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Abstract

Models pre-trained with a language model-
ing objective possess ample world knowledge
and language skills, but are known to struggle
in tasks that require reasoning. In this work,
we propose to leverage semi-structured tables,
and automatically generate at scale question-
paragraph pairs, where answering the question
requires reasoning over multiple facts in the
paragraph. We add a pre-training step over this
synthetic data, which includes examples that
require 16 different reasoning skills such as
number comparison, conjunction, and fact com-
position. To improve data efficiency, we sam-
ple examples from reasoning skills where the
model currently errs. We evaluate our approach
on three reasoning-focused reading compre-
hension datasets, and show that our model,
PReasM, substantially outperforms T35, a popu-
lar pre-trained encoder-decoder model. More-
over, sampling examples based on model errors
leads to faster training and higher performance.

1 Introduction

Large pre-trained language models (LMs) (Devlin
et al., 2019; Liu et al., 2019; Brown et al., 2020)
have become the backbone of natural language pro-
cessing in recent years. However, recent work has
shown that they struggle in performing symbolic
reasoning operations, such as composition or con-
junction of facts (Talmor et al., 2019, 2020), numer-
ical operations (Wallace et al., 2019; Hidey et al.,
2020), and quantification (Warstadt et al., 2019),
without substantial amounts of additional data.
Past work on improving reasoning in pre-trained
models has taken two flavors: (a) adding special-
ized components for specific skills, like numerical
and temporal reasoning (Ran et al., 2019; Gupta
et al., 2020a; Khot et al., 2021; Chen et al., 2020a),
or (b) generating synthetic examples at scale, for
example, by using grammars or templates (Rozen
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Round Date Opponent Venue | Result | Attendance
R3 31 October 1990 Portsmouth H 0-0 16,699
R3R 6 November 1990  Portsmouth A 3-2 16,085
R4 28 November 1990 | Oxford United A 2-1 9,789
QF 16 January 1991 Tottenham Hotspur | H 0-0 34,178
QFR 23 January 1991 Tottenham Hotspur | A 3-0 33,861
SF 1stLeg | 24 February 1991 heffield Wednesday H 0-2 34,074

SF 2nd Leg | 27 February 1991  Sheffield Wednesday A 1-3

U

Composition: q: What was the Result when the Round was R4? c: The Date when the
Round was R4 was 28 November 1990. The Result when the Date was 28... a: 2-1

34,669

Comparison q: Which Round had a higher Attendance: QF or QFR? c: The Attendance
when the Round was QF was 34,178. The Attendnace when the Round was QFR... a: QF

Date Difference: q: The Opponent was Portsmouth how much time before the Opponent
was Sheffield Wednesday? c: The Date when the Opponent... a: 3 months and 18 days

Figure 1: An example table and question-context-
answer triplets generated from the table as synthetic
data. Each color corresponds to a different reasoning
skill and colored cells are necessary to answer the ques-
tion. The contexts shown are partial, such that the actual
context contains the necessary information to answer
the question and additional distractors. Answers are not
necessarily extractive (e.g., date difference).

et al., 2019; Zhao et al., 2019; Andreas, 2020; Asai
and Hajishirzi, 2020; Campagna et al., 2020), and
question generation models (Alberti et al., 2019;
Puri et al., 2020; Bartolo et al., 2021).

In this work, we take the latter approach and
argue that semi-structured tables are a valuable re-
source for automatic generation of training data
that can endow LMs with reasoning skills. Tables
can be crawled from the web at scale, and cover
a wide range of domains and topics. Moreover,
their structured nature makes them amenable to au-
tomatic processes of data generation. Specifically,
given a table, we use templates to generate reading
comprehension (RC) examples, that is, question-
context-answer triplets, where answering the ques-
tion requires diverse types of reasoning over facts
mentioned in the context. Fig. 1 shows an example
table, and three generated question-context-answer
examples, which require fact composition, num-
ber comparison, and computing a date difference.
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1. Synthetic data generation from semi-
structured data
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q: How old was the Russian
battleship Tsesarevich when
Aksel Berg served on it?

{

5
it

/ I:> i
c: The ship was laid down on ,“
8 July 1899 and launched on [\

\ I:> 2

23 February 1901. Berg
joined the Imperial Russian
Navy in 1914 and served as
junior navigating officer...

Figure 2: Approach overview. First, we use tables to generate large amounts of data from 16 different example
generators (EGs), each corresponding to a different reasoning skill. Then, a pre-trained LM is trained over this data
to obtain our model, PReasM, where we sample examples based on current model errors (arrow width corresponds
to number of examples). Last, our model is fine-tuned and evaluated on target tasks that require reasoning.

Unlike prior work where semi-structured data was
used for reasoning over tables or knowledge-bases
(Eisenschlos et al., 2020; Yin et al., 2020; Herzig
et al., 2020; Yu et al., 2021), here we harness tables
to allow LMs to reason over text directly.

Fig. 2 provides an overview of our approach. We
generate data by crawling tables from Wikipedia,
and applying 16 different example generators (EGs)
on each table. Each EG corresponds to a particular
reasoning skill (composition, numerical compari-
son, see Table 1 for full list), and comprises a small
set of question templates. Variables in the tem-
plates are filled with content from the table, and the
structure of the table allows to compute the answer
automatically. The context is a list of facts gener-
ated from the table that contain facts required for
answering the question as well as distractor facts.

We add a pre-training step over this generated
data, where we perform multi-task training over the
16 task corresponding to the EGs. Since each EG
can generate vast numbers of examples, it is impor-
tant to focus training on reasoning skills that the
model lacks. Thus, we use error-driven sampling
(Gottumukkala et al., 2020) to construct training
batches, where most examples are sampled from
EGs that the model currently struggles with.

We fine tune our Pre-traind for Reasoning
Model, PReasM, on three RC datasets that require
reasoning: DROP (Dua et al., 2019), IIRC (Fergu-
son et al., 2020), and MMQA (Talmor et al., 2021).
PReasM outperforms the original pre-trained TS
(Raffel et al., 2020) model by significant margins:
7.6, 4.1, and 1.2 F; points, respectively. Our results
set a new state-of-the-art on MMQA and are the
best results on IIRC for models where the retriever
and reader are trained separately. Our analysis
shows that PReasM leads to improvements of up
to 40 F; points on specific question types, such as

computing the difference between two dates, with-
out causing a drop in other question types.

