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Abstract

Existing KBQA approaches, despite achieving
strong performance on i.i.d. test data, often
struggle in generalizing to questions involv-
ing unseen KB schema items. Prior ranking-
based approaches have shown some success
in generalization, but suffer from the coverage
issue. We present RnG-KBQA, a Rank-and-
Generate approach for KBQA, which reme-
dies the coverage issue with a generation
model while preserving a strong generaliza-
tion capability. Our approach first uses a con-
trastive ranker to rank a set of candidate logical
forms obtained by searching over the knowl-
edge graph. It then introduces a tailored gener-
ation model conditioned on the question and
the top-ranked candidates to compose the fi-
nal logical form. We achieve new state-of-
the-art results on GRAILQA and WEBQSP
datasets. In particular, our method surpasses
the prior state-of-the-art by a large margin on
the GRAILQA leaderboard. In addition, RnG-
KBQA outperforms all prior approaches on
the popular WEBQSP benchmark, even in-
cluding the ones that use the oracle entity link-
ing. The experimental results demonstrate the
effectiveness of the interplay between ranking
and generation, which leads to the superior per-
formance of our proposed approach across all
settings with especially strong improvements
in zero-shot generalization.'

1 Introduction

Modern knowledge bases (KB) are reliable sources
of a huge amount of world knowledge but can be
difficult to interact with since they are extremely
large in scale and require specific query languages
(e.g., Sparql) to access. Question Answering over
Knowledge Base (KBQA) serves as a user-friendly
way to query over KBs and has garnered increasing

attention (Berant et al., 2013; Cai and Yates, 2013).

Recent research has attempted to build systems

*Work done during internship at Salesforce Research.
!Code available at https:/github.com/salesforce/rng-kbqa.

Question  what is the shortest recording by samuel ramey?

recording.length 00:03:40

= 00:04:00
recording.length

Enumerated Candidates
.(AND music.album (JOIN album.artist samuel_ramey))
.(JOIN (R recording.length) (JOIN recording.artist samuel_ramey))
.(AND music.recording (JOIN (R artist.track) samuel_ramey))

Rank{

Top-Ranked Candidates
.(JOIN (R recording.length) (JOIN recording.artist samuel_ramey))
.(AND music.recording (JOIN (R artist.track) samuel_ramey))
§ .(AND music.album (JOIN album.artist samuel_ramey))

Generate{

Target Logical Form

(ARGMIN (AND music.recording :
(JOIN (R artist.track) samuel_ramey)) recording.length)

Figure 1: Overview of our rank-and-generate approach.
Given a question, we first rank logical form candidates
obtained by searching over the KB based on predefined
rules. Here, the ground truth logical form is not in the
top-ranked candidates as it is not covered by the rules.
We solve this problem using another generation step
that produces the correct logical form based on top-
ranked candidates. The final logical form is executed
over the KB to yield the answer.

achieving strong results on several public bench-
marks that contain i.i.d. train and test distribution
such as SIMPLEQ (Bordes et al., 2015) and WE-
BQSP (Yih et al., 2016). However, users often
want to ask questions involving unseen composi-
tions or KB schema items (see Figure 5 for exam-
ples), which still remains a challenge. Generation-
based approaches (e.g., a seq-to-seq parser) are not
effective enough to handle such practical gener-
alization scenarios due to the difficulty of gener-
ating unseen KB schema items. Ranking-based
approaches, which first generate a set of candidate
logical forms using predefined rules and then select
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the best-scored one according to the question, have
shown some success (Gu et al., 2021). However,
it suffers from the coverage problem, because it is
often impractical to exhaust all the rules to cover
the desired logical form due to the scale of the KB.

We propose RNG-KBQA, a new framework
targeted at generalization problems in the task of
KBQA. Our approach combines a ranker with a
generator, which addresses the coverage issue in
ranking-only based approaches while still benefit-
ing from their generalization power. As shown in
Figure 1, we first employ a ranker to select a set
of related logical forms from a pool of candidate
logical forms obtained by searching over the graph.
The selected logical forms are not required to cover
the correct one, but are semantically coherent and
aligned with the underlying intents in the question.
Next, we introduce a generator that consumes both
the question and the top-k ranked candidates to
compose the final logical form. The core idea of our
approach is the interplay between the ranker and
the generator: the ranker provides essential ingre-
dients of KB schema items to the generator, which
then further refines the top-candidates by comple-
menting missing constructions or constraints, and
hence allows covering a broader range of logical
form space.

