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Abstract

Prompting has recently been shown as a promis-
ing approach for applying pre-trained language
models to perform downstream tasks. We
present Multi-Stage Prompting, a simple and
automatic approach for leveraging pre-trained
language models to translation tasks. To better
mitigate the discrepancy between pre-training
and translation, MSP divides the translation
process via pre-trained language models into
multiple separate stages: the encoding stage,
the re-encoding stage, and the decoding stage.
During each stage, we independently apply
different continuous prompts for allowing pre-
trained language models better shift to trans-
lation tasks. We conduct extensive experi-
ments on three translation tasks. Experiments
show that our method can significantly improve
the translation performance of pre-trained lan-
guage models. 1

1 Introduction

Prompting (Brown et al., 2020; Lester et al., 2021),
which refers to the approach of generating task-
specific outputs from language models (LMs)
by conditioning on extra information (known as
prompts), has emerged as a new way of using
LMs to perform natural language processing (NLP)
tasks (Gao et al., 2020; Liu et al., 2021). While
being efficient in parameters (Lester et al., 2021),
prompting can enable mixed-task inference, which
is not possible for other related approaches like
finetuning or adapter-based tuning (Li and Liang,
2021; Lester et al., 2021). Prompting also opens
the possibility of using a single pre-trained LM to
perform all NLP tasks (Liu et al., 2021).

Machine translation (MT), which involves trans-
formations between two languages, is considered
one of the most challenging tasks in NLP (Koehn

Corresponding to: Z. Tan (zxtan@tsinghua.edu.cn)
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1Source code is available at https://github.com/
THUNLP-MT/PLM4MT.

and Knowles, 2017). While neural machine trans-
lation (NMT) (Sutskever et al., 2014; Bahdanau
et al., 2015; Vaswani et al., 2017) is the current
de facto approach for machine translation, using
pre-trained LMs as translators via prompting is ap-
pealing in several aspects. For example, for the
method described in this paper, supporting a new
translation direction with a pre-trained LM occu-
pies disk spaces below 20M, which is much smaller
than training a separate neural machine translation
model, where the model size is typically larger than
60M per language pair for the Transformer archi-
tecture. 2 Furthermore, the pre-trained LM also re-
tains the ability to perform other downstream tasks,
which is an important characteristic that has not
been validated available on neural machine transla-
tion models.

However, it is challenging to leverage pre-trained
LMs to translation tasks via prompting. First, find-
ing an appropriate prompt for a translation task
is not trivial and requires specific designs (Brown
et al., 2020; Gao et al., 2020; Li and Liang, 2021;
Lester et al., 2021). Second, the prompting method
with a single prompt may be sub-optimal for steer-
ing pre-trained LMs to translation tasks, as there
is a clear discrepancy between the objectives of
translation and pre-training. Translation imposes
strict semantic equivalence and language space
constraint, in which a source sentence must trans-
late to a semantically equivalent sentence in the
target language space. As the objective of pre-
training is usually to reconstruct parts of the in-
put sentence (Radford et al., 2018; Devlin et al.,
2019), the generation of a pre-trained LM condi-
tioned on a source sentence will likely be in the
source language space with non-equivalent seman-
tics. Therefore, using a single prompt to guide the
LM for mitigating both the semantic and language
gap is likely to be sub-optimal. Third, prevalent

2Assume using the transformer-base setting with a vocab-
ulary size of 32K.
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(a) Basic (single-stage) prompting for MT.
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(b) Multi-stage prompting.

Figure 1: Overview of using prompts for steering a multilingual GPT (mGPT) model to machine translation tasks.
Note that we reset the position ids during each stage in multi-stage prompting for ease of implementation. All stages
use the same mGPT model.

generative LMs such as GPTs use a decoder-only
architecture (Radford et al., 2018), which is uni-
directional and may be sub-optimal for encoding
source sentences (Devlin et al., 2019). While re-
cent works in prompting like prefix-tuning (Li and
Liang, 2021) or prompt tuning (Lester et al., 2021)
alleviate the first challenge by introducing differen-
tiable continuous prompts, the last two challenges
remain to be addressed.

