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Abstract

Machine Reading Comprehension (MRC) re-
veals the ability to understand a given text pas-
sage and answer questions based on it. Ex-
isting research works in MRC rely heavily
on large-size models and corpus to improve
the performance evaluated by metrics such as
Exact Match (EM ) and F1. However, such
a paradigm lacks sufficient interpretation to
model capability and can not efficiently train
a model with a large corpus. In this paper, we
argue that a deep understanding of model ca-
pabilities and data properties can help us feed
a model with appropriate training data based
on its learning status. Specifically, we design
an MRC capability assessment framework that
assesses model capabilities in an explainable
and multi-dimensional manner. Based on it,
we further uncover and disentangle the con-
nections between various data properties and
model performance. Finally, to verify the
effectiveness of the proposed MRC capabil-
ity assessment framework, we incorporate it
into a curriculum learning pipeline and de-
vise a Capability Boundary Breakthrough Cur-
riculum (CBBC) strategy, which performs a
model capability-based training to maximize
the data value and improve training efficiency.
Extensive experiments demonstrate that our
approach significantly improves performance,
achieving up to an 11.22% / 8.71% improve-
ment of EM / F1 on MRC tasks.

1 Introduction

A competency assessment is used to measure some-
one’s capabilities against the requirements of their
job (Cheryl Lasse, 2020). In other words, it mea-
sures how (behaviors) someone does the what (task
or skill). By showing what it looks like to be good
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in a job, a competency assessment can effectively
empower and engage people who want to under-
stand and improve their unique skill profile and
tell them what action to take to close any gaps so
they can own their development. A natural ques-
tion that arises here is: can we develop competency
assessments for machine learning models to help
better understand their capabilities and improve
their performance on a given task?

In this paper, we focus on competency assess-
ments for machine reading comprehension (MRC).
MRC is a core task in natural language processing
(NLP) that aims to teach machines to understand
human languages and answer questions (Zeng
et al., 2020; Chen et al., 2019). Recently, pre-
trained language models (LMs) (Mikolov et al.,
2013; Peters et al., 2018; Pennington et al., 2014;
Devlin et al., 2018) have demonstrated superior per-
formance on MRC tasks by pre-training on large
amounts of unlabeled corpus and fine-tuning on
MRC datasets. The performance is usually eval-
uated by metrics such as Exact Match (EM ) and
F1 score, lacking interpretability to the capabili-
ties of a model. That is to say, such metrics only
tell how good a model performs overall on a spe-
cific dataset, but uncovers little about what specific
skills a model has gained and the level of each skill.

We argue that the value of each data sample
varies during the training process of a model, de-
pending on the model’s current capabilities. A deep
understanding of the model’s intrinsic capabilities
can help us estimate each data sample’s learning
value and better manage the training process to im-
prove the training efficiency. Take student learning
as an example. There is no doubt that a college
student can do well in solving primary school level
exercises, but such exercises do not help improve
his/her ability. On the contrary, a primary school
student can not acquire knowledge efficiently from
college-level exercises due to the big gap between
his/her current knowledge or skills and the require-
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Capability ci Subclasses Metrics mj
i

Reading words Recognize vocabulary Intra-n (Gu et al., 2018) and Ent-n (Serban et al., 2017).
Recognize function words Frequency of function words.

Reading sentences Recognize grammaticality Height and width of a question’s constituency parsing tree.
Readability Readability metrics.

Understanding
words

Arithmetic operation Frequency of numerical expressions (CD tag).
Logical operation Frequency of logically qualified words such as any, all and every.

Understanding
sentences

Syntactic and semantic overlap BLEU-n (Papineni et al., 2002), BERTScore (Zhang* et al., 2020)
and MoverScore (Zhao et al., 2019) between the context and question.

Coreference resolution Frequency of personal and possessive pronouns, such as PRP and
PRP$ tags.

Linguistic
reasoning

Con/Dis-junction, negation Frequency of coordinating junctions, such as and and or.
Causality Frequency of causal clauses, such as because and the reason for.
Spatial/Temporal Frequency of spatial/temporal expressions, such as before, after.

and in front of.
Factual

reasoning
Multi-hop reasoning Number of supporting evidences.

Table 1: Example set of MRC model capabilities {ci} and corresponding metrics {mj
i}. See Section 2.1 for details.

ment to solve the exercises. We need to measure the
ability of a student and then choose the appropriate
exercises accordingly.

