secondly, it assumes
that a large amount of data for the new classes is
available, which is unrealistic since annotations for
unseen classes are usually scarce. In this work,
we assume only few-shot datasets are available for
the new classes, i.e., few-shot class-incremental
learning, which was proposed in Tao et al. (2020);
Mazumder et al. (2021), yet not studied in NER.
Also, note that class-incremental learning is dif-
ferent meta-learning with episode training (Ding
et al., 2021; Finn et al., 2017), since tasks/classes of
meta-leaning may appear multiple times in episode

575

training, while we assume the dataset of each class
only appear once in class-incremental learning.
Few-Shot Learning: Models of few-shot learn-
ing are generally trained with a base dataset, then
learned to predict unseen target classes with few
samples. One branch of the works is based on met-
ric learning. These generally involves predicting by
learning to compare token features with class pro-
totypes (Hou et al., 2020) or stored query samples
(training data) of target classes (Yang and Kati-
yar, 2020). The latter violates our setting of class-
incremental learning, for which it is prohibitive to
store the training data for e.g., privacy issue. Al-
ternatively, Huang et al. (2020) avoids overfitting
of few-shot learning by augmenting with noisy or
unlabeled data from the web. Our approach is simi-
lar to Huang et al. (2020), in that we also augment
few-shot training of the current step with additional
data, except we use generated synthetic instead of
real data. Recently, (Cui et al., 2021) proposes Tem-
plate NER, a few-shot friendly model for NER that
convert NER into a sequence-to-sequence problem.
Our few-shot class-incremental learning is different
from few-shot learning in that i) Few-shot learning
requires data of different classes arrives at the same
time and with complete annotations for all the tar-
get classe, while data of few-shot class-incremental
learning arrives sequentially, containing annotation
of only classes of the current step. ii) Existing
works of few-shot NER build separate prediction
modules for the target and base classes and ignore
the performance of base classes during evaluation,
thus incompatible with class-incremental learning.
Data-Free Distillation: Data-free distillation
refers to the case in which we distill from a teacher
model to a student model with the training data of
the teacher not available. A typical solution is to
reconstruct synthetic training data from the trained
teacher model for distillation. Such a setting was
previously explored for model compression of im-
age classification (Yin et al., 2020) and text classi-
fication (Ma et al., 2020). However, it has not been
studied for NER scenarios. We use data-free distil-
lation for transferring knowledge between models
from the current and previous steps for few-shot
class-incremental learning.

5 Experiments

5.1 Datasets and Implementation

Following the previous work of class-incremental
learning for NER (Monaikul et al., 2021), we

Algorithm 1 Algorithm for constructing Dt
r from

M t−1.
Input: Model from the previous step, M t−1,
set of old classes up to t− 1, V = {vi}C

t−1

i=1 .
Output: The reconstructed data Dt

r.
Dt

r = ∅
for v in V do

for i in 1 · · ·N do
Uniformly sample ne ∈ [1, nmax

e].
Uniformly sample ns ∈ [ne, n

max
s].

Uniformly sample k ∈ [1, ns − ne + 1].
Construct a target label sequence Y of
length ns, with a length ne entity of class
v starting from position k.
Randomly initialize an embedding se-
quence E of length ns.
while not converge do

Update E with (8)
end while
Add {E, Y } to Dt

r.
end for

end for

experiment with two datasets: CoNLL2003 and
Ontonote 5.0. For CoNLL2003, our results are av-
erage over eight ordering of entity classes for each
step as in Monaikul et al. (2021). For Ontonote
5.0, we rank the entities in alphabetic order and
experiment with two combinations of different en-
tity classes for different steps. Table 3 and 4 in the
Appendix list the entity classes used for each step.
Since CoNLL2003 is a relative smaller dataset, we
conduct both 5-shot and 10-shot experiments for
CoNLL2003 and 5-shot experiments for OntoNote
5.0. Following Yang and Katiyar (2020), our base
datasets, i.e., dataset of step 1, is the training data
of CoNLL2003 and OntoNote 5.0, labeled with
only entity classes included in step 1. The few-shot
datasets are sampled from the evaluation dataset
with greedy sampling (Yang and Katiyar, 2020).
The resulting NER model of each step is tested on
the entire test set. Please refer to the Appendix for
addition details.