We base both our ranker and generator on pre-
trained language models for better generalization
capability. Unlike prior systems which rank candi-
dates using a grammar-based parser (Berant et al.,
2013) or a seq-to-seq parser (Gu et al., 2021), our
ranker is a BERT-based (Devlin et al., 2019) bi-
encoder (taking as input question-candidate pair)
trained to maximize the scores of ground truth logi-
cal forms while minimizing the scores of incorrect
candidates. Such training schema allows learning
from the contrast between the candidates in the en-
tire territory, whereas prior parsing-based ranker
(Berant et al., 2013; Gu et al., 2021) only learns to
encourage the likelihood of the ground truth logical
forms. We further develop an iterative-bootstrap-
based training curriculum for efficiently training
the ranker to distinguish spurious candidates (Sec-
tion 2.2). In addition, we extend the proposed logi-
cal form ranker, keeping the architecture and logic
the same, for the task of entity disambiguation,
and show its effectiveness as a second-stage entity
ranker. Our generator is a T5-based (Raffel et al.,
2020) seq-to-seq model that fuses semantic and
structural ingredients found in top-k candidates to

compose the final logical form. To achieve this, we
feed the generator with the question followed by a
linearized sequence of the top-k candidates, which
allows it to distill a refined logical form that will
fully reflect the question intent by complementing
the missing pieces or discarding the irrelevant parts
without having to learn the low-level dynamics.

We test RNG-KBQA on two datasets,
GRAILQA and WEBQSP, and compare against
an array of strong baselines. On GRAILQA, a
challenging dataset focused on generalization in
KBQA, our approach sets the new state-of-the-art
performance of 68.8 exact match 74.4 F1 score,
surpassing prior SOTA (58.1 exact match and
65.3 F1 score) by a large margin. On the popular
WEBQSP dataset, RNG-KBQA also outperforms
the best prior approach (QGG (Lan and Jiang,
2020)) and achieves a new SOTA performance
of 75.7 F1 score. The results demonstrate the
effectiveness of our approach across all settings
and especially in compositional generalization and
zero-shot generalization.

2 Generation Augmented KBQA

2.1 Preliminaries

A knowledge base collects knowledge data stored
in the form of subject-relation-object triple (s, , 0),
where s is an entity, 7 is a binary relation, and o can
be entities or literals (e.g., date time, integer values,
etc.). Let the question be z, our task is to obtain a
logical form y that can be executed over the knowl-
edge base to yield the final answer. Following
Gu et al. (2021), we use s-expressions to repre-
sent queries over knowledge base. S-expression
(examples in Figure 1) uses functions (e.g., JOIN)
operating on set-based semantics and eliminates
variable usages as in lambda DCS (Liang, 2013).
This makes s-expression a suitable representation
for the task of KBQA because it balances readabil-
ity and compactness (Gu et al., 2021).

Enumeration of Candidates Recall that our ap-
proach first uses a ranker model to score a list of
candidate logical forms C' = {¢;}*, obtained via
enumeration. We’ll first introduce how to enumer-
ate the candidates before delving into the details of
our ranking and generation models.

We start from every entity detected in the ques-
tion and query the knowledge base for paths reach-
able within two hops. Next, we write down an
s-expression corresponding to each of the paths,
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[CLS] what is - [SEP] (ARGMIN (AND music.”;
irecording (JOIN (R artist.track) -

{ [cLS] what is - [SEP] (AND music.album
{ (JOIN album.artist samuel_ramey) ~«j

{ [CLS] what is - [SEP] (AND music. |
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Figure 2: The ranker that learns from the contrast be-
tween the ground truth and negative candidates.

which constitutes a set of candidates. We note that
we do not exhaust all the possible compositions
when enumerating (e.g., we do not include com-
parative operations and argmin/max operations),
and hence does not guarantee to cover the target
s-expression. A more comprehensive enumera-
tion method is possible but will introduce a pro-
hibitively large number (greater than 2,000,000 for
some queries) of candidates. Therefore, it’s im-
practical to cover every possible logical form when
enumerating, and we seek to tackle this issue via
our tailored generation model.