In this paper, we present Multi-Stage Prompting
(MSP) for addressing the challenges of steering
pre-trained language models to translation tasks.
MSP encapsulates the idea of breaking transla-
tion tasks into simpler consecutive stages, allow-
ing the pre-trained LM to learn “smoother transi-
tions” to translation tasks by providing different
prompts at different stages. For GPT-style pre-
trained LMs, we design a three-stage prompting
scheme for modeling the translation process, which
consists of an encoding stage, a re-encoding stage,
and a decoding stage. Specifically, the pre-trained
LM focuses on learning source representations
at the encoding stage and learns refined bidirec-
tional representations by re-encoding source sen-
tences at the re-encoding stage. Therefore, the LM
can produce better translations with refined source
representations at the decoding stage. Following
prefix-tuning (Li and Liang, 2021) and prompt tun-
ing (Lester et al., 2021), we use independent train-
able continuous prompts at different stages, which
are learned through back-propagation. The differ-
ence between basic (single-stage) prompting and
multi-stage prompting is illustrated in Figure 1.

We demonstrate the effectiveness of our method
with a multilingual GPT (mGPT) model on
Romanian-English, English-German, and English-
Chinese translation tasks. Experiments verify that
compared with prompt tuning or prefix-tuning,
MSP can significantly improve the translation per-

formance of pre-trained LMs. Our method im-
proves the translation performance of pre-trained
language models via prompt tuning and prefix-
tuning by 18.6 and 4.1 BLEU points on average
over the three translation tasks, respectively, sug-
gesting that MSP is a more effective prompting
method for translation tasks.

2 Background

2.1 Prompting

Prompting is an approach of using an LM to per-
form downstream tasks by adding extra informa-
tion for the LM to condition during its genera-
tion (Lester et al., 2021). This extra information,
also known as a prompt, plays an important role in
prompting methods and is often prepended to LM’s
input for better control of its generation. Depend-
ing on the form of prompts, prompting methods
can be divided into two categories: using textual
prompts or using continuous prompts.

Textual prompts are typically composed of natu-
ral language tokens. As a representative approach
of textual prompts, Brown et al. (2020) use manu-
ally designed prompts to steer GPT-3’s generation.
A typical prompt used in GPT-3 consists of a task
description and a few task-specific examples. Gao
et al. (2020) and Shin et al. (2020) propose differ-
ent automatic methods to generate textual prompts.
Textual prompts are typically understandable by
humans. However, Shin et al. (2020) indicate that
automatically generated textual prompts may lack
interpretability.

Continuous prompts, which consist of a se-
quence of continuous vectors, have gained increas-
ing popularity recently. For example, in (Li and
Liang, 2021), the continuous prompts consist of a
sequence of key-value pairs (also called prefixes).
Lester et al. (2021) propose a simplified version
of continuous prompts, which consists of virtual
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tokens that are only added to the embedding layer.
Compared with textual prompts, using continuous
prompts is generally more powerful but less inter-
pretable (Lester et al., 2021).

2.2 mGPT
In this paper, we use GPT (Radford et al., 2018,
2019; Brown et al., 2020) as the backbone LM for
machine translation tasks. GPTs are a series of
causal language models based on the Transformer
architecture (Vaswani et al., 2017). To be more suit-
able for translation tasks that involve multiple lan-
guages, we introduce a multilingual GPT (mGPT)
model instead of using a standard GPT-2 model. 3

The main difference between mGPT and GPT-2
is the training data. mGPT is trained on the mC4
dataset (Xue et al., 2021), which is a multilingual
dataset covering over 101 languages. For further
details about mGPT, please refer to Appendix A.1.

Let z = [z1, . . . , zn] be a sequence of tokens,
mGPT uses an autoregressive Transformer network
to model the conditional probability P (zt|z<t),
where t ∈ [1, n] and z<t = [z1, . . . , zt−1]. We use
fLM(z,H;θ) to denote the Transformer network,
where z is a word embedding, H is a sequence of
past activations, and θ denotes the parameters of
the Transformer network.

Initially, the inputs to the Transformer network
are z1 and H0, where H0 is an empty sequence.
The Transformer network produces two outputs:
the final output g1 ∈ Rd and the activation h1 ∈
R2N×d, 4 where d denotes the hidden size of the
Transformer network and N is the number of layers
of the Transformer network.

For subsequent inputs zt and Ht−1, where
Ht−1 = [h1, . . . ,ht−1], the computation is for-
mally described as

gt,ht = fLM(ezt ,Ht−1), (1)

where ezt denotes the word embedding of zt. To
make the notation simpler, we use the following
equation to denote the repeated application of fLM
over a sequence zi:j = [zi, . . . , zj ] given past acti-
vations A:

Gi:j ,H i:j = fLM(Zi:j ,A), (2)

where Zi:j = [ezi , . . . , ezj ], G
i:j = [gi, . . . , gj ],

and H i:j = [hi, . . . ,hj ].
3We release our checkpoint at https://huggingface.

co/THUMT/mGPT.
4h is a concatenation of a set of key-value pairs

{⟨k(i),v(i)⟩|i = 1 . . . N} in the Transformer network.

p
(e)
1 p

(e)
2 x

(i)
1 x

(i)
2 x

(i)
3

x
(i+1)
1 x

(i+1)
2 x

(i+1)
3

p
(i)
1 p

(i)
2

p
(i+1)
1 p

(i+1)
2

x
(i)
1 x

(i)
2 x

(i)
3

x
(i+1)
1 x

(i+1)
2 x

(i+1)
3

Prompt Inputs

Figure 2: A deep continuous prompt is prepended to the
inputs in all attention layers, which affects the computa-
tion of all attention layers. We do not distinguish keys
and values here for simplicity.