In conclusion, our results suggest that tables are
a viable and untapped source of information for
automatically generating large amounts of data that
can be used to endow LMs with skills that are
not captured using current pre-training approaches.
Our code, data, and models are publicly available
and can be downloaded from https://github.
com/oriyor/turning_tables.

2 Data Generation

Our goal is to train a RC model that given a ques-
tion ¢ and textual context ¢ returns an answer a,
given a training set D = {(g;, ¢;, a;)}}.,. We fo-
cus on questions that require reasoning over the
context, e.g., composing two facts. To endow LMs
with reasoning skills, we want to generate a large
synthetic training set Dsyn = {(g;, ¢;, aj)}j]\il
(M > N) from semi-structured tables, before fine-
tuning on a target dataset.

2.1 Generating Examples from Tables

We use tables from English Wikipedia' to gener-
ate Dgypn. English Wikipedia includes millions of
tables with high lexical and domain diversity (Fe-
tahu et al., 2019; Chen et al., 2020b; Gupta et al.,
2020b; Talmor et al., 2021; Nan et al., 2021; Neer-
aja et al., 2021a). We extract from Wikipedia all
tables 7 that have at least two columns and 10-25
rows, resulting in more than 700K tables. Then, we
annotate all table columns with their semantic type
(STRING, NUMBER, or DATE), which allows us to
generate questions that involve manipulating num-
bers and dates. Details on the process of column
annotation are in $A.1.

"We use the 01-01-2020 Wikipedia dump.
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EG Template

Question

2/3-hop ‘What was the col:1(s) when the col:2 was val:2in “What was the Play(s) when the Author was William Shakespeare in Notable works

Composition table-title of page-title? of Lidia Zamkow?”

Conjunction ‘What was the col:1 when the col:2 was val:2 and the col:3 “What was the Common name when the Family was Picidae and the Distribution was
was val:3intable-title of page-title? Okinawa in List of species of List of endemic birds of Japan?”

Quantifiers Isval:1theonly col:1 thathas col:2 val:2intable-title “Is Jean Philippe the only Artist that has Language French in Results of Eurovision

Only of page-title? Song Contest 19597”

Quantifiers Intable-title of page-title, does [OPERATOR] col:1 “In Coal of List of Mines in South Africa, does every Mine have Owner Exxaro?”

Every/Most have col:2 val:2?

Num. Intable-title of page-title, which col:1 had “In A istration of M Ni i District, which Name had a higher

Comparison [OPERATOR] col:2:val:1lorval:1? population: Suan Yai or Bang Khen?”

Temp. Intable-title of page-title, what happened [OPERATOR]: “In Awards and nominations of Alexandre Pires, what happened earlier: the

Comparison the col:1 wasval:1 orthe col:2 was val:2? Category was Pop New Artist or the Category was Album of the Year?”

Num. Yes/No Intable-title of page-title did val:1 have [OPERATOR] “In Top employers of Chula Vista, California, did Walmart have more Employees

Comparison col:2thanval:1? than Target?”

Temp. Yes/No
Comparison

The col:1 was val:1 [OPERATOR] the col:2 was val:2 in
table-title of page-title?

“The Referee was Salim Oussassi more recently than when the Referee was
Rachid Medjiba in 1980 to 1999 of Algerian Cup Final referees?”

Temp./Num.
Superlatives

Intable-title of page-title, which col:1 has the
[OPERATOR] col:2?

“In List of graphic novels of Minx (comics), which Title has the earliest Release
date?”

Arithmetic
Superlatives

Intable-title of page-title, what was the [OPERATOR]
col:1 whenthe col:2 wasval:2?

“In By rocket of 1961 in spaceflight, what was the highest Successes when the
Remarks was Maiden flight?”

Counting How many col:1 have col:2 val:2intable-title of “How many Elections have Candidate John Kufuor in Presidential elections of New
page-title? Patriotic Party?”

Arithmetic Intable-title of page-title, what was the total number of “In Assists table of 2010-11 La Liga, what was the total number of Assists when the

Addition col:1 whenthe col:2 was val2? Club was Villarreal?”

Date Intable-title of page-title, how much time had passed bet- “In Notable events | Concerts of Candlestick Park, how much time had passed

Difference ween when the col:1 was val:1 and when the col:2 was val:2? between when the Artist was Paul McCartney and when the Artist was The Beatles?”

Table 1: Question templates with examples for all EGs. Variable names specify permissible instantiations, where
col is a column name, val is a value, and indices denote that a value must originate from a particular column.
2/3-hop composition examples are generated by generating 2/3-long fact chains between the answer and the value
in the question. For example, above, the chain will include the facts “The Role when the Author was Shakespeare
was Lady Macbeth. The Play when the Role was Lady Macbeth was Macbeth”. {OPERATOR]’ corresponds to
EG-specific operators that we instantiate, e.g., in the EG “Temp. comparison’ [OPERATOR] is replaced with the
operators ‘earlier’ or ‘later’. Some EGs are collapsed into a single row (e.g., Quantifiers Every/Most).

The core of the generation process are the ex-
ample generators (EGs), each corresponding to a
reasoning skill (Table 1). Each example genera-
tor g € G is a function that takes a table t € T
and randomly samples at most ten (g, ¢, a) triplets
from the set of all possible triplets, where (i) q is
a question is pseudo-language, (ii) c is the context,
i.e., a list of facts extracted from ¢ that includes the
gold facts necessary for answering g and distractor
facts, all phrased in pseudo-language, and (iii) a
is the answer. Overall, the synthetic training set is
Dsyn = Uyer Ugeg 9(0).