2.2 Logical Form Ranking

Our ranker model learns to score each candidate
logical form by maximizing the similarity between
question and ground truth logical form while min-
imizing the similarities between the question and
the negative logical forms (Figure 2). Specifically,
given the question z and a logical form candidate
¢, we use a BERT-based encoder that takes as input
the concatenation of the question and the logical
form and outputs a logit representing the similarity
between them formulated as follows:

s(z,y) = LINEAR(BERTCLS([z;y]))

where BERTCLS denotes the [CLS] representa-
tion of the concatenated input; LINEAR is a projec-
tion layer reducing the representation to a scalar
similarity score. The ranker is then optimized to
minimize the following loss function:

es(@y)
@) £ ey €6

where the idea is to promote the ground truth
logical form while penalizing the negative ones
via a contrastive objective. In contrast, the ranker
employed in past work (Gu et al., 2021), a seq-
to-seq model, aims to directly map the question

ey

£ranker =

D whatis—; (JOIN (R} e
ecording.length) --;
AND music.recording

{ (ARGMIN (AND music. i
i—| T5 |—irecording (JOIN (R |
JOIN - ; (AND music. i artist.track) -

i album (JOIN artist - LS

Figure 3: The generation model conditioned on ques-
tion and top-ranked candidates returned by the ranker.

to target logical form, only leveraging supervision
from the ground truth. Consequently, our ranker is
more effective in distinguishing the correct logical
forms from spurious ones (similar but not equal to
the ground truth ones).

Bootstrapping Negative Samples in Training
Due to the large number of candidates and lim-
ited GPU memory, it is impractical to feed all the
candidates ¢ € C' as in Eq (1) when training the
ranker. Therefore, we need to sample a subset of
negatives logical forms C’ C C at each batch. A
naive way for sampling negative logical forms is
to draw random samples. However, because the
number of candidates is often large compared to
the allowed size of negative samples in each batch,
it may not be possible to cover spurious logical
forms within the randomly selected samples.

We propose to sample negative logical forms by
bootstrapping, inspired by the negative sampling
methods used in Karpukhin et al. (2020). That is,
we first train the ranker using random samples for
several epochs to warm start it, and then choose
the spurious logical forms that are confusing to the
model as the negative samples for further training
the model. We find the ranker can benefit from this
advanced negative sampling strategy and perform
better compared to using random negative samples.

2.3 Target Logical Form Generation

Having a ranked list of candidates, we introduce a
generation model to compose the final logical form
conditioned on the question and the top-k logical
forms. Our generator is a transformer-based seq-
to-seq model (Vaswani et al., 2017) instantiated
from T5 ((Raffel et al., 2020)), as it demonstrates
strong performance in generation-related tasks. As
shown in Figure 3, we construct the inputs by con-
catenating the question and the top-k candidates
returned by the ranker separated by semi-colon
(i.e., [; ¢y -5 ¢, ]). We train the model to gener-
ate the ground truth logical form autoregressively
with cross-entropy objective using teacher forcing.
In the inference, we use beam-search to decode
top-k target logical forms. To construct the top-k
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Question  the music video stronger was directed by whom?

)
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Mg 10059 {"the music video - [SEP]
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Stronger rected_by ; mv.music_
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Figure 4: Illustrative example of running entity disam-
biguation as ranking. A confusing entity (red) and the
correct entity (green) both match the surface form in
the question. To distinguish them, we train an entity
disambiguation model following the same architecture
as in logical form ranking but construct inputs by con-
catenating the question and relations.

logical form candidates needed for training the gen-
erator, we first train the ranker, and then use the
rankings it produces on the training data.

Since the generation model can now leverage
both the question and KB schema information (con-
tained in the candidates), the context is much more
specified as compared to only conditioning on the
question. This enables our generator to leverage the
training data more efficiently by focusing only on
correcting or supplementing existing logical forms
instead of learning both the generation rule and
correctness of logical forms.

Execution-Augmented Inference We use a
vanilla TS generation model without syntactic con-
straints, which does not guarantee the syntactic cor-
rectness nor executability of the produced logical
forms. Therefore, we use an execution-augmented
inference procedure, which is commonly used in
prior semantic parsing related work (Devlin et al.,
2017; Ye et al., 2020b). We first decode top-k logi-
cal forms using beam search and then execute each
logical form until we find one that yields a valid
(non-empty) answer. In case that none of the top-
k logical forms is valid, we return the top-ranked
candidate obtained using the ranker as the final log-
ical form, which is guaranteed to be executable.
This inference schema can ensure finding one valid
logical form for each problem. It is possible to
incorporate a more complex mechanism to control
the syntactic correctness in decoding (e.g., using
grammar-based decoder (Rabinovich et al., 2017)
or dynamical beam pruning techniques (Ye et al.,
2020a)). We leave such extension aside since we
find that executability of produced logical forms is
not the bottleneck (see Section 3.3 in experiments).