Finally, the conditional probability P (zt|z<t) is
modeled as follows:

P (zt|z<t) =
exp (eTzt · gt)∑|V |
i=1 exp (e

T
zi · gt)

, (3)

where |V | is the vocabulary size, and “·” denotes
matrix production.

3 Multi-Stage Prompting

We propose multi-stage prompting (MSP), a sim-
ple and lightweight method for steering pre-trained
LMs to translation tasks. We first describe the con-
cept of deep continuous prompts in Section 3.1.
Then we detail the stages and training objective
in Section 3.2 and Section 3.3, respectively. Fi-
nally, we describe the reparameterization of deep
continuous prompts in Section 3.4.

3.1 Deep Continuous Prompts
We adopt “continuous prompts” (Li and Liang,
2021; Lester et al., 2021) instead of using textual
prompts in our method. Using continuous prompts
allows learning through differentiable methods like
back-propagation (Lester et al., 2021). To be spe-
cific, we use deep continuous prompts which are in
the same form as in (Li and Liang, 2021). Formally,
a prompt P is a sequence of L continuous vectors
[p1, . . . ,pL]. Each vector pi (1 ≤ i ≤ L) is a con-
catenation of key-value pairs in all N Transformer
layers, which directly affect the computation of ev-
ery attention layer. Therefore, the dimension of pi

is 2N × d. We give an illustration of conditioning
on a deep continuous prompt in Figure 2.

3.2 Stages
To effectively mitigate the semantic and language
gap between the pre-training and translation, we
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Figure 3: Detailed computations involved in the multi-stage prompting for machine translation tasks. We use
rectangles to denote prompt vectors and rounded rectangles to denote activations.

propose multi-stage prompting which divides the
procedure of using pre-trained LMs as translators
into three separate stages: the encoding, the re-
encoding, and the decoding stages. Given different
prompts at different stages, the pre-trained LM is
expected to behave differently during each stage
and is more capable of generating translations.

Given a source sentence x = [x1, . . . , xS ] and a
target sentence y = [y1, . . . , yT ], the details of the
three stages are described as follows:

The Encoding Stage. At the encoding stage, the
pre-trained LM encodes the source sentence x into
a sequence of activations H1:S

e by using an encod-
ing stage prompt Pe. This procedure is the same as
basic prompting. Formally, it can be described as
follows:

G1:S
e ,H1:S

e = fLM(X1:S ,Pe). (4)

The Re-encoding Stage. At the re-encoding
stage, the pre-trained LM produces fine-grained
representations of the source sentence by re-
encoding x given past activations H1:S

e and a re-
encoding stage prompt Pr, which allows each rep-
resentation to condition on all words in x. This
procedure can be described as

G1:S
r ,H1:S

r = fLM(X1:S , JPr;H
1:S
e K), (5)

where JPr;H
1:S
e K denotes the concatenation of

two sequences Pr and H1:S
e . It is also possible

to employ more than one re-encoding stage, allow-
ing the pre-trained LM to obtain further refined
representations of the source sentence.

The Decoding Stage. Finally, we obtain the hid-
den vectors G1:T

d for predicting the probability of
the target sentence y at the decoding stage, given

the refined source representations H1:S
r and a de-

coding stage prompt Pd:

G1:T
d ,H1:T

d = fLM(Y 1:T , JPd;H
1:S
r K). (6)

Figure 3 gives a detailed illustration of MSP. By
dividing the translation process into multiple stages
and applying different prompts, we expect the pre-
trained LM model can generate better translations.

3.3 Training Objective
We use the cross-entropy loss for learning prompts.
Given G1:T

d = [g
(d)
1 , . . . , g

(d)
T ] in Eq. (6), the train-

ing objective is formally described as follows:

L = − 1

T

T∑
t=1

logP (yt|y<t,x)

= − 1

T

T∑
t=1

log
exp (eTzt · g

(d)
t )∑|V |

i=1 exp (e
T
zi · g

(d)
t )

.

