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Abstract

In this paper, we introduce ELECTRA-style
tasks (Clark et al., 2020b) to cross-lingual lan-
guage model pre-training. Specifically, we
present two pre-training tasks, namely multi-
lingual replaced token detection, and transla-
tion replaced token detection. Besides, we
pretrain the model, named as XLM-E, on
both multilingual and parallel corpora. Our
model outperforms the baseline models on
various cross-lingual understanding tasks with
much less computation cost. Moreover, anal-
ysis shows that XLM-E tends to obtain better
cross-lingual transferability.

1 Introduction

It has become a de facto trend to use a pretrained
language model (Devlin et al., 2019; Dong et al.,
2019; Yang et al., 2019b; Bao et al., 2020) for
downstream NLP tasks. These models are typically
pretrained with masked language modeling objec-
tives, which learn to generate the masked tokens of
an input sentence. In addition to monolingual rep-
resentations, the masked language modeling task is
effective for learning cross-lingual representations.
By only using multilingual corpora, such pretrained
models perform well on zero-shot cross-lingual
transfer (Devlin et al., 2019; Conneau et al., 2020),
i.e., fine-tuning with English training data while di-
rectly applying the model to other target languages.
The cross-lingual transferability can be further im-
proved by introducing external pre-training tasks
using parallel corpus, such as translation language
modeling (Conneau and Lample, 2019), and cross-
lingual contrast (Chi et al., 2021b). However, pre-
vious cross-lingual pre-training based on masked
language modeling usually requires massive com-
putation resources, rendering such models quite
expensive. As shown in Figure 1, our proposed
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Figure 1: The proposed XLM-E pre-training (red line)
achieves 130× speedup compared with an in-house pre-
trained XLM-R augmented with translation language
modeling (XLM-R + TLM; blue line), using the same
corpora and code base. The training steps are shown
in the brackets. We also present XLM-R (Conneau
et al., 2020), InfoXLM (Chi et al., 2021b), and XLM-
Align (Chi et al., 2021c). The compared models are all
in Base size.

XLM-E achieves a huge speedup compared with
well-tuned pretrained models.

In this paper, we introduce ELECTRA-style
tasks (Clark et al., 2020b) to cross-lingual language
model pre-training. Specifically, we present two
discriminative pre-training tasks, namely multilin-
gual replaced token detection, and translation re-
placed token detection. Rather than recovering
masked tokens, the model learns to distinguish the
replaced tokens in the corrupted input sequences.
The two tasks build input sequences by replac-
ing tokens in multilingual sentences, and transla-
tion pairs, respectively. We also describe the pre-
training algorithm of our model, XLM-E, which is
pretrained with the above two discriminative tasks.
It provides a more compute-efficient and sample-
efficient way for cross-lingual language model pre-
training.
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We conduct extensive experiments on the
XTREME cross-lingual understanding benchmark
to evaluate and analyze XLM-E. Over seven
datasets, our model achieves competitive results
with the baseline models, while only using 1% of
the computation cost comparing to XLM-R. In ad-
dition to the high computational efficiency, our
model also shows the cross-lingual transferability
that achieves a reasonably low transfer gap. We
also show that the discriminative pre-training en-
courages universal representations, making the text
representations better aligned across different lan-
guages.

Our contributions are summarized as follows:

• We explore ELECTRA-style tasks for cross-
lingual language model pre-training, and pre-
train XLM-E with both multilingual corpus
and parallel data.

• We demonstrate that XLM-E greatly reduces
the computation cost of cross-lingual pre-
training.

• We show that discriminative pre-training
tends to encourage better cross-lingual trans-
ferability.

2 Background: ELECTRA

ELECTRA (Clark et al., 2020b) introduces the
replaced token detection task for language model
pre-training, with the goal of distinguishing real in-
put tokens from corrupted tokens. That means the
text encoders are pretrained as discriminators rather
than generators, which is different from the previ-
ous pretrained language models, such as BERT (De-
vlin et al., 2019), that learn to predict the masked
tokens.