2.4 Extension: Entity Disambiguation as
Ranking

Our ranking model is mainly proposed for the task
of ranking candidate logical forms. Here, we in-
troduce a simple way to adapt our ranking model
for the task of entity disambiguation. A common
paradigm of finding KB entities referred in a ques-
tion is to first detect the entity mentions with an
NER system and then run fuzzy matching based
on the surface forms. This paradigm has been em-
ployed in various methods (Yih et al., 2015; Sun
et al., 2019; Chen et al., 2021; Gu et al., 2021).
One problem with this paradigm lies in entity dis-
ambiguation: a mention usually matches surface
forms of more than one entities in the KB.

A common way to disambiguate the matched en-
tities is to choose the most popular one according
to the popularity score provided by FACC1 project
(Chen et al., 2021; Gu et al., 2021), which can
be imprecise in some cases. We show an exam-
ple in Figure 4. Consider the question “the music
video stronger was directed by whom?” taken from
GRAILQA, where the most popular matched entity
is “Stronger” (m.02rhr3d, song by Kanye West)”
and the second is also “Stronger” (m.Omxqqt24,
music video by Britney Spears). The surface form
matching and popularity scores do not provide suf-
ficient information needed for disambiguation.

However, it is possible to leverage the relation
information linked with an entity to further help
assess if it matches a mention in the question. By
querying relations over KB, we see there is a re-
lation about mv director mv.directed_by linking
to m. Omxqqt 24, but there are no such kind of rela-
tions connected with m. 02rhrjd. We therefore cast
the disambiguation problem to an entity ranking
problem, and adapt the ranking model used before
to tackle this problem. Given a mention, we con-
catenate the question with the relations for each
entity candidate matching the mention. We reuse
the same model architecture and loss function as in
Section 2.2 to train another entity disambiguation
model to further improve the ranking of the target
entity. We apply our entity disambiguation model
on GRAILQA, and achieve substantial improve-
ments in terms of entity linking.

3 Experiments

We mainly test our approach on GRAILQA (Gu
et al., 2021), a challenging dataset focused on eval-
uating the generalization capabilities. We also ex-
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Overall LLD. Compositional ~ Zero-Shot

EM Fl EM Fl1 EM F1 EM Fl

QGG (Lan and Jiang, 2020) - 367 — 405 -— 33.0 — 366
Bert Transduction (Gu et al., 2021) 333 36.8 51.8 539 310 36.0 257 293
Bert Ranking (Gu et al., 2021) 50.6 58.0 599 670 455 539 48.6 55.7
ArcaneQA (Anonymous) 579 649 765 79.5 564 63.5 50.0 58.8
ReTrack (Chen et al., 2021) 58.1 653 844 875 615 709 446 525
S2QL (Anonymous) 575 662 651 729 547 647 551 63.6
RnG-KBQA (Ours) 688 744 862 89.0 638 712 63.0 69.2
w/o Entity Disambiguation 614 674 780 818 550 632 567 630

Table 1: Exact match (EM) and F1 scores on the test split of GRAILQA. The numbers of other approaches are
taken from the leaderboard. RNG-KBQA substantially outperforms prior methods by a large margin.

Training Data
what are the music recordings by Samuel Ramey?
(AND music.recording (JOIN recording.artist samuel_ramey))

what are the albums by Samuel Ramey?
(AND music.album (JOIN album.artist samuel_ramey))

Compositional Generalization

what are the albums by the artist who makes the recoding Holy Night?
(AND music.album (JOIN album.artist
(JOIN (R recording.artist) holy_night)))

Zero-Shot Generalization

what songs for tv did Samuel Ramey write lyrics for?
(AND tv.tv_song (JOIN composition.lyricist samuel_ramey))

Figure 5: Examples of compositional generalization to
new composition of KB schema items and zero-shot
generalization to unseen schema items (red).

periment on WEBQSP and compare against a num-
ber of prior approaches to demonstrate the general
applicability of our approach.