(7)

Note that the parameters θ of the pre-trained LM
are fixed during training.

3.4 Reparameterization
Li and Liang (2021) suggest that using a neural net-
work to reparameterize continuous prompts is more
robust to different choices of hyperparameters. In
contrast to their approach which uses an MLP net-
work to reparameterize continuous prompts, we in-
troduce a much simpler scaled reparameterization
method, in which a continuous prompt is reparam-
eterized as a product of a learnable scalar and an
embedding. More precisely, the reparameterization
of the three prompts are as follows:

Pe = max(αe, 1.0)× ϕe, (8)

Pr = max(αr, 1.0)× ϕr, (9)

Pd = max(αd, 1.0)× ϕd, (10)
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where ϕe ∈ R2N×d, ϕr ∈ R2N×d, and ϕd ∈
R2N×d. αe, αr, and αd are initialized to 1.0 at
the beginning of training. Therefore, the set of
trainable parameters ϕ in our method is ϕ =
{αe, αr, αd,ϕe,ϕr,ϕd}, which contains much
less tunable parameters than an MLP network.

Scaled reparameterization enables directly ad-
justing the value of prompts by a tunable scaling
factor, leading to a much faster convergence with-
out loss of performance. Further analysis is pre-
sented in Section 4.7.

4 Experiments

4.1 Setup
Datasets We conduct experiments on Romanian-
English (Ro-En), English-German (En-De), and
English-Chinese (En-Zh) translation tasks to ver-
ify our proposed method. For the Ro-En transla-
tion task, we used the WMT16 Romanian-English
dataset, which consists of 0.6M bilingual sentence
pairs and 2M back-translated sentence pairs.5 We
used newsdev2016 as the development set and new-
stest2016 as the test set. For the En-De translation
task, we used the WMT14 English-German dataset,
which consists of 4.5M sentence pairs. The de-
velopment set is newstest2013 and the test set is
newstest2014. For the En-Zh translation task, we
used the WMT20 English-Chinese dataset as the
training corpus, which consists of 28M sentence
pairs. The development set is newstest2019 and the
test set is newstest2020. The details of preprocess-
ing and postprocessing are given in Appendix A.2.

Metric. We used case-sensitive BLEU (Pap-
ineni et al., 2002) as the evaluation metric. The
BLEU score is calculated using the SACREBLEU
toolkit (Post, 2018).6

Baselines. We used the mGPT model as the back-
bone LM in all our experiments, which contains
560M parameters. We compare our method with
the following prompting methods: 7

• Prompt tuning (Lester et al., 2021). A prompt-
ing method that only prepends virtual tokens
to the embedding layer of pre-trained LMs.

5http://data.statmt.org/rsennrich/wmt16_
backtranslations/ro-en

6Signature: nrefs:1|case:mixed|eff:no|tok:{13a,zh}|
smooth:exp|version:2.0.0

7In our preliminary experiments, we also experimented
with the few-shot approach as described in (Brown et al.,
2020). However, we found mGPT often failed to generate
meaningful translations.

• Prefix-tuning (Li and Liang, 2021). A prompt-
ing method that uses deep continuous prompts,
which prepend virtual tokens to all key-value
pairs in attention layers of pre-trained LMs.
We use an MLP network to reparameterize
a continuous prompt during training as sug-
gested in (Li and Liang, 2021).

Implementations. All our models are trained on
a machine with 8 RTX 3090Ti GPUs. For all
prompting methods, we set the prompt length to
128. For the training, we use the Glorot uniform
initilalizer (Glorot and Bengio, 2010) to initialize
tunable parameters unless otherwise noted. We use
Adam (Kingma and Ba, 2015) (β1 = 0.9, β2 = 0.98
and ϵ = 1× 10−9) as the optimizer with a batch size
of roughly 32K tokens. We use the same learning
rate schedule as described in (Vaswani et al., 2017).
The number of warmup steps is set to 4K. We set
the maximum learning rate to 0.02 for prompt tun-
ing and MSP, and 7e-4 for prefix-tuning.8 We train
prompts for a total of 80K steps for prompt tun-
ing and prefix-tuning, and 40K steps for MSP. For
the inference, we use the beam search algorithm
to obtain translation from the mGPT model, and
the beam size is set to 4. The length penalty is
determined by the results evaluated on the devel-
opment set. We set the length penalty to 1.0 for
the En-Zh translation task and 0.0 for other transla-
tion tasks. We implement our models on top of the
THUMT (Tan et al., 2020) toolkit and the Trans-
formers library (Wolf et al., 2020).