ELECTRA trains two Transformer (Vaswani
et al., 2017) encoders, serving as generator and
discriminator, respectively. The generator G is typ-
ically a small BERT model trained with the masked
language modeling (MLM; Devlin et al. 2019) task.
Consider an input sentence x = {xi}ni=1 contain-
ing n tokens. MLM first randomly selects a subset
M ⊆ {1, . . . , n} as the positions to be masked,
and construct the masked sentence xmasked by re-
placing tokens inM with [MASK]. Then, the gen-
erator predicts the probability distributions of the
masked tokens pG(x|xmasked). The loss function

of the generator G is:

LG(x;θG) = −
∑
i∈M

log pG(xi|xmasked). (1)

The discriminator D is trained with the replaced
token detection task. Specifically, the discrimina-
tor takes the corrupted sentences xcorrupt as input,
which is constructed by replacing the tokens inM
with the tokens sampled from the generator G:{

x
corrupt
i ∼ pG(xi|xmasked), i ∈M
x

corrupt
i = xi, i 6∈ M

(2)

Then, the discriminator predicts whether xcorrupt
i is

original or sampled from the generator. The loss
function of the discriminator D is

LD(x;θD) = −
n∑
i=1

log pD(zi|xcorrupt) (3)

where zi represents the label of whether xcorrupt
i is

the original token or the replaced one. The final
loss function of ELECTRA is the combined loss
of the generator and discriminator losses, LE =
LG + λLD.

Compared to generative pre-training, ELECTRA
uses more model parameters and training FLOPs
per step, because it contains a generator and a dis-
criminator during pre-training. However, only the
discriminator is used for fine-tuning on downstream
tasks, so the size of the final checkpoint is similar
to BERT-like models in practice.

3 Methods

Figure 2 shows an overview of the two discrimina-
tive tasks used for pre-training XLM-E. Similar to
ELECTRA described in Section 2, XLM-E has
two Transformer components, i.e., generator and
discriminator. The generator predicts the masked
tokens given the masked sentence or translation
pair, and the discriminator distinguishes whether
the tokens are replaced by the generator.

3.1 Pre-training Tasks

The pre-training tasks of XLM-E are multilingual
replaced token detection (MRTD), and translation
replaced token detection (TRTD).

Multilingual Replaced Token Detection The
multilingual replaced token detection task requires
the model to distinguish real input tokens from
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Generator

<M> 好 世界 <M> Hello <M> .

你 ？ earth

Discriminator

Masked

Original 你好世界。

Replaced 你 好 世界 ？ Hello earth .

Yes Yes Yes No Yes No YesIs original?

(b) Translation replaced token detection (TRTD)

Hello world.

Generator

Attention <M> all need<M> <M>Masked

Original

Replaced

Is original?

(a) Multilingual replaced token detection (MRTD)

Attention is all you need.

is we ?

Attention is all needwe ?

Discriminator

Yes Yes Yes YesNo No

Figure 2: Overview of two pre-training tasks of XLM-E, i.e., multilingual replaced token detection, and trans-
lation replaced token detection. The generator predicts the masked tokens given a masked sentence or a masked
translation pair, and the discriminator distinguishes whether the tokens are replaced by the generator.

corrupted multilingual sentences. Both the gener-
ator and the discriminator are shared across lan-
guages. The vocabulary is also shared for different
languages. The task is the same as in monolin-
gual ELECTRA pre-training (Section 2). The only
difference is that the input texts can be in various
languages.

We use uniform masking to produce the cor-
rupted positions. We also tried span masking (Joshi
et al., 2019; Bao et al., 2020) in our preliminary
experiments. The results indicate that span mask-
ing significantly weakens the generator’s prediction
accuracy, which in turn harms pre-training.

Translation Replaced Token Detection Paral-
lel corpora are easily accessible and proved to be
effective for learning cross-lingual language mod-
els (Conneau and Lample, 2019; Chi et al., 2021b),
while it is under-studied how to improve discrimi-
native pre-training with parallel corpora. We intro-
duce the translation replaced token detection task
that aims to distinguish real input tokens from trans-
lation pairs. Given an input translation pair, the
generator predicts the masked tokens in both lan-
guages. Consider an input translation pair (e,f).
We construct the input sequence by concatenating
the translation pair as a single sentence. The loss
function of the generator G is:

LG(e,f ;θG) =−
∑
i∈Me

log pG(ei| [e;f ]masked)