EGs generate examples in the following way.
Each EG is associated with one or more question
templates, which differ in their surface phrasing.”
Templates contain typed variables that are instanti-
ated with content from the table (see all variables
in Table 1). Column and value variables are in-
dexed to specify that the variable val : 1 must be
instantiated by a value from the column col:i.
Instantiating all variables results in the question

>We also experimented with using just one question tem-
plate per EG and observed very similar downstream results.

q and the template allows us to programmatically
compute the answer a. E.g., in the question from
Fig. 1: “In League Cup of 1990-91 Chelsea F.C.
season, Which Round had a higher Attendance: QF
or QFR?” the answer a can be found by finding
the rows with the values “QF” and “QFR” in the
column “Round”, and returning the value that has
a higher number in the column “Attendance”.

The context c is generated from the content nec-
essary for answering the question, which can be
identified using the instantiated question template.
Facts generally have the form “The col:1 when
the col:2 was val:2 was val:1”. E.g., to
answer the question above, we generate the gold
facts “The Attendance when the Round was QF was
34,1787, and “The Attendance when the Round was
OFR was 33,861”. We also generate distractors by
generating facts from rows or columns that are not
relevant for the question, e.g., “The Attendance
when the Round was R4 was 9,789 .

Overall, our process results in a large set Dyyn,
which includes examples from 16 EGs (all shown
in Table 1).
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EG Question Context Answer
3-hop ‘What was the Result(s) when the In League Cup of 1990-91 Chelsea F.C. season: The attendance when the round was R2 1st Leg was 5,666. 2-1
Composition Round was R4 in League Cup of The result when the date was 6 November 1990 was 3-2. The date when the attendance was 34,669 was 27
1990-91 Chelsea E.C. season? February 1991. The attendance when the round was QF was 34,178. The date when the attendance was
34,074 was 24 February 1991. The date when the attendance was 16,085 was 6 November 1990. The
attendance when the round was R3 was 16,699. The date when the attendance was 9,789 was 28 November
1990. The result when the date was 28 November 1990 was 2-1. The result when the date was 31 October
1990 was 0-0. The attendance when the round was QFR was 33,861. The result when the date was 16
January 1991 was 0-0. The attendance when the round was R4 was 9,789. The result when the date was
10 October 1990 was 4-1 (won 9-1 on agg). The date when the attendance was 5,666 was 26 September 1990.
Counting In Presidential elections of New In Presidential elections of New Patriotic Party: The candidate when the election was 1992 was Albert Adu 4
Patriotic Party, how many Boahen. The candidate when the election was 2008 (1) was Nana Akufo-Addo. The candidate when
Elections have Candidate John the election was 2000 (2nd) was John Kufuor. The candidate when the election was 2000 (1st) was John
Kufuor? Kufuor. The candidate when the election was 1992 was Albert Adu Boahen. The candidate when the election
was 2004 was John Kufuor. The candidate when the election was 1996 was John Kufuor. The candidate
when the election was 2008 (2) was Nana Akufo-Addo.
Date In Notable concerts of In Notable concerts of Comiskey Park: The artist was Rush in August 19, 1979. The artist was The Police 17 years,
Difference Comiskey Park, how much in July 23, 1983. The dates when the artist was The Jacksons were October 12, 1984, October 13, 1984, and 11 months,
time had passed between when October 14, 1984. The artist was Simon and Garfunkel in July 24, 1983. The artist was The Beatles in and 3 days

the Artist was The Beatles and
when the Artist was The Police?

August 20, 1965. The date when the artist was Aerosmith was July 10, 1976.

Table 2: Examples for generated (g, ¢, a) triplets. The first example is from the table in Fig. 1. Gold facts are bolded.

. X People
EG # Questions EG # Questions
Sports sports
2-Hop composition 277,069 3-Hop composition 364,772 Music B . .
Conjunction 353,738 Only quantifier 522,071 Kivedia Li sports. d’SC(’g‘;"PhY b'(’{‘g"qiss basketball
Most quantifier 94,180 Every quantifier 16,693 Wikipedia List g?f?n 1.5% s:,::n
Number comparison 410,749 Number Y/N comparison 410,749 TV / Film 0.5% wikimedia @k
Temporal comparison 453,499 Temporal Y/N comparison 470,694 Annual events list o s
Number superlatives 125,144 Temporal superlatives 80,884 . american azﬂéci;e television league
Arithmetic superlatives 183,892 Arithmetic addition 86,969 Finance football i s serics s
Counting 484,471 Date difference 452,061 Awards teagn.“ =7 .
1.8%
Total 4,787,635 Geography single
Fashion opera human sports beauty
0:56% season Saition
Table 3: Number of examples generated by each EG. o 32.7% 8.9% events 0
. . television in
pro,
During data generation, we randomly generate at most s o B,
film association .
10 examples from each EG and table. _ 1.6% football ~ musical
p association  team... group <
team football 2.8% 18% the...
0.3% s club 04%
. hockey 22% i b:::zl‘):'xll ,:‘::
2.2 Data Analysis 05% Sories | sewon | g3
1%

Data generation yields 4.8M questions from over
176K tables and 130K pages. Table 2 contains
examples for generated (q, ¢, a) triplets, including
the full context c. Table 3 shows the number of
generated examples for each EG. The number of
distinct words is large (850K), illustrating the wide
coverage and high lexical diversity of our approach.
Moreover, generated examples have diverse answer
types, which include text spans (43.2%), yes/no
questions (31.6%), numeric (15.8%), and date an-
swers (9.4%). In addition, our questions cover a
wide range of domains including popular culture,
politics and science. Tables cover more than 2,500
different Wikipedia categories, with 150 categories
covering 80% of the data. Fig. 3 presents the most
common categories of the Wikipedia pages from
which we scraped our tables.

3 Training

Since our EGs generate large quantities of exam-
ples, one can think of each EG as providing an
infinite stream of examples. In this setup, a natural
question is how to construct training batches such
that the model learns the required skills as quickly

Figure 3: The most frequent categories of our Wikipedia
pages and their frequency. Colors represent domains.

as possible. After briefly describing our model, we
will detail our training framework, where we sam-
ple examples from EGs in an error-driven manner.

Model We use a standard encoder-decoder ar-
chitecture (Raffel et al., 2020; Lewis et al., 2020).
Given a training example (g, ¢, a), the model takes
as input the sequence of tokens ‘q [SEP] ¢’, and
the task is to autoregressively decode the answer
a token-by-token. We train to maximize the maxi-
mum likelihood objective log P(a | g, ¢).