5.2 Baselines and Ablation Study

We compare with the state-of-the art work of class-
incremental learning for NER (CI NER). Addition-
ally, we implement EWC++ (Chaudhry et al., 2018)
with α = 0, i.e., using weights regularization to
avoid forgetting instead of generating synthetic
data. We also implement FSLL (Mazumder et al.,

576

1 2 3 4 5 6 7 8 9
Steps

10

20

30

40

50

60

70

80

F1
 Sc

ore

CI NER
EWC++
FSLL
L-TapNet+CDT
Template NER
AS-DFD
Ours

(a)

2 4 6 8 10
Steps

10

20

30

40

50

60

70

80

F1
 Sc

ore

CI NER
EWC++
FSLL
L-TapNet+CDT
AS-DFD
Ours

(b)

Figure 3: 5-shot Class-Incremental few-shot learning for OntoNote 5.0 data with two combination of classes for
each step. (a) P1 (b) P2. In the appendix, we include the class combinations, P1 and P2, for OntoNote 5.0 and
corresponding ablation study.

Table 1: Results for CoNLL2003 5-shot learning.

Method Step 1 Step 2 Step 3 Step 4 Avg ≥ 2

Continual NER 87.89 59.54 51.09 42.98 51.20

EWC++ 88.35 68.23 60.34 50.97 59.85

L-TapNet+CDT 88.03 68.57 61.54 51.72 60.61

FSLL 88.35 68.49 61.66 52.71 60.95

AS-DFD 88.35 68.87 60.32 52.99 60.73

Ours (α = 0) 88.35 60.09 52.16 44.31 52.19

Ours (α = 0, marg) 88.35 58.47 51.22 43.19 50.96

Ours (β = 0) 88.35 69.11 60.54 53.86 61.13

Ours (all tokens) 88.35 69.78 62.33 58.74 63.62

Ours 88.35 71.31 63.76 59.37 64.18

Table 2: Results for CoNLL2003 10-shot learning.

Method Step 1 Step 2 Step 3 Step 4 Avg ≥ 2

Continual NER 87.89 59.77 54.03 46.94 53.58

EWC++ 88.35 66.32 62.69 55.14 61.38

L-TapNet+CDT 88.03 66.45 62.43 54.89 61.23

FSLL 88.35 68.34 63.59 56.00 62.71

AS-DFD 88.35 68.95 59.54 53.22 60.57

Ours (α = 0) 88.35 60.26 55.46 47.69 54.47

Ours (α = 0, marg) 88.35 59.67 54.40 46.83 53.63

Ours (β = 0) 88.35 69.60 60.56 54.59 61.68

Ours (all tokens) 88.35 70.26 61.25 58.69 63.40

Ours 88.35 70.75 64.60 60.02 65.12

2021), a state-of-the-art method of few-shot class-
incremental learning for image classification with
metric learning. As mentioned in the related work
section, our method can be considered as data-free
distillation. Therefore, we also include AS-DFD
(Ma et al., 2020), the state-of-the-art method of
data-free distillation in text classification. Specif-
ically, we construct Dt

r with the adversarial regu-
larization described in AS-DFD instead of (8). We
also adapt L-TAPNet+CDT (Hou et al., 2020) for
comparison. L-TAPNet+CDT is a state-of-the-art
work of few-shot learning for sequence labeling
with CRF module. Please refer to Appendix for
how we adapt it for class-incremental learning.