Existing works on interpreting MRC model ca-
pabilities concentrate on analyzing a model’s be-
havior with adversarial data (Jia and Liang, 2017),
or defining the prerequisite skills to solve a specific
dataset (Sugawara et al., 2017). However, these
works require costly human annotation efforts or
ignore the fact that model capabilities change dur-
ing the training progresses.

In this paper, we design a competency as-
sessment framework for MRC model capabili-
ties. Specifically, we define four major capabil-
ity dimensions for understanding text and solving
MRC tasks: reading words, reading sentences, un-
derstanding words and understanding sentences,
which are inspired by the computational models of
human text comprehension in psychology (Kintsch,
1988). Based on the proposed framework, we can
obtain a more appropriate assessment of model ca-
pabilities than the regular EM or F1 metrics.

Furthermore, we analyze a variety of data proper-
ties to estimate how good a model has to be to solve
a specific data sample and identify the relationships
between data properties and model performance.
This greatly helps us estimate the learning value of
each training sample. Based on this analysis, we
discover a very common situation: if a sample is
scored as a high value in one capability dimension,
the other dimensions have the same tendency as
well, and vice versa. To alleviate these inevitable
correlations, we utilize data whitening to quantify
each sample as four capability-specific scores in a
decorrelated fashion.

Finally, to reveal the potential usefulness of our
proposed competency assessment framework and

evaluate its efficiency, we employ it in a curriculum
learning pipeline and design a Capability Boundary
Breakthrough Curriculum (CBBC) strategy. This
strategy gradually enlarges the model capability
boundary by picking samples around the boundary
and breaking through it. Based on the analysis of
model capabilities and data properties, we feed the
model with training samples that are neither too
simple nor too hard for it to solve. Extensive ex-
periments on four benchmark datasets demonstrate
that our approach significantly improves the perfor-
mance of existing MRC models, achieving up to an
11.22% / 8.71% improvement ofEM / F1 on MRC
tasks. These results show the reasonability and ef-
fectiveness of our proposed assessment framework
and provide a widely applicable measurement for
dealing with the relationship between the model
capability and data quality.

2 Competency Assessment of MRC
Capabilities

In this section, we first formulate our competency
assessment framework of 4-dimensional MRC ca-
pabilities. Based on this framework, the data prop-
erties related to each capability dimension are de-
scribed as corresponding heuristic metrics. We
then uncover the relationship between various data
properties and model performance in a decorrelated
manner, quantifying each sample as 4-dimensional
capability-specific scores with little correlation.

2.1 Assessment Framework Formulation
Human text comprehension has been studied in psy-
chology for a long time. Constructionist, landscape
model, and computational architectures have been
proposed for such comprehension (McNamara and
Magliano, 2009). Among them, the construction-
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Context: James is a trouble making Turtle . One day,
James went to the grocery store and pulled all the
pudding off the shelves and ate two jars. Then he
walked to the fast food restaurant and ordedred 15
bags of fries.
Q1: Who is the trouble making turtle?
A1: James
Q2: Where did James go after he went to the grocery
store?
A2: A fast food restaurant
Requidred capabilities: syntactic matching, tempo-
ral relation, semantic overlap

Figure 1: Two example questions Q1 and Q2 with dif-
ferent difficulties require different capabilities.

integration (CI) model (Kintsch, 1988) is one of the
most basic and influential theories. The CI model
assumes three different representation levels (sur-
face structure, textbase, and situation model) and
a two-step process (construction and integration)
to understand text comprehensively. It first con-
structs the propositions (i.e. textbase) from the raw
textual input (i.e. surface structure), then integrates
the local connections into a globally coherent rep-
resentation (i.e. situation model). Based on this
situation model, a given text is understood com-
prehensively and can even be grounded to other
modalities. Inspired by the two-step process of
the CI model, we formulate our assessment frame-
work by 4-dimensional capabilities as summarized
in Table 1. We sketch out the meaning of each
MRC capability {ci}4i=1 and highlight some heuris-
tic metrics {mj