3.1 Multi-task Training over EGs

Given a pre-trained LM, we add another pre-
training step, where we multi-task over a set of
tasks S, each task corresponding to examples gener-
ated from one EG. Similar to past work (Yogatama
et al., 2019; Geva et al., 2020), to avoid ‘“catas-
trophic forgetting” (Kirkpatrick et al., 2016) of the
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language skills, we sample batches from the origi-
nal pre-training task with probability A = 0.5.

Past work (Gottumukkala et al., 2020) has shown
that heterogeneous batching, i.e., having examples
from all tasks in each batch, leads to better perfor-
mance compared to having entire batches from a
single task. We follow this practice, and in every
batch sample examples from every task according
to a probability distribution Py ¢ € RIS, The
main question is how to determine the distribution
Py ks> Which we turn to next.

3.2 Sampling Strategies

We describe strategies for computing Py, ¢ ¢, start-
ing with the commonly-used uniform sampling ap-
proach, and then turn to error-driven approaches.

Uniform sampling Past work (Khashabi et al.,
2020; Raffel et al., 2020; Wang et al., 2020) used
uniform sampling, where the probability to sam-
ple from a task s is Py o(5) = %', as a-priori
all tasks are equally important. Some approaches
also sample examples in proportion to the size of
the training set (Raffel et al., 2020; Wang et al.,
2020). This is not applicable in our case, where
we assume an infinite stream of examples for every
task, and make no assumptions on the distribution
over reasoning skills in the downstream test set.

Error sampling Recent work (Sharma et al.,
2018; Gottumukkala et al., 2020) proposed to con-
struct Ptasks based on model errors, where one
over-samples tasks with higher errors. More for-
mally, let Ceil(s) be an estimate of the maximum
accuracy achievable on a task s, and Acc(s) be
the current model accuracy for task s on an held-
out set. We define A(s) = Ceil(s) — Acc(s) and
Pragis(5) = 5= Ay The distribution Pyt
of a task is updated every time we evaluate the cur-
rent model on the held-out data. In our setup, since
the data is synthetic and abundant, we assume that
the ceiling accuracy for all tasks is 1.0, and hence:
A(s) = 1.0 — Acc(s). Similar to Gottumukkala
et al. (2020), we use accuracy over a held-out set
rather than the training loss, as this corresponds
directly to our target metric.

Momentum sampling A potential issue with er-
ror sampling, is that if the error rate on a task is
high, the model will spend most of its time on that
task at the expense of other tasks, which may lead
to low data efficiency. To remedy this, we intro-
duce momentum sampling, a sampling strategy that

Algorithm 1 Momentum Sampling(w, ¢, €, k)

Input: windows size w, training time ¢, minimum share of
examples per task €, smoothing factor k.

1: for s € Sdo

2: if ¢ > w then

3: Acthead ¢ F Sies_ i Accs(i)

4: Accgi] %Zf;:“_tff Accs(1)

5: Py sisls] < max(|Accpead — Acciaill, €)
6: else

7: Py sksls] < 1/|S|

8: Prasks < Prasks/ 1 FPrasks!lt

samples from a task in proportion to its rate of im-
provement, putting most probability mass on skills
that are improving rapidly.

Alg. 1 provides the details of momentum sam-
pling. Let ¢ denote the index of a checkpoint eval-
uated on the held-out set, let w be a window size,
and Acc,(7) be the held-out accuracy of checkpoint
1 on task s. We estimate model accuracy on a task
s at the beginning and end of the window, and
sample examples in proportion to the difference’
in accuracy during that window. To smooth out
accuracy fluctuations in adjacent checkpoints, we
estimate accuracy as an average of k£ model check-
points. During the first w checkpoint evaluations,
we simply use uniform sampling.

Momentum sampling has several theoretical ben-
efits over error sampling. First, it does not assume
anything on the ceiling accuracy of a task. Sec-
ond, when all tasks converge to their ceiling accu-
racy, momentum sampling converges to uniform
sampling, unlike error sampling, which will over-
sample from tasks for which Ceil(s) is low. This
is useful in cases where the variance of Ceil(s) is
high across tasks. On the other hand, momentum
sampling requires a warm-up of w steps, and might
under-sample from tasks that train slowly. In §A.2.,
we describe two synthetic experiments where mo-
mentum sampling clearly outperforms error sam-
pling. However, we do not observe an advantage
for momentum sampling in our experiments in §5,
and leave further investigation of momentum sam-
pling to future work.

4 Experimental Setup
4.1 Models

Baselines Our main baseline is TS5 (Raffel et al.,
2020), a popular pre-trained encoder-decoder
model, which we fine-tune on the downstream

3We use the difference in performance and not the gain to
account for cases of sudden drops in performance.
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datasets. We experiment with Base and Large size
models. For each dataset, we compare to the rele-
vant state-of-the-art model.

Our pre-trained for reasoning model, PReasM, is
a TS5 model with another pre-training step on Dgyp.
We experiment with uniform sampling (PReasM-
Uni), error sampling (PReasM-Err), and momen-
tum sampling (PReasM-Moment) strategies.

4.2 Datasets

DROP (Dua et al., 2019) is a RC dataset with
questions that require numeric reasoning. As an
additional baseline, we also compare to GenBERT
(Geva et al., 2020), which similar to our approach
injects numerical skills by automatically generating
synthetic data from a grammar.

IIRC (Ferguson et al., 2020) is a QA dataset,
where annotators were given a single Wikipedia
paragraph, and were asked to author questions that
depend on that paragraph, but also on other para-
graphs linked from the input paragraph. This re-
sulted in questions that require discrete temporal
(28%) or numeric (11%) reasoning. In addition,
30% of the questions are unanswerable.

We experiment with IIRC in two settings: (a)
Oracle, where the model is given the gold context,
reducing the problem to RC, where we can apply
our models. (b) Retrieval, where we use the “im-
proved pipeline”introduced by Ni et al. (2021) to re-
trieve the context, and replace the NumNet+ (Base)
reader (Ran et al., 2019) used by the authors (which
has specialized architecture) with T5/PReasM.