As an ablation study, we compare our method
with: i) Ours (α = 0), only train with only Dt

with α = 0. ii) Ours (α = 0, marg), which is
also training with α = 0. The difference is that
instead of using the sequence-level distillation with
Lreal(Dt), we decompose the output of CRF into
marginal predictions for each token, as described
before (4). In this way, we can directly apply the
token-level distillation in CI NER (Monaikul et al.,
2021) for the CRF-based NER model. Compared
with Ours (α = 0), this is included to show the per-

formance of directly applying token-level distilla-
tion for CRF-based model. iii) In Ours (β = 0), we
examine the usefulness of Ladv by setting β = 0.
iv) Ours (all tokens), which matches all the syn-
thetic tokens in Dt

r with real tokens in Dt, instead
of matching with only those labeled as O in Dt

r, as
described after eq (8).

5.3 Results of Few-Shot Class-Increnmental
Learning

Table 1 and 2 show the F1 scores from different
steps of few-shot class-Incremental learning on
CoNLL2003. The values are averaged over eight
permutations as in (Monaikul et al., 2021). Our
methods outperform all the considered baselines
for both 5-shot and 10-shot learning. Especially,
CI NER (Monaikul et al., 2021) has the worst re-
sult among all the methods. This is because the
performance of CI NER relies on a large amount of
data from Dt for replay of previous entities. There-
fore, it does not work well in the few-shot scenario,
where Dt with only few samples may not contain
entities of old classes for replay. Additionally, we
find that the performance of AS-DFD (Ma et al.,
2020) is slightly lower than Ours (β = 0), i.e.,

577

(a) (b) (c)

Figure 4: T-SNE plots of real and synthetic token embeddings with 10-shot LOC→PER, i.e., training on LOC for
step 1 and PER for step 2. D2 is a 10-shot dataset for PER. We visualize the token embedding from the the last
layer of the BERT encoder in M1, i.e., trained only on LOC. (a) Ours (β = 0), no adversarial matching between
tokens from D2 and D2

r . (b) Ours (all tokens), matching all the tokens from D2 and all the tokens from D2
r . (c)

Ours, excluding the synthetic tokens that are labeled as of entities from old classes, i.e., LOC, from adversarial
matching. The real distribution refers to tokens from the testing dataset, which are not available during training. We
use black ellipses to mark tokens from the real distribution that are predicted as LOC, i.e., the old entities.

distilling using data reconstructed with only Lcrf .
AS-DFD is designed for text classification, where
they use the feature of the special token [CLS]
from BERT for classification, while features of the
non-special tokens (within text) are trained with an
augmented task of language modeling. However,
in NER, features of the non-special tokens are di-
rectly used for prediction. Thus, simultaneously
training such features with language modeling may
distract the model from learning the task specific
information needed for NER.

In the ablation study, we find that our adversarial
matching indeed improves the quality of the syn-
thetic data (Ours vs. Ours (β = 0)), especially
when excluding tokens of the reconstructed old en-
tities from matching (Ours vs. Ours (all tokens)).
Further, Ours (α = 0, marg) has lower perfor-
mance than Ours (α = 0), showing that it might
not be optimal to directly apply CI NER (Monaikul
et al., 2021) with CRF based models.

Figure 3 shows the results of class-incremental
with OntoNote 5.0. Since there are more steps rel-
ative to the experiments for CoNLL2003, follow-
ing previous works in few-shot class-incremental
learning (Tao et al., 2020; Mazumder et al., 2021),
we plot the F1 scores as curves, to highlight the
relative difference of different methods over time.
Our method consistently outperforms the baselines.
Note that with larger number of steps of incre-
mental learning, the curves may not be necessarily
monotonically decreasing. This may indeed hap-
pen because training with some classes can benefit
the performance of other downstream classes, thus

2 4 6 8 10 12 14 16
Value of

0

1

2

3

4

5

6

Ga
in

 o
n

F1
 sc

or
es

Step 2
Step 3
Step 4
Average

Figure 5: F1 score gains of 10-shot learning with differ-
ent values of β on CoNLL2003, relative to β = 0.