4.2 Main Results
Table 1 shows the results for the Ro-En, En-De,
and En-Zh translation tasks.

As the most parameter-efficient among the three
prompting methods, prompt tuning introduces only
131K parameters during training for each transla-
tion task. However, it only achieves 9.4 BLEU
points on average over the three translation tasks.
Lester et al. (2021) indicate that language model
capacity is a key ingredient for prompt tuning to
succeed. As mGPT is a pre-trained LM with only
560M parameters, the results coincide with the con-
clusion of Lester et al. (2021).

Prefix-tuning, which uses deep continuous
prompts, achieves an average of 23.9 BLEU points
over the three translation tasks. The results indicate
that using deep continuous prompts is beneficial

8We found using a large learning rate for prefix-tuning
would result in unstable training.
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Method #Params. Ro-En En-De En-Zh Average

Prompt Tuning 131K 17.7 5.9 4.5 9.4
Prefix-Tuning 26M 32.5 17.5 21.9 23.9
MSP (Ours) 19M 34.7 21.2 28.1 28.0

Table 1: BLEU score on three different translation tasks for different prompting methods. All prompting methods
use the same pre-trained language model “mGPT”. “#Params.” denotes the number of tunable parameters during
training.

LM Architecture #M-Params. Method BLEU

mT5-XXL (Zhang et al., 2021) Encoder-Decoder 13B Finetuning 24.0
CPM-2 (Zhang et al., 2021) Encoder-Decoder 11B Prompt Tuning 24.1
CPM-2 (Zhang et al., 2021) Encoder-Decoder 11B Finetuning 26.2
Ernie 3.0 (Sun et al., 2021a) Encoder-Decoder 10B Finetuning 26.8

mGPT (Ours) Decoder 560M MSP 28.1

Table 2: Comparisons with previous studies on the WMT20 En-Zh translation task. “#M-Params.” indicates the
number of parameters of pre-trained LMs.

for steering mGPT to translation tasks. However,
introducing deep continuous prompts inevitably re-
quires more free parameters. The MLP network
used in prefix-tuning introduces about 26M param-
eters for each translation task during training in our
experiments.

Finally, MSP achieves 28.0 BLEU points on
average over the three translation directions and
outperforms prompt tuning and prefix-tuning by
18.6 and 4.1 BLEU points, respectively. MSP in-
troduces 19M parameters for each translation task
during training, which is more than prompt tuning
but less than prefix-tuning. MSP explicitly divides
the translation process using mGPT into separate
stages, which are not present in prompt tuning and
prefix-tuning. The results suggest that MSP is more
effective in instructing pre-trained LMs to perform
translation than prompt tuning and prefix-tuning.

4.3 Comparison with Other LMs

Table 2 gives the results of mT5-XXL (Zhang et al.,
2021), CPM-2 (Zhang et al., 2021), Ernie 3.0 (Sun
et al., 2021a), and mGPT on the WMT20 En-Zh
translation task. Except for mGPT, other LMs are
based on the encoder-decoder architecture. Despite
using a much smaller pre-trained LM with about
5% parameters of mT5-XXL, CPM-2, and Ernie
3.0, MSP achieves the best performance on the En-
Zh translation task. Therefore, we show that MSP
is an efficient and effective approach to steering
pre-trained LMs to translation tasks.

4.4 Comparison with Transformer

We compare our method with the state-of-the-
art Transformer NMT model (Vaswani et al.,
2017) 9 on the TedTalks dataset (Blackwood et al.,
2018) and the WMT14 English-German dataset.
TedTalks dataset is an English-centric multilingual
corpus including 59 languages with around 3K to
200K sentence pairs per language pair. For the sake
of simplicity, we only report results for 5 selected
languages that contain more than 150K sentence
pairs. However, the Transformer model is trained
on all available parallel sentences covering 59 lan-
guages, serving as a strong NMT baseline. For
mGPT with MSP, we individually train the model
on each language pair following the same proce-
dure described in this paper.

The results of “X→En” and “En→X” directions
are shown in Table 3. Although mGPT with MSP
is independently trained on each language pair,
the model still outperforms the strong multilingual
NMT baseline by 3.4 and 3.9 BLEU points on
“X-En” and “En-X” directions, respectively. The
results demonstrate that using pre-trained LMs as
translators with an appropriate prompting method
has the potential to excel a strong Transformer
NMT model.