MMQA (Talmor et al., 2021) is a QA dataset,
where the input is a question and a context that
consists of a table, multiple text paragraphs, and
multiple images, and the model must reason over a
subset of the input modalities to answer the ques-
tion.* We chose to use MMQA as it has many
questions that involve a conjunction of facts, an op-
eration that is largely missing from other datasets.
Moreover, a large fractions of the questions can be
answered by reasoning over the text and table only.

Since T5/PReasM cannot handle images or very
long contexts, we construct a pipeline that au-
tomatically directs some MMQA questions to
T5/PReasM, and uses the original Implicit-Decomp
baseline from Talmor et al. (2021) elsewhere. Our
pipeline includes two classifiers, the first deter-
mines whether a question requires reasoning over

*We removed tables that appear in the MMQA develop-
ment and test sets from Dgsyn.

an image, and the second classifies whether a text
paragraph is necessary to answer a question. Again,
we experiment with an oracle and retrieval setting,
such that in the oracle setting our model is pre-
sented with the gold paragraphs. We provide the
full description of this pipeline in §A.4.

Evaluation metrics For all datasets, we use the
official scripts for computing F; and EM, which
compare the gold and predicted list of answers.

5 Experimental Results

We present results on the downstream RC datasets
(§5.1) and on the synthetic data (§5.2).

5.1 Performance on RC Datasets

Table 4 presents the results of our large models
over all datasets, also in comparison to current
state-of-the-art. We observe that PReasM substan-
tially improves performance compared to TS in
all conditions, improving on the test set by 7.6,
7.9, 4.1, and 1.2 F; points on DROP, HRCracles
IIRC, and MMQA respectively.” We obtain new
state-of-the-art results on MMQA and IIRC ., -je-
On IIRC, we improve performance when using the
same retriever (Pipeline) and replacing the Num-
Net+ reader with PReasM.® On DROP, specialized
architectures for handling numbers still substan-
tially outperform both TS5 and PReasM.

Table 5 shows the effect of different sampling
strategies. Error sampling and momentum sam-
pling generally outperform uniform sampling, but
there is no clear advantage to momentum sampling
compared to error sampling. We further analyze
the effect of sampling methods in §5.2.

We now look at performance on different an-
swer types across datasets, where PReasM leads
to dramatic improvements on some types, while
maintaining similar performance on other types.

DROP Table 6 breaks down performance based
on answer types: PReasM outperforms T5 across

5To verify that the gains of PReasM over T5 are not due to
knowledge memorized from Dgyn, we trained TS5 and PReasM
to generate the answer given the question only (without con-
text). We found that the performance of TS and PReasM is
nearly identical in this setup.

We report the numbers from Ni et al. (2021) (45.8/44.3
F1 on the development/test sets). To fairly compare with
the NumNet+ reader, we got the retrieved paragraphs for the
Pipeline model through personal communication. However,
results on these paragraphs was lower than reported in the
paper: 45.5/42.8 Fi. The reported results of our models
are with this slightly worse retriever, but still outperform the
performance of NumNet+ (Pipeline) from the original paper.
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Dataset Model Development Test

T5-Large 64.6/61.8 65.0/61.8

DROP PReasM-Large 72.3/69.4 72.6/69.5
" GenBERT™ ~— ~— = T T T23/688 T 72.47686 "

QDGAT-ALBERT 90.1/87.0

T5-Large 69.9/64.9 67.1/62.7
IIRCypycle _ PReasM-Large —  774/727  75.0/70.6 _

NumNet+ 69.2/63.9 70.3/65.6

T5-Large (Pipeline) 47.4/44.2 41.0/37.8

HRC PReasM-Large (Pipeline) 50.0/46.5 45.1/42.0
” NumNet+ (Pipeline) ~ ~ ~ 458417 ~ 44.3/413 ~

NumNet+ (Joint) 50.6/46.9 50.5/47.4

T5-Large 64.3/57.9 63.4/57.0

MMQA PReasM-Large 65.5/59.0 64.6/58.3
"~ Implicit-Decomp — ~— — T 5535/4887 T 55.9/493

Table 4: Development and test results. The two values
in each cell indicate F;/EM. Improvement over T5 is
statistically significant in all cases (p < 0.05) according
to the paired bootstrap test (Efron and Tibshirani, 1993).

Model DROP HRC yyacie IIRC MMQA

T5-Large 64.6+0.1 69.6+0.3 46.7£0.5 64.2+0.2
PReasM-Uni-Large 71.4+0.1 75.140.2 48.940.3 64.9+0.4
PReasM-Moment-Large 71.7£0.1 76.8+0.4 49.7+0.1 64.9+0.2
PReasM-Err-Large 72.240.1 76.5+0.5 49.340.4 65.3+0.1

Table 5: F; on the development set with different sam-
pling strategies. Results show the average and standard
deviation over 3 seeds for DROP and MMQA, and 5

seeds for IIRC and HRCoracle"

the board for all model sizes and answer types.
PReasM-Base outperforms GenBERT on 3 of 4
answer types. The high performance of GenBERT
on Number questions can be explained by: (a)
GenBERT uses digit tokenization which improves
arithmetic reasoning (Thawani et al., 2021), and (b)
training on multiple numerical reasoning templates.

IIRC Table 7 breaks down performance based
on answer types. PReasM outperforms T5 in the
oracle setup by roughly 8 points for both Base and
Large models, and by 2.6-4 points in the retrieval
setup. Improvements are mostly due to cases when
the answer is a numerical Value, where PReasM
outperforms TS by 39.1 and 40.3 F; points in Base
and Large models (oracle setup).

Comparing PReasM-Base to NumNet+, PReasM
outperforms NumNet+ on None, Span and Bi-
nary questions, but lags behind on Value questions,
where NumNet+ uses specialized architecture.

Overall, PReasM-Large improves state-of-the-
art in the oracle setup by 4.7 F; points. In the
retrieval setting, PReasM outperforms NumNet+
(Pipeline) by 4.2 and 0.8 F; points on the develop-
ment and test sets, respectively (see Table 4).