−
∑
i∈Mf

log pG(fi| [e;f ]masked)

where [; ] is the operator of concatenation, and
Me,Mf stand for the randomly selected masked
positions for e and f , respectively. This loss func-

tion is identical to the translation language model-
ing loss (TLM; Conneau and Lample 2019). The
discriminator D learns to distinguish real input
tokens from the corrupted translation pair. The
corrupted translation pair (ecorrupt,f corrupt) is con-
structed by replacing tokens with the tokens sam-
pled from G with the concatenated translation pair
as input. Formally, ecorrupt is constructed by{

e
corrupt
i ∼ pG(ei| [e;f ]masked), i ∈Me

e
corrupt
i = ei, i 6∈ Me

(4)

The same operation is also used to construct
f corrupt. Then, the loss function of the discrimi-
nator D can be written as

LD(e,f ;θD) = −
ne+nf∑
i=1

log pD(ri| [e;f ]corrupt)

(5)

where ri represents the label of whether the i-th
input token is the original one or the replaced one.
The final loss function of the translation replaced
token detection task is LG + λLD.

3.2 Pre-training XLM-E
The XLM-E model is jointly pretrained with the
masked language modeling, translation language
modeling, multilingual replaced token detection
and the translation replaced token detection tasks.
The overall training objective is to minimize

L = LMLM(x; θG) + LTLM(e,f ; θG)

+ λLMRTD(x; θD) + λLTRTD(e,f ; θD)

over large scale multilingual corpus X = {x} and
parallel corpus P = {(e,f)}. We jointly pretrain
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the generator and the discriminator from scratch.
Following Clark et al. (2020b), we make the gener-
ator smaller to improve the pre-training efficiency.

3.3 Gated Relative Position Bias

We propose to use gated relative position bias in
the self-attention mechanism. Given input tokens
{xi}|x|i=1, let {hi}|x|i=1 denote their hidden states in
Transformer. The self-attention outputs {h̃i}|x|i=1

are computed via:

qi,ki,vi = hiW
Q,hiW

K ,hiW
V (6)

aij ∝ exp{qi · kj√
dk

+ ri−j} (7)

h̃i =

|x|∑
j=1

aijvi (8)

where ri−j represents gated relative position
bias, each hi is linearly projected to a triple of
query, key and value using parameter matrices
WQ,WK ,WV ∈ Rdh×dk , respectively.

Inspired by the gating mechanism of Gated Re-
current Unit (GRU; Cho et al. 2014), we compute
gated relative position bias ri−j via:

g(update), g(reset) = σ(qi · u), σ(qi · v)

r̃i−j = wg(reset)di−j

ri−j = di−j + g(update)di−j + (1− g(update))r̃i−j

where di−j is learnable relative position bias, the
vectors u,v ∈ Rdk are parameters, σ is a sigmoid
function, and w is a learnable value.

Compared with relative position bias (Parikh
et al., 2016; Raffel et al., 2020; Bao et al., 2020),
the proposed gates take the content into considera-
tion, which adaptively adjusts the relative position
bias by conditioning on input tokens. Intuitively,
the same distance between two tokens tends to play
different roles in different languages.

4 Experiments

4.1 Setup

Data We use the CC-100 (Conneau et al., 2020)
dataset for the replaced token detection task. CC-
100 contains texts in 100 languages collected from
the CommonCrawl dump. We use parallel corpora
for the translation replaced token detection task,
including translation pairs in 100 languages col-
lected from MultiUN (Ziemski et al., 2016), IIT

Bombay (Kunchukuttan et al., 2018), OPUS (Tiede-
mann, 2012), WikiMatrix (Schwenk et al., 2019),
and CCAligned (El-Kishky et al., 2020).

Following XLM (Conneau and Lample, 2019),
we sample multilingual sentences to balance the
language distribution. Formally, consider the pre-
training corpora in N languages with mj examples
for the j-th language. The probability of using an
example in the j-th language is

pj =
mα
j∑N

k=1m
α
k

(9)

The exponent α controls the distribution such that
a lower α increases the probability of sampling
examples from a low-resource language. In this
paper, we set α = 0.7.

Model We use a Base-size 12-layer Trans-
former (Vaswani et al., 2017) as the discrimina-
tor, with hidden size of 768, and FFN hidden
size of 3, 072. The generator is a 4-layer Trans-
former using the same hidden size as the discrim-
inator (Meng et al., 2021). See Appendix A for
more details of model hyperparameters.

Training We jointly pretrain the generator and
the discriminator of XLM-E from scratch, using
the Adam (Kingma and Ba, 2015) optimizer for
125K training steps. We use dynamic batching
of approximately 1M tokens for each pre-training
task. We set λ, the weight for the discriminator
objective to 50. The whole pre-training procedure
takes about 1.7 days on 64 Nvidia A100 GPU cards.
See Appendix B for more details of pre-training
hyperparameters.