Table 4 shows the comparison between Trans-
former and our mGPT model with MSP on the En-

9We used the transformer-big setting. Tokenizations and
vocabularies are the same with mGPT for fair comparisons.
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Model #Params. Bg Es It Ru Tr Avg.
X→En

Transformer 437M 35.2 38.0 34.2 22.6 21.0 30.2
mGPT (MSP) 19M 38.9 42.1 37.8 24.4 24.9 33.6

En→X
Transformer 437M 29.2 34.0 29.2 16.7 11.6 24.1
mGPT (MSP) 19M 34.1 38.4 32.8 19.2 15.6 28.0

Table 3: Results on the TedTalks “X→En” and “En→X” translation directions. For MSP, each translation direction
introduces 19M parameters.

Model #Params. BLEU

Transformer (big) 450M 27.9
mGPT (MSP) 19M 21.2

Table 4: Results on the WMT14 En-De dataset.
“#Params.” denotes the number of tunable parameters
during training.

De translation task. While there is still a noticeable
performance gap between Transformer and mGPT
with MSP, using mGPT as a translator with MSP
is much more parameter-efficient than training a
separate NMT model. Supporting En-De transla-
tion with mGPT only introduces 19M parameters
with MSP method. In comparison, the model size
of the Transformer model for En-De translation
is 450M. While mGPT model can perform other
downstream tasks by providing different prompts,
such abilities have not been validated on the Trans-
former NMT model. Besides being efficient in disk
spaces, learning prompts for the En-De translation
task are also faster than training a separate NMT
model. It takes 21 hours to train prompts for MSP,
whereas 72 hours for training a Transformer model.

4.5 Effect of Prompt Length

Figure 4 shows the effect of prompt length for
prefix-tuning and MSP. We omit the comparison to
prompt tuning because of its inferior performance.
We found that using longer prompts generally leads
to better performance for both prefix-tuning and
MSP, but with diminishing returns. This finding
is consistent with previous studies (Li and Liang,
2021; Lester et al., 2021). Furthermore, MSP con-
sistently outperforms prefix-tuning when using the
same prompt length. Even MSP with a prompt
length of 64 performs better than prefix-tuning with
a prompt length of 256 (19.0 vs. 18.2). The results
further confirm that MSP is a better prompting

64 128 192 256
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22
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21.2

22.2 22.4

14.8

17.5

18.2 18.2

Prompt Length

B
L
E
U

Multi-Stage Prompting
Prefix-Tuning

Figure 4: Comparison between MSP and prefix-tuning
on the WMT14 En-De translation task with different
prompt lengths.

method than prefix-tuning for steering pre-trained
LMs to translation tasks. For the inference time,
we found longer prompts do not significantly affect
the decoding speed on GPUs as the computation of
attention layers are highly parallel, which is also
consistent with the findings of Li and Liang (2021).

4.6 Effect of Stages

Table 5 shows the comparison of using differ-
ent stage settings on the WMT14 En-De and the
WMT20 En-Zh translation tasks. For single-stage
prompting, we also adopt scaled reparameterization
instead of MLP reparameterization for a fair com-
parison. On the WMT14 En-De translation task,
using single-stage prompting achieves 17.9 BLEU
points. By comparison, explicitly separating en-
coding and decoding stages improve the translation
performance over single-stage prompting by 2.3
BLEU points, which indicates the importance of
differentiating stages. Adding a re-encoding stage
further improves the translation performance by
1.0 BLEU point, suggesting that the re-encoding
stage is effective. Adding a second re-encoding
stage further improves the translation performance
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Method #Params. Training Inference En-De En-Zh

Single-stage 6.3M 14h 0.10 s/sent. 17.9 22.8
Two-stage (encoding/decoding) 12.6M 14h 0.10 s/sent. 20.2 25.2
+ Re-encoding (default) 19.0M 21h 0.11 s/sent. 21.2 28.1
+ 2nd Re-encoding 25.1M 29h 0.11 s/sent. 21.8 28.4
+ Prompt sharing 6.3M 21h 0.11 s/sent. 19.8 24.5

Table 5: Comparison of using different stage settings on the WMT14 En-De translation task and WMT20 Zh-En
translation task. “#Params.” denotes the number of trainable parameters. “Training” denotes the total training
time. “Inference” denotes the inference speed measured on the test set using 8 GPUs. “s/sent.” denotes seconds per
sentence. All experiments use scaled reparameterization for fair comparison.
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Figure 5: Comparison between using scaled reparame-
terization and without using reparameterization on the
WMT14 translation task. The BLEU score is evaluated
on newstest2013.

by 0.6 BLEU points. Although adding stages intro-
duces more trainable parameters, it should be noted
that sharing a single prompt for the encoding/re-
encoding/decoding stages also improves over the
single-stage prompting by 1.9 BLEU points. The
results suggest that most improvements are at-
tributed to the explicit separation of stages rather
than increased parameters. Adding more stages
generally slows the training speed. However, we
do not observe notable inference speed drop as re-
encoding stages are computed one time in parallel
during inference. On the En-Zh translation task, the
results are consistent with the results on the En-De
translation task. Therefore, we conclude that using
more stages helps improve the translation quality.