Model Span Spans Date Number Total
T5-Base 71.5 65.8 57.1 43.7 55.8
PReasM-Base 81.1 69.4 64.6 61.5 68.1
T5-Large 86.1 78.4 75.7 522 64.6
PReasM-Large 86.6 78.4 71.7 64.4 72.3
GenBERT 74.5 24.2 56.4 75.2 72.3

Table 6: Drop development F; across answer types.

Model Oracle None Span Binary Value Total
T5-Base v 914 72.0 76.6 8.7 66.3
PReasM-Base v 9255 749 71.9 47.8 74.5
T5-Large v 922 71.7 81.3 10.9 69.9
PReasM-Large v 922 784 80.5 51.2 774
T5-Base X 57.1 47.6 54.7 6.7 435
PReasM-Base X 539 49.1 64.8 243 47.5
T5-Large X 56.2 49.9 71.3 11.5 47.4
PReasM-Large X 559 50.8 69.5 28.6 50.0
NumNet+ (Pipeline) X 49.6 48.4 52.3 30.0 45.8

Table 7: IIRC Development F; across answer types.

MMQA Table 8 breaks down performance based
on reasoning skills (annotated per example in
MMQA). PReasM outperforms T5 in both the ora-
cle and retrieval setting, and for both model sizes.

The main cause for improvement are compari-
son questions, where PReasM outperforms TS by
19 and 11.7 F; points on Base and Large models.
PReasM outperforms TS on conjunction questions
in Base models, and yes/no questions in all settings.
Interestingly, T5 is equipped with decent composi-
tion skills, without any specialized pre-training.

Compared to Implicit-Decomp, although
Implicit-Decomp outperforms our models on
questions that require hopping between two table
columns and aggregations, PReasM outperforms
Implicit-Decomp in all other cases. When consider-
ing only questions that require reasoning over text
and tables, PReasM-Large improves F; by 16.1
points, from 62.3 to 78.4.

5.2 Performance on Dygyp

Fig. 4 shows statistics on the performance of
PReasM on different tasks in Dgyp during train-
ing. The average accuracy across all tasks at the
end of training is high — almost 98.0 F;. PReasM
reaches high performance on all tasks, where the
lowest-performing tasks are ‘arithmetic addition’
(91.1) and ‘date difference’ (94.7). On those tasks,
the advantage of error-driven sampling is evident,
and it outperforms uniform sampling by as much
as 4 points.

Zooming-in on the learning curve, momentum
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Model Oracle ColumnHop Text

Composition

Comparison Conjunction Yes/No Aggregate Total

T5-Base X 81.7 752 67.0 61.8 74.1 76.9 27.3 71.9
PReasM-Base X 80.8 75.7 66.3 80.8 80.8 83.1 36.4 74.3
T5-Large X 82.6 79.8 71.8 69.3 83.0 83.1 27.3 76.8
PReasM-Large X 84.0 79.7 71.9 81.0 82.3 93.8 36.4 8.4
T5-Base v 85.2 82.1 74.6 63.3 714 80.0 27.3 719
PReasM-Base v 86.9 80.0 75.4 84.1 82.6 89.2 36.4 79.9
T5-Large v 88.2 85.9 79.4 74.1 83.2 83.1 36.4 82.7
PReasM-Large v 87.8 85.6 79.8 83.6 82.3 90.8 455 83.8
Implicit-Decomp v 96.6 57.1 532 78.4 68.1 76.9 59.1 62.3

Table 8: Development F; on MMQA with reasoning type breakdown on the development set. The column ‘Total’
refers to all questions that do not require reasoning over the image modality.
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Figure 4: Minimum (left) and average (center) task accuracy on 1,000 held-out examples per task from Dyyn, and
the entropy of P, ¢ (right) as a function of the number of training steps for all sampling strategies (Large models).

and error sampling learn reasoning skills a lot faster
than uniform sampling. Looking at the entropy
of Py ¢ks sheds light on the difference between
error sampling and momentum sampling. Error
sampling puts most probability mass on the lowest-
performing task (arithmetic addition), and thus its
entropy over tasks is roughly constant from a cer-
tain point. Conversely, momentum sampling puts
a lot of probability mass on tasks that are improv-
ing quickly at the beginning, but as improvements
plateau, it converges towards uniform sampling.
Fig. 5 and Table 11 (in the Appendix) show the
results for T5 and PReasM on Dygyp. The results for
TS5 were obtained by training in a few-shot manner
on 32 examples for 200 steps, as suggested in Ram
et al. (2021). T5-Large outperforms T5-Base on
most tasks, suggesting that larger models are able
to learn reasoning skills faster. On tasks such as
date difference and arithmetic addition, the results
for T5-Large are low, at around 10 F;. Our PReasM
models significantly outperform T5 on all tasks.

6 Analysis

Reasoning skills in DROP  To check which rea-
soning skills PReasM has, we use a proposed split
of a subset of DROP to reasoning skills (Gupta
et al., 2020a). Table 9 presents the F; for our best
PReasM and T5 models, as well as the F; from

Question Type NMN TS- PReasM- T5- PReasM-
Base Base Large Large
Date-Compare 82.6 86.4 87.5 87.6 89.9
Date-Difference 75.4 19.6 78.9 454 80.4
Number-Compare 92.7 91.3 95.2 97.3 98.5
Extract-Number 86.1 91.8 94.9 92.1 95.1
Count 55.7 80.1 86.7 86.7 89.2
Extract-Argument 69.7 87.6 86.2 90.5 92.1

Table 9: F; on a previously-proposed split of a subset
of the development set of DROP to reasoning skills.

the neural module network (NMN) used in Gupta
et al. (2020a). NMN was trained only on a subset
of the original DROP dataset. When comparing to
T5, PReasM dramatically improves performance
on Date-Difference, and also leads to sizable gains
in Number-Compare, Extract-Number and Count.