4.2 Cross-lingual Understanding

We evaluate XLM-E on the XTREME (Hu et al.,
2020b) benchmark, which is a multilingual multi-
task benchmark for evaluating cross-lingual un-
derstanding. The XTREME benchmark contains
seven cross-lingual understanding tasks, namely
part-of-speech tagging on the Universal Dependen-
cies v2.5 (Zeman et al., 2019), NER named en-
tity recognition on the Wikiann (Pan et al., 2017;
Rahimi et al., 2019) dataset, cross-lingual natu-
ral language inference on XNLI (Conneau et al.,
2018), cross-lingual paraphrase adversaries from
word scrambling (PAWS-X; Yang et al. 2019a), and
cross-lingual question answering on MLQA (Lewis
et al., 2020), XQuAD (Artetxe et al., 2020), and
TyDiQA-GoldP (Clark et al., 2020a).
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Model Structured Prediction Question Answering Classification Avg
POS NER XQuAD MLQA TyDiQA XNLI PAWS-X

Metrics F1 F1 F1 / EM F1 / EM F1 / EM Acc. Acc.

Pre-training on multilingual corpus
MBERT (Hu et al., 2020b) 70.3 62.2 64.5 / 49.4 61.4 / 44.2 59.7 / 43.9 65.4 81.9 63.1
MT5 (Xue et al., 2021) - 55.7 67.0 / 49.0 64.6 / 45.0 57.2 / 41.2 75.4 86.4 -
XLM-R 75.6 61.8 71.9 / 56.4 65.1 / 47.2 55.4 / 38.3 75.0 84.9 66.4
XLM-E (w/o TRTD) 74.2 62.7 74.3 / 58.2 67.8 / 49.7 57.8 / 40.6 75.1 87.1 67.6

Pre-training on both multilingual corpus and parallel corpus
XLM (Hu et al., 2020b) 70.1 61.2 59.8 / 44.3 48.5 / 32.6 43.6 / 29.1 69.1 80.9 58.6
INFOXLM (Chi et al., 2021b) - - - / - 68.1 / 49.6 - / - 76.5 - -
XLM-ALIGN (Chi et al., 2021c) 76.0 63.7 74.7 / 59.0 68.1 / 49.8 62.1 / 44.8 76.2 86.8 68.9
XLM-E 75.6 63.5 76.2 / 60.2 68.3 / 49.8 62.4 / 45.7 76.6 88.3 69.3

Table 1: Evaluation results on XTREME cross-lingual understanding tasks. We consider the cross-lingual transfer
setting, where models are only fine-tuned on the English training data but evaluated on all target languages. The
compared models are all in Base size. Results of XLM-E and XLM-R are averaged over five runs.

Baselines We compare our XLM-E model with
the cross-lingual language models pretrained
with multilingual text, i.e., Multilingual BERT
(MBERT; Devlin et al. 2019), MT5 (Xue et al.,
2021), and XLM-R (Conneau et al., 2020), or
pretrained with both multilingual text and par-
allel corpora, i.e., XLM (Conneau and Lample,
2019), INFOXLM (Chi et al., 2021b), and XLM-
ALIGN (Chi et al., 2021c). The compared models
are all in Base size. In what follows, models are
considered as in Base size by default.

Results We use the cross-lingual transfer setting
for the evaluation on XTREME (Hu et al., 2020b),
where the models are first fine-tuned with the En-
glish training data and then evaluated on the tar-
get languages. In Table 1, we report the accuracy,
F1, or Exact-Match (EM) scores on the XTREME
cross-lingual understanding tasks. The results are
averaged over all target languages and five runs
with different random seeds. We divide the pre-
trained models into two categories, i.e., the models
pretrained on multilingual corpora, and the mod-
els pretrained on both multilingual corpora and
parallel corpora. For the first setting, we pretrain
XLM-E with only the multilingual replaced token
detection task. From the results, it can be observed
that XLM-E outperforms previous models on both
settings, achieving the averaged scores of 67.6 and
69.3, respectively. Compared to XLM-R, XLM-E
(w/o TRTD) produces an absolute 1.2 improve-
ment on average over the seven tasks. For the sec-
ond setting, compared to XLM-ALIGN, XLM-E
produces an absolute 0.4 improvement on average.
XLM-E performs better on the question answering