3.1 Experiment: GRAILQA

GRAILQA is the first dataset that evaluates the
zero-shot generalization. Specifically, GRAILQA
contains 64,331 questions in total and carefully
splits the data so as to evaluate three levels of gen-
eralization in the task of KBQA, including i.i.d. set-
ting, compositional generalization to unseen com-
position, and zero-shot generalization to unseen
KB schema (examples in Figure 5). The fraction
of each setting in the test set is 25%, 25%, and
50% , respectively. Aside from the generalization
challenge, GRAILQA also presents additional dif-
ficulty in terms of the large number of involved
entities/relations, complex compositionality in the
logical forms (up to 4 hops), and noisiness of the
entities mentioned in questions (Gu et al., 2021).

Implementation Detail We link an entity men-
tion to an entity node in KB using our approach de-
scribed in Section 2.4. We first use a BERT-NER
systems provided by the authors of GRAILQA to
detect mention spans in the question. For each men-
tion span, we match the span with surface forms in
FACCI1 project (Gabrilovich et al., 2013), rank the
matched entities using popularity score, and retain
the top-5 entity candidates. Lastly, we use the dis-
ambiguation model trained on GRAILQA to select
only one entity for each mention. Our entity ambu-
lation model is initiated from BERT-base-uncased
model provided by huggingface library (Wolf et al.,
2020), and finetuned for 3 epochs with a learning
rate of le-5 and a batch size of 8.

When training the ranker, we sample 96 neg-
ative candidates using the strategy described in
Section 2.2. Our ranker is finetuned from BERT-
base-uncased for 3 epochs using a learning rate of
le-5 and a batch size of 8. We do bootstrapping
after every epoch. It is also noteworthy that we
perform teacher-forcing when training the ranker,
i.e., we use ground truth entity linking for training.

We base our generation model on T5-base (Raf-
fel et al., 2020). We use top-5 candidates returned
by the ranker and finetune for 10 epochs using a
learning rate of 3e-5 and a batch size of 8.

Metrics For GRAILQA, we use exact match
(EX) and F1 score (F1) as the metrics, all of which
are computed using official evaluation script.

Results Table 1 summarizes the results on
GRAILQA. The results of other approaches are
directly taken from the leaderboard.> Overall, our

2 Accessed on 03/10/2022.
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approach sets the new state-of-the-art performance
on GRAILQA dataset, achieving 68.8 EM and 74.4
F1. This exhibits a large margin over the other
approaches: our approach outperforms ReTrack
(Chen et al., 2021) by 10.7 EM and 8.2 F1.

Furthermore, RNG-KBQA performs generally
well for all three levels of generalization and is par-
ticularly strong in zero-shot setting. Our approach
is slightly better than ReTrack and substantially
better than all the other approaches in i.i.d. set-
ting and compositional setting. However, ReTrack
fails in generalizing to unseen KB Schema items
and only achieves poor performance in zero-shot
setting, whereas our approach is generalizable and
beats ReTrack with a margin of 16.1 F1.

To directly compare the effectiveness of our rank-
and-generate framework against rank-only baseline
(BERT Ranking), we also provide the performance
of a variant of RNG-KBQA without the entity-
disambiguation model. In this variant, we directly
use the entity linking results provided by the au-
thors of Gu et al. (2021). Under the same entity
linking performance, our ranking-and-generation
framework is able to improve the performance by
11.4 EM and 8.2 F1. Furthermore, the variant of
our model without the entity-disambiguation mod-
ule (RnG-KBQA w/o Entity Disambiguation) still
substantially outperforms all other approaches. In
particular, this variant beats ReTrack by 3.3 EM
and 2.1 F1 even if ReTrack includes an entity dis-
ambiguation model that yields better entity linking
performance. Please refer to Appendix A for more
discussion on entity linking performance.

3.2 Experiment: WEBQSP

WEBQSP is a popular dataset which evaluates
KBQA approaches in i.i.d. setting. It contains
4,937 question in total and requires reasoning
chains with up to 2 hops. Since there is no offi-
cial development split, we randomly sample 200
examples from the training set for validation.