Accuracy vs. training cost trade-off We
evaluate PReasM-Base models on DROP and
MRCj;5c]e @s we vary the number of pre-training
steps on Dgyp (Fig. 6). Most of the improvement
happens in the first 100K steps, and error-driven
sampling outperforms uniform sampling through-
out training. Error sampling outperforms momen-
tum sampling in the latter part of training. A possi-
ble reason is that the reasoning skills in the down-
stream tasks are correlated with the harder tasks
during pre-training (arithmetic addition and date
difference). This provides an advantage for error
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Figure 5: F; for each task in Dgyp, for T5 and PReasM on the held-out evaluation set.

DROP lIRC-oracle
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Figure 6: Development F; on DROP and IIRC ., ] as
a function of the number of training steps (Base models).
The light lines mark confidence intervals over 5 seeds.
The first point shows the performance of T5-Base.

sampling, since it will focus on these tasks even if
the improvement during pre-training is small.

7 Related Work

Template-based data generation has been previ-
ously used for data augmentation, for example to
inject numerical skills (Geva et al., 2020), and to
improve consistency (Asai and Hajishirzi, 2020),
and zero-shot accuracy (Zhao et al., 2019). In ad-
dition, templates were used for dataset construc-
tion (Talmor and Berant, 2018; Clark et al., 2020;
Thorne et al., 2021), and to analyse model gener-
alization (Rozen et al., 2019). In this work, we
automatically generate examples by instantiating
templates using structured data. Since our method
relies solely on tables as input, it is highly scal-
able, has rich lexical diversity, and can be easily
extended to new skills and domains.

Recently, Thorne et al. (2021) introduced the
WIKINLDB dataset, which includes queries that re-
quire reasoning over a set of textual facts. Queries
are instantiated with values from a knowledge
graph (KG), and facts are generated by a LM. Un-
like this work, WIKINLDB is focused on evaluat-
ing reasoning skills. We, on the other hand, show
that generated examples can be used to endow a pre-
trained LM with new reasoning skills. Moreover,
tables are much easier to collect at scale compared

to KGs, which tend to have limited coverage.

Data augmentation techniques have been exten-
sively explored in RC, QA, and dialogue (Feng
et al., 2021; Talmor and Berant, 2019; Khashabi
et al., 2020; Alberti et al., 2019; Puri et al., 2020;
Bartolo et al., 2021). Here, we focus on tables as a
valuable source for data generation.

Pre-training over tables has focused in the past on
reasoning over tables and knowledge-bases (Eisen-
schlos et al., 2020; Yin et al., 2020; Herzig et al.,
2020; Miiller et al., 2021; Yu et al., 2021; Neer-
aja et al., 2021b). Here, we use pre-training over
tables to improve reasoning over text. We leave
evaluation on tasks beyond RC to future work.

Error-driven sampling has been considered in the
past in the context of active learning (Sharma et al.,
2018), reinforcement learning (Graves et al., 2017;
Glover and Hokamp, 2019; Xu et al., 2019), trans-
fer learning (Zhang et al., 2020; Pilault et al., 2021),
and distributionally robust optimization (Oren et al.,
2019; Sagawa et al., 2020), where the goal is to per-
form well over a family of distributions. Similar to
Gottumukkala et al. (2020), we compute heteroge-
neous batches based on error rates, and show that
this improves efficiency and performance.

8 Conclusion

We propose semi-structured tables as a valuable re-
source for generating examples that can endow pre-
trained language models with reasoning skills. We
generate SM examples that correspond to 16 rea-
soning skills from Wikipedia tables and add a pre-
training step over this data. To improve data effi-
ciency we use error-driven sampling, which focuses
training on reasoning skills that the model currently
lacks. We evaluate our model, PReasM, on three
reasoning-focused RC datasets and show that it
leads to substantial improvements in all cases.
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A Supplemental Material

A.1 Data Generation

In this section, we provide details about how we
classify table columns.

Classifying table columns When annotating the
semantic types of columns, a column will be of type
NUMBER or DATE if all values in the column can
be parsed with standard tools for parsing numbers
and dates,” accordingly. Otherwise, we annotate
the column as type STRING.

Information in tables is usually aggregated such
that certain columns serve as the semantic index of
the table. For example, the table in Fig. 1 provides
information about each round in a tournament. In
order for our examples to be semantically mean-
ingful, we generate questions about columns that
serve as the semantic index of their table.

"https://pypi.org/project/
python-dateutil/
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Since the semantic index is not provided, we
use a linear decision rule to find such columns.
The features to our classifier include the column’s
distance from the leftmost column, the percentage
of unique cells in the column, the percentage of
cells whose values are links to Wikipedia articles,
the percentage of cells with short text (at most 2
characters), the percentage of cells with numbers,
and the column’s header. We allow more than one
semantic index per table, such that both the Round
and Opponent columns can serve as a semantic
index in the table in Fig. 1.

A.2 Advantages of Momentum Sampling

To highlight the theoretical benefits of momen-
tum sampling, we construct synthetic experiments
where there is high variance in the ceiling accuracy
between different tasks. As we show in §5.2, our
models are able to achieve near perfect accuracy
on our tasks when provided with enough training
examples. Hence, we create settings where the
ceiling accuracy for a task is lower than 1.0, either
by adding noise or by down-sampling the num-
ber of training examples. More specifically, we
train on two tasks: an arithmetic addition task that
trains slowly and has a high ceiling accuracy, and a
second task that trains quickly, and evaluate the per-
formance on a held-out set of arithmetic addition
examples.

First, we train on arithmetic addition and 2-hop
composition, which is faster to train. We conduct
two experiments, in which we add noise to the 2-
hop composition task by randomly sampling the
label from the vocabulary in order to force the ceil-
ing accuracy to be lower than 1.0. To check the
performance of sampling strategies in varying lev-
els of noise, we conduct two experiments where
we add noise to 30% or 100% of the examples (in
the latter case the label of 2-hop composition is
random). We expect that this will lead to slower
learning of arithmetic addition for error sampling,
since more probability mass will be allocated to
the noisy task (since its ceiling accuracy is low),
despite the fact that it is easier.