4.7 Effect of Reparameterization

Figure 5 shows the comparison between MSP using
scaled reparameterization and without using repa-
rameterization. Using scaled reparameterization
converges faster than without using reparameteriza-
tion. These two methods achieve nearly the same

Prompt Distribution

w/o prompt en (16%), ru (10%)
Prefix-tuning zh (80%), ja (12%)
MSP (encoding stage) en (51%), la (14%)
MSP (re-encoding stage) en (24%), la (17%)
MSP (decoding stage) zh (91%), ja (9%)

Table 6: Language distribution of the free genera-
tions using mGPT by conditioning on different prompts
learned by different prompting methods on the WMT20
En-Zh dataset.

translation performance when the training is con-
verged. As a result, using scaled reparameterization
can make the convergence much faster and reduce
the total training time.

4.8 Analysis

Knowledge. As continuous prompts are learned
using bilingual sentence pairs, an interesting ques-
tion arises: Is the translation knowledge stored in
the continuous prompts or the pre-trained LM? To
answer this question, we discard the prompts and
feed the mGPT model a concatenation of a parallel
sentence pair as an input, and calculate the cosine
similarities between the source and target hidden
activations on each mGPT layer. We found that al-
though the prompts are not given, the nearest pairs
of tokens between the source and target language
frequently turn out to coincide with bilingual align-
ments. This finding reveals to some extent that
the translation knowledge mainly resides in the
pre-trained LM instead of the learned continuous
prompts, while the prompts play a role in guiding
the model to perform translation during generation.
Examples are given in Appendix A.3.

Bottleneck. We study the bottleneck of the cur-
rent prompting method. We train a separate Trans-
former encoder and an adapter network that directly
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maps a source sentence into a deep continuous
prompt, leaving the mGPT model only serving as
a decoder. This model introduces 378M tunable
parameters and achieves 25.9 BLEU points on the
WMT14 En-De translation task. Compared with
21.2 BLEU points by MSP, the result shows that
there is still room to advance the translation perfor-
mance of pre-trained LM by improving the prompt-
ing method, such as using dynamic prompts (Liu
et al., 2021) for each input sentence. However,
as translation knowledge may come from the pre-
trained LM, the translation performance may be
bottlenecked by the capability of the backbone LM.

Interpretability. We did not find our learned
prompts to be interpretable, which agrees with
the findings of Shin et al. (2020) and Lester et al.
(2021). However, we do observe prompts of dif-
ferent stages changing the behavior of mGPT sig-
nificantly. Specifically, we sample 100 examples
generated from mGPT by providing prompts of dif-
ferent stages learned on the English-Chinese trans-
lation task and identify the language ids of gen-
erated texts using the langid toolkit. The top-2
identified language distributions of each generation
are shown in Table 6. Without providing prompts,
mGPT generates a random sentence from a random
language. By given continuous prompts learned by
prefix-tuning, the mGPT mostly generates texts re-
lated to Chinese. For MSP, it is noticeable that there
is a transition from English to Chinese. mGPT
generates English-related text given the encoding
stage prompt. The distribution of languages be-
comes smoother when providing the prompt at the
re-encoding stage. Finally, mGPT generates Chi-
nese texts dominantly given the decoding stage
prompt. The results coincide with our intuition that
MSP helps the pre-trained LM to learn “smoother
transitions” to the translation task.

5 Related Work

Prompting. Brown et al. (2020) propose to use
a task description and a few examples to adapt
the GPT-3 model to downstream tasks, which is
referred to as in-context learning. Their prompts
are manually designed. Gao et al. (2020) present
LM-BFF for automatic prompts generation. They
use T5 model (Raffel et al., 2020) to generate tem-
plates for prompting pre-trained LMs. Li and Liang
(2021) propose prefix-tuning, which uses continu-
ous vectors as prompts. These prompts are trained
using task-specific data and optimized through

back-propagation. Lester et al. (2021) propose
prompt tuning, which is similar to prefix-tuning
but with fewer trainable parameters. Our method
is also based on prompting. We use continuous
prompts for steering PLMs to translation tasks. Un-
like Li and Liang (2021) and Lester et al. (2021)
who present general frameworks, our method is
focused on improving the translation performance
of pre-trained LMs.