Model XNLI MLQA

XLM (reimplementation) 73.4 66.2 / 47.8
−TLM 70.6 64.0 / 46.0

XLM-E 76.6 68.3 / 49.8
−TRTD 75.1 67.8 / 49.7
−TRTD−Gated relative position bias 75.2 67.4 / 49.2

Table 2: Ablation studies of XLM-E. We studies the
effects of the main components of XLM-E, and com-
pare the models with XLM under the same pre-training
setup, including training steps, learning rate, etc.

tasks and sentence classification tasks while pre-
serving reasonable high F1 scores on structured pre-
diction tasks. Despite the effectiveness of XLM-E,
our model requires substantially lower computation
cost than XLM-R and XLM-ALIGN. A detailed
efficiency analysis in presented in Section 4.5.

4.3 Ablation Studies
For a deeper insight to XLM-E, we conduct abla-
tion experiments where we first remove the TRTD
task and then remove the gated relative position
bias. Besides, we reimplement XLM that is
pretrained with the same pre-training setup with
XLM-E, i.e., using the same training steps, learn-
ing rate, etc. Table 2 shows the ablation results
on XNLI and MLQA. Removing TRTD weakens
the performance of XLM-E on both downstream
tasks. On this basis, the results on MLQA further
decline when removing the gated relative position
bias. This demonstrates that XLM-E benefits from
both TRTD and the gated relative position bias dur-
ing pre-training. Besides, XLM-E substantially
outperform XLM on both tasks. Notice that when
removing the two components from XLM-E, our
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Model Size Params XNLI MLQA

XLM-E Base 279M 76.6 68.3 / 49.8
XLM-E Large 840M 81.3 72.7 / 54.2
XLM-E XL 2.2B 83.7 76.2 / 57.9

XLM-R XL 3.5B 82.3 73.4 / 55.3
MT5 XL 3.7B 82.9 73.5 / 54.5

Table 3: Results of scaling-up the model size.

Model XTREME Params FLOPs

MBERT 63.1 167M 6.4e19
XLM-R 66.4 279M 9.6e21
INFOXLM* - 279M 9.6e21 + 1.7e20
XLM-ALIGN* 68.9 279M 9.6e21 + 9.6e19
XLM-E 69.3 279M 9.5e19
−TRTD 67.6 279M 6.3e19

Table 4: Comparison of the pre-training costs. The
models with ‘*’ are continue-trained from XLM-R
rather than pre-training from scratch.

model only requires a multilingual corpus, but still
achieves better performance than XLM, which uses
an additional parallel corpus.

4.4 Scaling-up Results
Scaling-up model size has shown to improve per-
formance on cross-lingual downstream tasks (Xue
et al., 2021; Goyal et al., 2021). We study the scal-
ability of XLM-E by pre-training XLM-E models
using larger model sizes. We consider two larger
model sizes in our experiments, namely Large and
XL. Detailed model hyperparameters can be found
in Appendix A. As present in Table 3, XLM-EXL
achieves the best performance while using signifi-
cantly fewer parameters than its counterparts. Be-
sides, scaling-up the XLM-E model size consis-
tently improves the results, demonstrating the ef-
fectiveness of XLM-E for large-scale pre-training.

4.5 Training Efficiency
We present a comparison of the pre-training re-
sources, to explore whether XLM-E provides a
more compute-efficient and sample-efficient way
for pre-training cross-lingual language models. Ta-
ble 4 compares the XTREME average score, the
number of parameters, and the pre-training com-
putation cost. Notice that INFOXLM and XLM-
ALIGN are continue-trained from XLM-R, so the
total training FLOPs are accumulated over XLM-R.

Table 4 shows that XLM-E substantially re-
duces the computation cost for cross-lingual lan-
guage model pre-training. Compared to XLM-R
and XLM-ALIGN that use at least 9.6e21 training

Model Tatoeba-14 Tatoeba-36
en→ xx xx→ en en→ xx xx→ en

XLM-R 59.5 57.6 55.5 53.4
INFOXLM 80.6 77.8 68.6 67.3
XLM-E 74.4 72.3 65.0 62.3
−TRTD 55.8 55.1 46.4 44.6

Table 5: Average accuracy@1 scores for Tatoeba cross-
lingual sentence retrieval. The models are evaluated un-
der two settings with 14 and 36 of the parallel corpora
for evaluation, respectively.