Next, we train on arithmetic addition and date
difference, both of which train slowly. To force
the ceiling accuracy of the date difference task to
be lower than 1.0, our training set contains only
1,000 examples. This emulates settings where the
data is not generated automatically and the cost of
generating examples is higher. Again, we expect

Tasks: AD, 2hC

Tasks: AD, 2hC (noise=30%)

arithmetic addition F1
arithmetic addition F1

2 E) ) 0 100 20 2 @ & E) 100 20
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Tasks: AD, 2hC (noise=100%) Tasks: AD, DD (# train examples=1,000)
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Figure 7: Motivation for momentum sampling.
AD=Arithmetic Addition, 2hC=2-hop Composition,
DD=Date Difference. When one task has high ceil-
ing accuracy and trains slowly, and the other task has
a lower ceiling accuracy and trains fast, momentum
sampling outperforms error sampling.

error sampling to over-sample from the date differ-
ence task even when this would not lead to gains
in performance, due to the small training set.

Fig. 7 illustrates the advantage of momentum
sampling in these settings. Without noise (top left),
both momentum sampling and error sampling learn
faster than uniform sampling. Momentum sam-
pling learns more slowly than error sampling, due
to the warm-start period in the first w evaluation
checkpoints. As we add noise to 30% of the exam-
ples (top right), error sampling focuses on the noisy
task once accuracy approaches a certain level (0.7
F1). When we add noise to all of the 2-hop com-
position examples (bottom left), uniform sampling
outperforms error sampling, while momentum sam-
pling still performs well. This phenomenon repeats
when we switch the 2-hop composition task with
the date difference task and down-sample the num-
ber of training examples (bottom right).

A.3 Implementation Details

The following section includes implementation
details for our experiments, including: hyper-
parameters for the momentum sampling algorithm,
the original pre-training task, and technical details.
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Experiment Size LR Batch Size GAS Epochs
PReasM Base le-4 64 1 50
PReasM Large le-4 18 4 36
DROP Base le-4 20 1 20
IIRC Base le-4 20 1 60
IRCacle Base le-4 20 1 60
MMOQA Base le-4 6 3 20
DROP Large Se-5 16 2 20
IIRC Large Se-5 16 2 60
NRCyacle Large Se-5 16 2 60
MMOQA Large le-4 2 16 10

Table 10: Hyper-parameters used in all experiments, LR
and GAS refer to learning-rate and gradient accumula-
tion steps. In our PReasM experiments, epochs refer to
the number of steps between evaluations, which is set
to 5,000 and 2, 500 for our base and large experiments,
which leads to 250, 000 and 90, 000 optimization steps,
respectively.

Momentum sampling For momentum sampling
we use a window size of w = 4, a smoothing factor
of k = 2, and sample at least ¢ = 0.002 examples
from every task in Dgyp.

Original pre-training task In order to avoid
catastrophic forgetting (Kirkpatrick et al., 2016),
we continue training with the span-corruption ob-
jective introduced in (Raffel et al., 2020), over se-
quences of length 256 from the English Wikipedia.

Technical details We train all our experiments
on one RTX8000 (48GB) or RTX3090 (24GB)
GPUs. Our PReasM-Base and PReasM-Large
models training time was 5-6 and 8-9 days on
one RTX8000 GPU, respectively. We use the
TS5 model
co/transformers/model_doc/t5.html
(Wolf et al., 2020). Table 10 contains the
hyper-parameters used in our experiments.

A4 MMOQA Pipeline

The first classifier in our pipeline is a T5-large
model fine-tuned on the MMQA training set to
determine if a question is likely to require an im-
age or not. When the classifier determines a ques-
tion requires an image, the example is directed to
Implicit-Decomp. The accuracy of this classifier on
the MMQA development set is 99.2%.

The second classifier in the pipeline is a T5-3B
model, fine-tuned on the MMQA training set to
determine given a question and one of the textual
paragraphs if that paragraph is required for answer-
ing the question. Then, for every question that does
not require an image, we classify each of the tex-
tual paragraphs and only use the ones classified as

from https://huggingface.

relevant. This process identifies all gold paragraphs
in 95.8% of the examples.

Last, we convert the table into text by lineariz-
ing the table as described in Talmor et al. (2021).
The model is presented with multiple paragraphs
and the linearized table, and can answer questions
that require any reasoning across them. Since the
context is long, we present the model with contexts
of size 1,536 word-pieces (without any change to
the original T5 model).
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TS- PReasM- PReasM- PReasM- TS- PReasM- PReasM- PReasM-

Base Uni- Moment- Err- Large Uni- Moment- Err-
Base Base Base Large Large Large

2-hop Composition 72.8 98.6 98.4 98.6 82.6 98.5 98.5 98.5
3-hop Composition 40.7 97.5 97.9 97.3 50.8 97.6 97.5 97.6
Conjunction 59.6 96.1 95.9 95.9 63.2 96.5 96 96.7
Quantifiers Only 65.8 99.8 99.9 99.5 69.6 99.7 100 99.7
Quantifiers Most 74.7 99.6 99.2 99 825 99.6 99.7 99.4
Quantifiers Every 67 100 100 100 86.6 100 100 100
Numerical Comparison 53.6 96.3 96.6 96.6 57.1 96.6 96.5 96.5
Temporal Comparison 71.1 99.3 99.2 99.2 72.3 99.3 99.2 99.4
Numerical Comparison Yes/No 57 99.9 99.9 99.7 62.5 99.9 99.9 99.9
Temporal Comparison Yes/No 522 100 99.9 100 59.4 99.7 100 99.9
Numerical Superlatives 37.3 96.3 96.2 95.9 67.8 96 96.6 96.4
Temporal Superlatives 33.6 96.6 97.5 97 59.6 97.5 97.8 97.5
Arithmetic Superlatives 424 98.2 98.4 97.9 56.6 98.4 98.9 97.6
Arithmetic Addition 7.1 90.4 90.9 91.8 11.8 89.7 91.3 91.1
Counting 46.5 96.8 97.7 98.6 56.1 95.1 97.6 97.7
Date Difference 11.1 92.1 94.3 95.0 11.2 90.7 93.7 94.7

Table 11: F; for every task in Dgyn for T5 and PReasM on the held-out evaluation set.
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