Implementation Detail For experiments on WE-
BQSP, we use ELQ (Li et al., 2020) as the entity
linker, which is trained on WEBQSP dataset to
perform entity detection and entity linking, since
it produces more precise entity linking results and
hence leads to less number of candidate logical
forms for each question. Because ELQ always links
a mention to only one entity, we do not need an
entity-disambiguation step for WEBQSP dataset.
Similarly, we initiate the logical form ranker us-

Fl EM Hits®

PullNet* (Sun et al., 2019) 62.8 - 67.8

GraftNet* (Sun et al., 2018) — — 68.1
Bert Ranking* (Gu et al., 2021) 67.0 — —
EmbedQA* (Saxena et al., 2020) — — 72.5
ReTrack* (Chen et al., 2021) 74.7 - 74.6
Topic Units (Lan et al., 2019) 67.9 — 68.2
UHop (Chen et al., 2019) 68.5 — —
NSM (Liang et al., 2017) 69.0 — —
ReTrack (Chen et al., 2021) 71.0 — 71.6
STAGG (Yih et al., 2015) 71.7 639 —
CBR (Das et al., 2021) 72.8 70.0 —
QGG (Lan and Jiang, 2020) 74.0 — —
RNG-KBQA (Ours) 75.6 71.1 —

Table 2: Results of RNG-KBQA and baselines on WE-
BQSP. * (approach in the top section) denotes using or-
acle entity linking annotations provided by the dataset.
Our approach achieves the new state-of-the-art perfor-
mance (75.6 F1) with a discernible margin over the per-
formance of best prior method (74.0 F1 obtained by
QGQG). Our approach even outperforms a number of
prior work using oracle entity linking annotations.

ing BERT-base-uncased, and the generator using
T5-base. We also sample 96 negative candidates
for each question, and feed the top-5 candidates to
the generation model. The ranker is trained for 10
epochs and we run bootstrapping every 2 epochs;
the generator is trained for 20 epochs.

Metrics F1 is used as the main evaluation metric.
In addition, for approaches that are able to select en-
tity sets as answers, we report the exact match (EM)
used in the official evaluation. For information-
retrieval based approaches that can only predict
a single entity, we report Hits®! (if the predicted
entity is in the ground truth entity set), which is
considered as a loose approximation of EM.

Results For baseline approaches, we directly
take the results reported in corresponding original
paper. As shown in Table 1, RNG-KBQA achieves
75.6 F1, surpassing the prior state-of-the-art (QGG)
by 1.6. Our approach also achieves the best EM
score of 71.1, surpassing CBR (Das et al., 2021).
The performance of our approach obtained using
ELQ-predicted entity linking outperforms all the
prior methods, even if they are allowed to use ora-
cle entity linking annotations (denoted as * in the
top section). It is also noteworthy that both CBR
and QGG, the two methods achieving strong per-
formance closest to ours, use an entity linker with
equal or better performance compared to ours. In
particular, CBR also uses ELQ for entity linking.
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GRAILQA  WEBQSP

Full Model 75.1 75.6
Gen Only (Rand Rank) 47.6 69.9
Rank Only 69.8 72.7
Rank Only (w/o Bootstrap) 68.6 71.3

Table 3: F1 scores on GRAILQA (dev set) and WE-
BQSP of three ablations, including a generation-only
variant (Gen Only, which uses randomly selected log-
ical form candidates), a ranking-only variant (Rank
Only), and a ranking-only variant without using boot-
strap training strategy (w/o Bootstrap). Removing ei-
ther component leads to performance deterioration.

QGG uses an entity linker achieving 85.2 entity
linking F1 (calculated using public available code)
which is slightly better than ours achieving 84.8
entity linking F1. To summarize, the results on
WEBQSP suggest that, in addition to outstanding
generalization capability, our approach is also as
strong in solving simpler questions in i.i.d. setting.

3.3 Analysis

Ablation Study We first compare the perfor-
mance of our full model against incomplete abla-
tions in Table 3. We derive a generation-only (Gen
Only) model from our base model by replacing the
trained ranker with a random ranker, which leads to
a performance drop of 27.5 and 5.7 on GRAILQA
and WEBQSP, respectively. The performance de-
terioration is especially sharp on GRAILQA as it
requires generalizing to unseen KB schema items,
for which the generator typically needs to be based
on a good set of candidates to be effective.

To test the effects of our generation step, we
compare the performance of a ranking-only variant
(directly using the top-ranked candidate) against
the performance of the full model. As shown in
Table 3, the generation model is able to remedy
some cases not addressable by the ranking model
alone, which boosts the performance by 5.3 on
GRAILQA and 2.9 on WEBQSP.

We additionally evaluate the performance of a
ranking model trained without bootstrapping strat-
egy introduced in Section 2.2. The performance of
this variant lags its counterpart by 1.2 and 1.4 on
GRAILQA and WEBQSP, respectively. The boot-
strapping strategy is indeed helpful for training the
ranker to better distinguish spurious candidates.