FLOPs, XLM-E only uses 9.5e19 training FLOPs
in total while even achieving better XTREME per-
formance than the two baseline models. For the set-
ting of pre-training with only multilingual corpora,
XLM-E (w/o TRTD) also outperforms XLM-R us-
ing 6.3e19 FLOPs in total. This demonstrates the
compute-effectiveness of XLM-E, i.e., XLM-E as
a stronger cross-lingual language model requires
substantially less computation resource.

4.6 Cross-lingual Alignment

To explore whether discriminative pre-training im-
proves the resulting cross-lingual representations,
we evaluate our model on the sentence-level and
word-level alignment tasks, i.e., cross-lingual sen-
tence retrieval and word alignment.

We use the Tatoeba (Artetxe and Schwenk, 2019)
dataset for the cross-lingual sentence retrieval task,
the goal of which is to find translation pairs from
the corpora in different languages. Tatoeba con-
sists of English-centric parallel corpora covering
122 languages. Following Chi et al. (2021b) and
Hu et al. (2020b), we consider two settings where
we use 14 and 36 of the parallel corpora for eval-
uation, respectively. The sentence representations
are obtained by average pooling over hidden vec-
tors from a middle layer. Specifically, we use
layer-7 for XLM-R and layer-9 for XLM-E. Then,
the translation pairs are induced by the nearest
neighbor search using the cosine similarity. Ta-
ble 5 shows the average accuracy@1 scores under
the two settings of Tatoeba for both the xx→ en
and en → xx directions. XLM-E achieves 74.4
and 72.3 accuracy scores for Tatoeba-14, and 65.0
and 62.3 accuracy scores for Tatoeba-36, provid-
ing notable improvement over XLM-R. XLM-E
performs slightly worse than INFOXLM. We be-
lieve the cross-lingual contrast (Chi et al., 2021b)
task explicitly learns the sentence representations,
which makes INFOXLM more effective for the
cross-lingual sentence retrieval task.
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Model Alignment Error Rate ↓ Avgen-de en-fr en-hi en-ro

fast align 32.14 19.46 59.90 - -
XLM-R 17.74 7.54 37.79 27.49 22.64
XLM-ALIGN 16.63 6.61 33.98 26.97 21.05
XLM-E 16.49 6.19 30.20 24.41 19.32
−TRTD 17.87 6.29 35.02 30.22 22.35

Table 6: Alignment error rate scores (lower is better)
for the word alignment task on four language pairs. Re-
sults of the baseline models are from Chi et al. (2021c).
We use the optimal transport method to obtain the re-
sulting word alignments, where the sentence represen-
tations are from the 9-th layer of XLM-E.

For the word-level alignment, we use the word
alignment datasets from EuroParl1, WPT20032,
and WPT20053, containing 1,244 translation pairs
annotated with golden alignments. The pre-
dicted alignments are evaluated by alignment error
rate (AER; Och and Ney 2003):

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

(10)

where A,S, and P stand for the predicted align-
ments, the annotated sure alignments, and the anno-
tated possible alignments, respectively. In Table 6
we compare XLM-E with baseline models, i.e.,
fast align (Dyer et al., 2013), XLM-R, and XLM-
ALIGN. The resulting word alignments are ob-
tained by the optimal transport method (Chi et al.,
2021c), where the sentence representations are
from the 9-th layer of XLM-E. Over the four lan-
guage pairs, XLM-E achieves lower AER scores
than the baseline models, reducing the average
AER from 21.05 to 19.32. It is worth mentioning
that our model requires substantial lower compu-
tation costs than the other cross-lingual pretrained
language models to achieve such low AER scores.
See the detailed training efficiency analysis in Sec-
tion 4.5. It is worth mentioning that XLM-E shows
notable improvements over XLM-E (w/o TRTD)
on both tasks, demonstrating that the translation
replaced token detection task is effective for cross-
lingual alignment.

4.7 Universal Layer Across Languages

We evaluate the word-level and sentence-level
representations over different layers to explore

1www-i6.informatik.rwth-aachen.de/
goldAlignment/

2web.eecs.umich.edu/˜mihalcea/wpt/
3web.eecs.umich.edu/˜mihalcea/wpt05/
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Figure 3: Evaluation results on Tatoeba cross-lingual
sentence retrieval over different layers. For each layer,
the accuracy score is averaged over all the 36 language
pairs in both the xx→ en and en→ xx directions.
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Figure 4: Evaluation results of cross-lingual word
alignment over different layers. Layer-0 stands for the
embedding layer.

whether the XLM-E tasks encourage universal rep-
resentations.