Using Pre-trained Models as Translators.
Stickland et al. (2021) investigate using BART and
mBART models for machine translation tasks, their
approach relies on adapter networks and finetuning
parts of pre-trained LMs. Guo et al. (2020) build a
non-autoregressive NMT model by using a source
BERT model as the encoder and a target BERT as
the decoder with adapter layers. Sun et al. (2021b)
propose grafting a source BERT model and a target
GPT model for translation tasks. Bapna and Firat
(2019) propose using small adapter layers to adapt
a base NMT model to new translation tasks. All
these methods are adapter-based, which injects ad-
ditional tunable modules into the pre-trained mod-
els. As a result, the pre-trained models lose the
ability to perform mixed-task inference. Our ap-
proach is based on prompting, which only uses
prompts for steering the pre-trained LMs to trans-
lation tasks. Zhang et al. (2021) investigate using
prompt tuning for steering CPM-2 model to the
WMT20 English-Chinese translation task. Further-
more, their approach applied to encoder-decoder
architecture pre-trained LMs while ours applied to
decoder-only pre-trained LMs.

6 Conclusion

We have presented multi-stage prompting, a
method for making pre-trained language models
better translators. Experiments show that with
multi-stage prompting, pre-trained LMs can gen-
erate better translations, showing the potential of
using pre-trained LMs for translation tasks.
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A Appendix

A.1 Details of Multilingual GPT

We used a multilingual GPT (mGPT) (Radford
et al., 2019) model as the pre-trained language
model in all our experiments. The mGPT model
is trained using the Megatron-LM toolkit (Shoeybi
et al., 2019) 10 with the default GPT-2 configura-
tion on the mC4 dataset (Xue et al., 2021), 11 which
contains massive web crawled data covering 101
languages. The model consists of 24 transformer
layers, and the hidden size d of the model is set to
1,024. We used the same tokenization and vocab-
ulary as the mT5 model (Xue et al., 2021). The
vocabulary size is 250,100. The total number of
parameters of the mGPT model is about 560M. We
train the mGPT model with a batch size of about
512K tokens for 200K steps.

A.2 Preprocessing and Postprocessing

We do not apply any additional preprocessing dur-
ing pre-training. Preprocessing like tokenization
is done automatically with the sentencepiece pro-
gram. For learning prompts, we do not apply ad-
ditional preprocessing on translation tasks except
Romanian-English translation task, where we use a
script 12 to remove diacritics in the Romanian side.

10https://github.com/NVIDIA/Megatron-LM
11https://huggingface.co/datasets/mc4
12https://github.com/rsennrich/wmt16-scripts/

blob/master/preprocess/normalise-romanian.py

Because the mT5 tokenizer automatically uses Uni-
code NFKC normalization, which results in non-
standard punctuation for Chinese (e.g. “，”→ “,”).
Therefore, for postprocessing, we use a rule-based
method to replace non-standard punctuation with
standard counterparts for Chinese.

A.3 Alignment Examples
Table 7 provides examples of induced alignments
from the mGPT model without using prompts. We
compute cosine similarities between target hidden
keys and source hidden keys of the 15th Trans-
former layer of the mGPT model and align the
target word and the source word with the highest
cosine similarity.
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English "They say there were boys around, that was not the case at all," he said.

Chinese 他表示：“他们说周围有好几个男孩子，但事实并非如此。”

Tokenized English _" They _say _there _were _ boys _around , _that _was _not _the _case _at _all ," _he _said .

Tokenized Chinese _他表示 :“他们说周围有好几个男孩子 ,但事实并非如此。”

Alignments 他/_he 表示/_said :“/_" 他们/They 说/_say 周围/_around 有/_were 好/boys
几个/_were 男孩/boys 子/boys ,/, 但/_that 事实/_case 并非/_not 如此/_all 。”/.

English Saudi Arabia To Offer Tourist Visas For First Time, Abolish Abaya Rule

Chinese 沙特阿拉伯首次提供旅游签证，废除阿巴亚长袍规定

Tokenized English _Saudi _Arabia _To _Offer _Tourist _Visa s _For _First _Time , _Ab olish _A baya _Rule

Tokenized Chinese _沙特阿拉伯首次提供旅游签证 ,废除阿巴亚长袍规定

Alignments 沙/_Saudi 特/_Arabia 阿拉/_Arabia 伯/_Arabia 首次/_Offer 提供/_Offer 旅游/_Tourist
签证/_Visa ,/, 废/olish 除/olish 阿/_Saudi 巴/baya 亚/baya 长/_Rule 袍/_Visa 规定/_Rule

Table 7: Alignments induced from the mGPT model. We use “/” to separate Chinese and English tokens.
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