(locally) increasing the overall performance. In
Appendix, we also present the ablation study with
OntoNote 5.0.

5.4 Visualization of Token Embeddings

Figure 4 shows the t-sne plots of hidden states of
tokens from 10-shot LOC→PER (explained in the
caption). In (a), we can find that there are syn-
thetic tokens that are very close to the real LOC
tokens (green dots in the black ellipse). These
synthetic tokens (within the black ellipse) are the
reconstructed LOC. On the contrary, the synthetic
context, i.e., the rest of the synthetic tokens outside
the ellipse, are far away from the real distribution.
This may because the context contains more di-
verse information, which makes it more difficult
to be reconstructed. Such a difference between
real and synthetic tokens may cause a domain shift
between training and testing, since we are train-
ing on synthetic token and testing on real tokens.

578

Note that there is no tokens from D2 (red dots)
in the black ellipse of LOC, indicating that there
may not be LOC entities in the few-shot dataset
D2, unlike in non-few-shot learning where D2 can
contain a lot of entities of the old classes (LOC).
(b) shows the result of matching all the synthetic
tokens from D2

r with all the real ones from D2. In
this way, most of the synthetic tokens are matched
with the real ones, except that only few synthetic
tokens are aligned with the real LOC tokens. This
is because the few-shot dataset D2 may not con-
tain entities from the old classes LOC. In this case,
the adversarial matching will distract synthetic to-
kens from being reconstructed as LOC. Then, the
reconstructed embedding sequences will contain
less information from the old classes (LOC). In (c),
we exclude synthetic tokens that are intended to
be reconstructed as the old class LOC, i.e., labeled
as LOC in the target label sequence Y in Algo-
rithm 1. As a result, the synthetic tokens contain
both LOC and context that is aligned with the real
distribution.

5.5 Results of Varying β

We investigate the relationship between model per-
formance and the value of β, i.e., the parameter
controlling the degree of adversarial matching. Fig-
ure 5 shows the the F1 scores from different steps
on CoNLL2003, with different values of β. We
experiment with 10-shot and report the gain of
F1 score compared with β = 0. We noticed that
there is positive gain of the average F1 score on
the whole experiment for a range of β values, i.e.,
[1, 16]. These results demonstrate that the proposed
adversarial matching between the real and synthetic
data (Dt and Dt

r) is generally beneficial and is not
sensitive to the selection of β.

6 Conclusion

We present the first work of few-shot class-
Incremental learning for NER To address the prob-
lem of catastrophic forgetting, we proposed to re-
construct synthetic training of the old entity classes
from the model trained at the previous time step.
Additionally, the synthetic data allows the model
to be trained with a more diverse context, thus less
likely to overfit to the few training samples of cur-
rent step. Experimental results showed that our
method outperforms the baselines, enabling the
NER model to incrementally learning from new
classes with few samples.

Acknowledgements

This work was carried out during an internship at
Adobe Research. Further, it was supported by NIH
(NINDS 1R61NS120246), DARPA (FA8650-18-2-
7832-P00009-12) and ONR (N00014-18-1-2871-
P00002-3). We thank all the researchers involved
from Adobe Research and the support from Duke
University.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:

A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam
Ajanthan, and Philip HS Torr. 2018. Riemannian
walk for incremental learning: Understanding forget-
ting and intransigence. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
532–547.

Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua
Lu. 2020. Seqvat: Virtual adversarial training for
semi-supervised sequence labeling. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8801–8811.

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang.
2021. Template-based named entity recognition us-
ing bart. arXiv preprint arXiv:2106.01760.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Hai-Tao Zheng, and Zhiyuan
Liu. 2021. Few-nerd: A few-shot named entity recog-
nition dataset. arXiv preprint arXiv:2105.07464.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Ma-
chine Learning, pages 1126–1135. PMLR.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot slot
tagging with collapsed dependency transfer and label-
enhanced task-adaptive projection network. arXiv
preprint arXiv:2006.05702.

Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao,
Zhengwei Tao, Jinwen Ma, Dongyan Zhao, and Rui
Yan. 2018. Overcoming catastrophic forgetting for
continual learning via model adaptation. In Interna-
tional Conference on Learning Representations.

579

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2020. Few-shot
named entity recognition: A comprehensive study.
arXiv preprint arXiv:2012.14978.

Zixuan Ke, Hu Xu, and Bing Liu. 2021. Adapting bert
for continual learning of a sequence of aspect senti-
ment classification tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4746–4755.

Fanjie Kong and Ricardo Henao. 2021. Efficient classi-
fication of very large images with tiny objects. arXiv
preprint arXiv:2106.02694.

Fanjie Kong, Xiao-Yang Liu, and Ricardo Henao. 2021.
Quantum tensor network in machine learning: An ap-
plication to tiny object classification. arXiv preprint
arXiv:2101.03154.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan Xu,
Yufeng Chen, and Jie Zhou. 2019. Gcdt: A global
context enhanced deep transition architecture for se-
quence labeling. arXiv preprint arXiv:1906.02437.

Xinyin Ma, Yongliang Shen, Gongfan Fang, Chen Chen,
Chenghao Jia, and Weiming Lu. 2020. Adversarial
self-supervised data-free distillation for text classifi-
cation. arXiv preprint arXiv:2010.04883.

Pratik Mazumder, Pravendra Singh, and Piyush Rai.
2021. Few-shot lifelong learning. arXiv preprint
arXiv:2103.00991.

Natawut Monaikul, Giuseppe Castellucci, Simone Fil-
ice, and Oleg Rokhlenko. 2021. Continual learning
for named entity recognition. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence.

Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo.
2019. Portuguese named entity recognition using
bert-crf. arXiv preprint arXiv:1909.10649.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. arXiv preprint arXiv:1909.03329.

Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin
Dong, Xing Wei, and Yihong Gong. 2020. Few-
shot class-incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12183–12192.

Dong Wang, Yuewei Yang, Chenyang Tao, Zhe
Gan, Liqun Chen, Fanjie Kong, Ricardo Henao,
and Lawrence Carin. 2020a. Proactive pseudo-
intervention: Causally informed contrastive learn-
ing for interpretable vision models. arXiv preprint
arXiv:2012.03369.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Fei
Huang, and Kewei Tu. 2020b. Structure-level knowl-
edge distillation for multilingual sequence labeling.
arXiv preprint arXiv:2004.03846.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Improving named entity recognition by external
context retrieving and cooperative learning. arXiv
preprint arXiv:2105.03654.

Yi Yang and Arzoo Katiyar. 2020. Simple and effec-
tive few-shot named entity recognition with struc-
tured nearest neighbor learning. arXiv preprint
arXiv:2010.02405.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez,
Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K
Jha, and Jan Kautz. 2020. Dreaming to distill: Data-
free knowledge transfer via deepinversion. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8715–8724.

580

1 2 3 4 5 6 7 8 9
Steps

10

20

30

40

50

60

70

80

F1
 Sc

ore

Ours (= 0)
Ours (= 0)
Ours (all tokens)
Ours

(a)

1 2 3 4 5 6 7 8 9
Steps

10

20

30

40

50

60

70

80

F1
 Sc

ore

Ours (= 0)
Ours (= 0)
Ours (all tokens)
Ours

(b)

Figure 6: Ablation study of 5-shot Class-Incremental few-shot learning for OntoNote 5.0 data with two combination
of classes for each step.(a) P1 (b) P2.

A Entity Classes for each step

Table 3: Entity classes in each step with CoNLL2003.

Permutations for CoNLL2003
P1: PER → LOC → ORG → MISC
P2: PER → MISC → LOC → ORG
P3: LOC → PER → ORG → MISC
P4: LOC → ORG → MISC → PER
P5: ORG → LOC → MISC → PER
P6: ORG → MISC → PER → LOC
P7: MISC → PER → LOC → ORG
P8: MISC → ORG → PER → LOC

Table 4: Entity classes in each step with OntoNote 5.0.
Classes within the brackets are trained in the same step.