As shown in Figure 3, we illustrate the accu-
racy@1 scores of XLM-E and XLM-R on Tatoeba
cross-lingual sentence retrieval, using sentence rep-
resentations from different layers. For each layer,
the final accuracy score is averaged over all the
36 language pairs in both the xx → en and en
→ xx directions. From the figure, it can be ob-
served that XLM-E achieves notably higher aver-
aged accuracy scores than XLM-R for the top lay-
ers. The results of XLM-E also show a parabolic
trend across layers, i.e., the accuracy continuously
increases before a specific layer and then continu-
ously drops. This trend is also found in other cross-
lingual language models such as XLM-R and XLM-
Align (Jalili Sabet et al., 2020; Chi et al., 2021c).
Different from XLM-R that achieves the highest
accuracy of 54.42 at layer-7, XLM-E pushes it to
layer-9, achieving an accuracy of 63.66. At layer-
10, XLM-R only obtains an accuracy of 43.34 while
XLM-E holds the accuracy score as high as 57.14.

Figure 4 shows the averaged alignment error rate
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Model XQuAD MLQA TyDiQA XNLI PAWS-X

MBERT 25.0 27.5 22.2 16.5 14.1
XLM-R 15.9 20.3 15.2 10.4 11.4
INFOXLM - 18.8 - 10.3 -
XLM-ALIGN 14.6 18.7 10.6 11.2 9.7
XLM-E 14.9 19.2 13.1 11.2 8.8
−TRTD 16.3 18.6 16.3 11.5 9.6

Table 7: The cross-lingual transfer gap scores on the
XTREME tasks. A lower transfer gap score indicates
better cross-lingual transferability. We use the EM
scores to compute the gap scores for the QA tasks.

(AER) scores of XLM-E and XLM-R on the word
alignment task. We use the hidden vectors from
different layers to perform word alignment, where
layer-0 stands for the embedding layer. The final
AER scores are averaged over the four test sets
in different languages. Figure 4 shows a similar
trend to that in Figure 3, where XLM-E not only
provides substantial performance improvements
over XLM-R, but also pushes the best-performance
layer to a higher layer, i.e., the model obtains the
best performance at layer-9 rather than a lower
layer such as layer-7.

On both tasks, XLM-E shows good perfor-
mance for the top layers, even though both XLM-E
and XLM-R use the Transformer (Vaswani et al.,
2017) architecture. Compared to the masked lan-
guage modeling task that encourages the top layers
to be language-specific, discriminative pre-training
makes XLM-E producing better-aligned text rep-
resentations at the top layers. It indicates that the
cross-lingual discriminative pre-training encour-
ages universal representations inside the model.

4.8 Cross-lingual Transfer Gap

We analyze the cross-lingual transfer gap (Hu et al.,
2020b) of the pretrained cross-lingual language
models. The transfer gap score is the difference
between performance on the English test set and
the average performance on the test set in other
languages. This score suggests how much end task
knowledge has not been transferred to other lan-
guages after fine-tuning. A lower gap score indi-
cates better cross-lingual transferability. Table 7
compares the cross-lingual transfer gap scores on
five of the XTREME tasks. We notice that XLM-E
obtains the lowest gap score only on PAWS-X.
Nonetheless, it still achieves reasonably low gap
scores on the other tasks with such low computation
cost, demonstrating the cross-lingual transferability
of XLM-E. We believe that it is more difficult to

achieve the same low gap scores when the model
obtains better performance.

5 Related Work

Learning self-supervised tasks on large-scale mul-
tilingual texts has proven to be effective for pre-
training cross-lingual language models. Masked
language modeling (MLM; Devlin et al. 2019) is
typically used to learn cross-lingual encoders such
as multilingual BERT (mBERT; Devlin et al. 2019)
and XLM-R (Conneau et al., 2020). The cross-
lingual language models can be further improved
by introducing external pre-training tasks using
parallel corpora. XLM (Conneau and Lample,
2019) introduces the translation language model-
ing (TLM) task that predicts masked tokens from
concatenated translation pairs. ALM (Yang et al.,
2020) utilizes translation pairs to construct code-
switched sequences as input. InfoXLM (Chi et al.,
2021b) considers an input translation pair as cross-
lingual views of the same meaning, and proposes
a cross-lingual contrastive learning task. Several
pre-training tasks utilize the token-level alignments
in parallel data to improve cross-lingual language
models (Cao et al., 2020; Zhao et al., 2021; Hu
et al., 2020a; Chi et al., 2021c).