Comparing Outputs of Ranking Model and
Generation Model We have demonstrated the

Grail (Overall) WebQSP

(L[EINFMN Gen Better
4.7

[LTEINSM Gen Better
8.9

Rank Better  Zero F1 Rank Better ~ Zero F1
12 244 7.2 17.3

Grail (1.1.D) Grail(Compositional) Grail (Zero-Shot)

Gen Better Gen Better
9.4 7.5

Gen Better
1.4

Rank Better  Zero F1 Rank Better | Zero F1 Rank Better  Zero F1
1.4 13.9 2.4 33.2 1.6 5.3

Figure 6: Comparison between the ranker’s top predic-
tions and the generator’s top predictions. Generation
model mostly keeps or improves the prediction while
occasionally introducing errors.

benefit of adding a generation stage on top of the
ranking step on previous result sections. Here, we
present a more detailed comparison between the
outputs of ranking model and generation model.
Figure 6 presents the “comparison matrices” show-
ing the fractions of questions where

o top left: the top ranking prediction and top
generation prediction achieves a equal nonzero F1,

o top right: the top generation prediction is bet-
ter,

o bottom left: the top ranking prediction is better,

o bottom right: they both fail (achieving a 0 F1).

The generator retains the ranking predictions
without any modifications for most of the time. For
4.7% and 8.9% of the questions from GRAILQA
and WEBQSP, respectively, the generator is able
to fix the top-ranked candidates and improves the
performance. Although generator can make mis-
takes in non-negligible fraction of examples on
WEBQSP, it is mostly caused by introducing false
constraints (e.g., Figure 7 (d)). Thanks to our
execution-guided inference procedure, we can still
turn back to ranker-predicted results when the gen-
erator makes mistakes, which allows tolerating gen-
eration errors to some extent.

We also show the break down by types of gener-
alization on GRAILQA (bottom row in Figure 6).
Generation stage is more helpful in i.i.d. and com-
positional setting, but less effective in zero-shot
setting, as it involves unseen relations that are usu-
ally hard to generate.

Executability We use executability to further
measure the quality of generated outputs. Table 4
shows executable rate (producing an executable
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Generation Better Than Ranking
(a) Q what is the shortest recording by samuel ramey?

R (AND music.recording (JOIN
recording.artist ramey))

G (ARGMIN (AND music.recording
(JOIN recording.artist ramey))
recording.length)

(b) Q where did kevin love go to college?

R (JOIN education.institution
person.education love))

G (AND (JOIN topic.notable_types
college) (JOIN edu.institution
(JOIN person.education love)))

Ranking Better Than Generation
(c) Q what song for tv or television did benny davis com-
pose?

R (AND tv.tv_song (JOIN
composition.lyricist davis))

G (AND tv.tv_song (JOIN
composition.song (JOIN
composition.composer davis)))

(d) Q what team does heskey play for?

R (JOIN sports_team_roster.team
JOIN pro_athlete.teams heskey))
JOIN sports_team_roster.team (AND
JOIN sports_team_roster.from 2015)
JOIN pro_athlete.teams heskey)))

(JOIN

G

Figure 7: Examples of outputs from the generator (G)
and ranker (R). A generation step is able to compensate
some missing operators not supported in the enumera-
tion (a), or patch some implicit clue (b). However, gen-
erator does introduce errors if it produces another pre-
diction when there is inherent ambiguity in the question
and the top-ranked one is indeed correct (c). Generator
also adds unnecessary constraint sometimes (d).

logical forms) and valid rate (producing a logical
form that yields non-empty answer) among the top-
k decoded list. Nearly all the top-1 logical forms
are executable. This suggests that the generation
model can indeed produce high-quality predictions
in terms of syntactic correctness and consistency
with KB. As the beam size increases, more valid
logical forms can be found in the top-k list, which
our inference procedure can benefit from.

Output Examples of Ranking Model and Gen-
eration Model For more intuitive understand-
ing of how the generator works, we attach sev-
eral concrete examples (Figure 7). As suggested
by example (a), the generation model can rem-
edy some missing operations (ARGMIN) not sup-
ported when enumerating. It can also patch the
top-ranked candidate with implicit constraints: the
(JOIN topic.notable_types college) in (b) 18
not explicitly stated, and our NER system fails to
recognize college as an entity.