Permutations for OntoNote 5.0
P1: [CARDINAL, DATE, EVENT, FAC] → [GPE,
LANGUAGE] → LAW → [LOC, MONEY] →
NORP → [ORDINAL, ORG]→ PERCENT →
[PERSON, PRODUCT] → [QUANTITY, TIME,
WORK_OF_ART]
P2: [CARDINAL, DATE, EVENT, FAC] → GPE
→ LANGUAGE→ LAW → LOC → [MONEY,
NORP] → [ORDINAL, ORG] → [PERCENT, PER-
SON] → [PRODUCT, QUANTITY] → [TIME,
WORK_OF_ART]

B Algorithm for Data Reconstruction

Algorithm 1 shows the procedure of sampling syn-
thetic label sequences and reconstructing the token
embedding sequence. Specifically, we construct a
label sequence by sampling a length for the token
sequence and entity span, respectively.

C Ablation Study for OntoNote 5.0

Figure 6 shows the ablation study on OntoNote 5.0.
α = 0 corresponds to training only with eq Lreal.

β = 0 means reconstructing without adversarial
training.

D Additional Details

We set the learning rate for our NER model is 5e-5.
The model is trained with 50 epochs of Dt, with
learning batch size of 1 for 5-shot and 2 for 10-shot
experiments. The batch size of training with Dt

r is
5 for each reconstructed class. Following Ma et al.
(2020), the token embeddings in Dt

r are initialized
with N(0, 0.35), then optimized with a learning
rate of 1e-2. We have nmax

e = 4 and nmax
s = 30.

Our code is modified based on Huggingface* with
python 3.7 and pytorch 1.7.0, run on 8 P100 GPUs,
each with a 16GB memory. Following the prior
work*, when constructing Dt

r, we add the tokens
of [CLS] and [SEP] before and after the sequence
of token embeddings that are intended to be re-
constructed, so that it is consistent with the input
format of BERT. Then, we append after [SEP] with
[PAD] to construct a padded embedding sequence
of length 128. In algorithm 1, we freeze the embed-
ding of [CLS], [SEP] and [PAD], i.e., the gradients
from eq (10) in the main paper are not backpropa-
gated into embeddings of [CLS], [SEP] and [PAD].
At each time step, we reconstructed 150 samples
for each previous class. These samples are dis-
carded after training of the current step.

E Adapting L-TapNet+CDT for
Class-Incremental Learning

There are two challenge adapting L-TapNet+CDT
for class-incremental learning. i) Unlike dew-shot

*https://github.com/huggingface/transformers
*Ma, X.; Shen, Y.; Fang, G.; Chen, C.; Jia, C.; and Lu,

W.2020. Adversarial Self-Supervised Data-Free Distillation-
for Text Classification.arXiv preprint arXiv:2010.04883.

581

learning, where the few-shot dataset contains com-
plete annotations for all the target classes, dataset of
class-incremental leanring only contains data of the
current classes, i.e., entities of old or future classes
are labeled as O. ii) The sematics of O changes with
different time step. Without a complete annotation
of both current and previous classes, it is unclear
how to collect O tokens for constructing the proto-
type of O for the current class, since tokens labeled
as O in the current step may be within span if old
entity classes.

To solve the above problem, for each time step,
we samples a fake few-shot dataset labeled with
both current and old classes. We use entities of
new classes to construct corresponding prototypes.
These prototypes are saved for future steps, i.e.,
fixed as classification weights for classification of
these classes. We use tokens labeled as O in the
fake dataset for constructing the current O proto-
types. Labels for the old classes in the fake dataset
are not directly used for prediction. Note that this
can be a easier problem compared with few-shot
class-incremental learning, since the fake dataset
contains labels of old classes, though we avoid
using them for prediction.

582