In addition, parallel data are also employed for
cross-lingual sequence-to-sequence pre-training.
XNLG (Chi et al., 2020) presents cross-lingual
masked language modeling and cross-lingual auto-
encoding for cross-lingual natural language gener-
ation, and achieves the cross-lingual transfer for
NLG tasks. VECO (Luo et al., 2020) utilizes cross-
attention MLM to pretrain a variable cross-lingual
language model for both NLU and NLG. mT6 (Chi
et al., 2021a) improves mT5 (Xue et al., 2021) by
learning the translation span corruption task on
parallel data. ∆LM (Ma et al., 2021) proposes to
align pretrained multilingual encoders to improve
cross-lingual sequence-to-sequence pre-training.

6 Conclusion

We introduce XLM-E, a cross-lingual language
model pretrained by ELECTRA-style tasks.
Specifically, we present two pre-training tasks, i.e.,
multilingual replaced token detection, and trans-
lation replaced token detection. XLM-E outper-
forms baseline models on cross-lingual understand-
ing tasks although using much less computation
cost. In addition to improved performance and com-
putational efficiency, we also show that XLM-E
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obtains the cross-lingual transferability with a rea-
sonably low transfer gap.

7 Ethical Considerations

Our work introduces ELECTRA-style tasks for
cross-lingual language model pre-training, which
requires much less computation cost than previous
models and substantially reduces the energy cost.
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Appendix

A Model Hyperparameters

Table 8 and Table 9 shows the model hyperparam-
eters of XLM-E in the sizes of Base, Large, and
XL. For the Base-size model, we use the same vo-
cabulary with XLM-R (Conneau et al., 2020) that
consists of 250K subwords tokenized by Sentence-
Piece (Kudo and Richardson, 2018). For the mod-
els in Large size and XL size, we use VoCap (Zheng
et al., 2021) to allocate a 500K vocabulary for mod-
els in Large size and XL size.

Hyperparameters Base Large XL

Layers 4 6 8
Hidden size 768 1,024 1,536
FFN inner hidden size 3,072 4,096 6,144
Attention heads 12 16 24

Table 8: Model hyperparameters of XLM-E generators
in different sizes.

Hyperparameters Base Large XL

Layers 12 24 48
Hidden size 768 1,024 1,536
FFN inner hidden size 3,072 4,096 6,144
Attention heads 12 16 24

Table 9: Model hyperparameters of XLM-E discrimi-
nators in different sizes.

B Hyperparameters for Pre-Training

As shown in Table 10, we present the hyperparam-
eters for pre-training XLM-E. We use the batch
size of 1M tokens for each pre-training task. In
multilingual replaced token detection, a batch is
constructed by 2,048 length-512 input sequences,
while the input length is dynamically set as the
length of the original translation pairs in translation
replaced token detection.

C Hyperparameters for Fine-Tuning

In Table 11, we report the hyperparameters for fine-
tuning XLM-E on the XTREME end tasks.

Hyperparameters Value

Training steps 125K
Batch tokens per task 1M
Adam ε 1e-6
Adam β (0.9, 0.98)
Learning rate 5e-4
Learning rate schedule Linear
Warmup steps 10,000
Gradient clipping 2.0
Weight decay 0.01

Table 10: Hyperparameters used for pre-training
XLM-E.
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POS NER XQuAD MLQA TyDiQA XNLI PAWS-X

Batch size {8,16,32} 8 32 32 32 32 32
Learning rate {1,2,3}e-5 {5,...,9}e-6 {2,3,4}e-5 {2,3,4}e-5 {2,3,4}e-5 {5,...,8}e-6 {8,9,10,20}e-6
LR schedule Linear Linear Linear Linear Linear Linear Linear
Warmup 10% 10% 10% 10% 10% 12,500 steps 10%
Weight decay 0 0 0 0 0 0 0
Epochs 10 10 4 {2,3,4} {10,20,40} 10 10

Table 11: Hyperparameters used for fine-tuning on the XTREME end tasks.
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