As in example (c), the generation model makes
a worse prediction sometimes because it prefers

GRAILQA WEBQSP
EXEC VALID EXEC VALID
Top-1 99.7 88.1 98.7 91.1
Top-3 99.7 89.4 99.5 94.5
Top-5 99.7 89.8 99.5 94.6
Top-10  99.7 90.4 99.5 95.4

Table 4: The chances of finding an executable (EXEC)
and a valid (VALID) logical form among the top-k gen-
erated. logical forms.

another prediction in the top-ranked list due to in-
herent ambiguity in the question. It can also fail
when falsely adding a constraint which results in
empty answer (d).

4 Related Work

KBQA is a promising technique for users to effi-
ciently query over large KB, which has been exten-
sively studied over the last decade. Past work has
collected a series of datasets (Yih et al., 2016; Bor-
des et al., 2015; Zhang et al., 2018; Su et al., 2016;
Gu et al., 2021) as well as proposed a diversity of
approaches for this task.

One line of KBQA approaches first constructs a
query-specific subgraph with information retrieved
from the KB and then rank entity nodes to select
top entities as the answer (Sun et al., 2018, 2019;
Saxena et al., 2020; Cohen et al., 2020; Shi et al.,
2021). The subgraph can either be retrieved in
one-shot using heuristic rules (Sun et al., 2018), or
iteratively built using learned models (Sun et al.,
2019; Shi et al., 2021; Cohen et al., 2020; Sax-
ena et al., 2020). Later, a neural model operating
over subgraph is employed to determine the answer
nodes (Sun et al., 2018, 2019; Shi et al., 2021).
Such information retrieval based approaches are
usually less interpretable as they do not produce
the inference path reaching the answer, whereas
our approach is more transparent since we are able
to produce logical forms.

More closely related to our approach, another
line answers a question by parsing it into an ex-
ecutable logical form in various representations,
including lambda-DCS (Liang, 2013; Berant et al.,
2013), sparql query (Das et al., 2021), graph query
(Yih et al., 2015; Su et al., 2016; Lan and Jiang,
2020), and s-expression (Gu et al., 2021). Past
work has attempted to generate logical forms us-
ing grammar-based parsera (Berant et al., 2013) or
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seq-to-seq parsers (Zhang et al., 2019). There has
also been an alternative way that first enumerates
a list of logical form candidates and then choose
one that best matches the intents in the question
(Lan and Jiang, 2020; Luo et al., 2018; Yih et al.,
2015; Yavuz et al., 2016, 2017; Reddy et al., 2017,
Sun et al., 2020). Our approach differs in that we
employ a generation stage to remedy the coverage
issue which these approaches often suffer from.

5 Conclusion

We have presented RNG-KBQA for question an-
swering over knowledge base. RNG-KBQA con-
sists of a ranking step and a generation step. Our
ranker trained with iterative bootstrapping strategy
can better distinguish correct logical forms from
spurious ones than prior seq-to-seq ranker. Our gen-
erator can further remedy uncovered operations or
implicitly mentioned constraints in the top-ranked
logical forms. The experimental results on two
datasets, GRAILQA and WEBQSP, suggest the
strong performance of our approach: RNG-KBQA
achieves new state-of-the-art performance on both
datasets, and particularly outperforms prior meth-
ods in generalization setting by a large margin.
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Linking F1 KBQA F1

Bert Ranking (Gu et al., 2021) 72.2 58.0
ReTrack (Chen et al., 2021) 77.4 65.3
RnG-KBQA (Ours) 79.6 74.4

w/o Entity Disambiguation 72.2 67.4

Table 5: The entity linking F1 (on dev set) and
the corresponding final F1 scores (on leaderboard) on
GRAILQA of various methods.

A Details of Entity Linking Performance

Table 5 shows the entity linking performance and
KBQA performance on GRAILQA of various meth-
ods. Compared to the popularity-based baseline
(Bert Ranking), Our entity disambiguation model
is effective and successfully improves the entity
linking F1 by 7.4, which boosts the final KBQA
F1 score by 7.0. Our entity linking model is also
better than the Bootleg approach (Orr et al., 2021)
used in ReTrack (Chen et al., 2021).

Furthermore, our method without the entity dis-
ambiguation modules outperforms Bert Ranking
with a substantially large margin (11.4 F1 score).
Our method even beats ReTrack when it is built
upon a much better entity linking model. The re-
sults suggest the strong effectiveness of our rank-
and-generate framework.
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