i}
n(i)
j=1 (where n(i) means the number

of metrics to measure a sample’s learning value to
capability ci) as follows.
Reading words. To formulate the surface struc-
ture of the CI model in our framework, we first
highlight the text representation at the verbal or
linguistic level. Theoretically, the units at the lin-
guistic level are the words that make up the text
and the hierarchical sentence constituents to which
these words belong. Empirically, Sugawara et al.
(2018) has shown that some questions are answered
correctly by just reading the first k tokens. Simi-
larly, the perturbation-based experiments of Nema
and Khapra (2018) have demonstrated the signifi-
cant influence of four types of words (i.e. content
words, named entities, question types, and func-
tion words) on an MRC question. Therefore, the
dimension of reading words is defined as recogniz-
ing the observed vocabulary and the special words’
appearance (i.e. function words). In this study, The
former is implemented as Intra-n (Gu et al., 2018)

and Ent-n (Serban et al., 2017) to measure vocab-
ulary distribution, while the latter is computed as
the frequency of corresponding words.
Reading sentences. The rules that are used to
form a sentence using the aforementioned linguis-
tic units are conventional phrase-structure gram-
mars. Consequently, before understanding the in-
formation contained in a text, an MRC system in-
evitably requires capturing the sentence structure
and handling the possible obscure words. We de-
fine the dimension of reading sentences as recog-
nizing grammaticality and readability, and they are
implemented by constituency parsing tree statistics
and readability metrics1, respectively.
Understanding words. The semantic represen-
tation of text is usually established by local and
global links according to the linguistic units at
word-level and sentence-level, respectively. To re-
flect the local semantic structure, we design the
dimension of understanding words to assess how
well an MRC model understands the relationships
between words. In this work, we exemplify two
relations (i.e. the arithmetic operations and logi-
cal items) that usually have salient patterns in the
text. The former directly focuses on statistical
and operational reasoning from the text, while the
latter deals with the reasoning of predicate logic,
e.g. conditionals and qualifiers. Inspired by the
human annotation process (Boratko et al., 2018;
Schlegel et al., 2020), where the annotators are
asked to label as many reasoning skills as possible
by paying more attention to corresponding indica-
tive words, the sub-capabilities of this dimension
is quantified as the frequency of those words.
Understanding sentences. Integrating the local
structures into a global representation requires not
only the text itself but also specific knowledge. To
simplify the forms of knowledge, we divide the di-
mension of understanding sentences into two sub-
classes, linguistic and factual reasoning. They re-
spectively mean understanding the relationship be-
tween sentences based on linguistics and the events
(i.e. five dimensions including time, space, causa-
tion, intentionality, and objects). Among metrics of
this dimension, BERTScore (Zhang* et al., 2020),
MoverScore (Zhao et al., 2019) and LS_score (Wu
et al., 2020) are used to measure semantic over-
lap between the context and question and multi-
hop reasoning is an extra particular subclass on the
HotpotQA (Yang et al., 2018; Cheng et al., 2021)

1https://py-readability-metrics.readthedocs.io/
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Value SQuADv1 SQuADv2 HotpotQA RACE
r p r p r p r p

F
1

v1
-0.131 0.000 -0.135 0.000 -0.146 0.007 -0.129 0.010
-0.120 0.018 -0.124 0.026 -0.135 0.009 -0.118 0.017

v2
-0.162 0.002 -0.152 0.027 -0.174 0.022 -0.173 0.003
-0.154 0.000 -0.144 0.025 -0.166 0.000 -0.165 0.005

v3
-0.134 0.000 -0.130 0.000 -0.141 0.029 -0.135 0.011
-0.163 0.016 -0.159 0.026 -0.170 0.006 -0.164 0.017

v4

-0.166 0.001 -0.155 0.018 -0.182 0.000 -0.181 0.019
-0.198 0.020 -0.187 0.026 -0.214 0.018 -0.213 0.006
-0.208 0.015 -0.197 0.020 -0.224 0.013 -0.223 0.002
-0.206 0.000 -0.195 0.002 -0.222 0.010 -0.221 0.001
-0.168 0.023 -0.157 0.022 -0.184 0.023 -0.183 0.006
-0.168 0.010 -0.157 0.004 -0.184 0.002 -0.183 0.000

F
lo
g
it
s

v1
-0.144 0.012 -0.151 0.000 -0.165 0.007 -0.142 0.010
-0.133 0.018 -0.140 0.026 -0.154 0.009 -0.131 0.017

v2
-0.188 0.002 -0.175 0.000 -0.205 0.022 -0.203 0.003
-0.180 0.000 -0.167 0.025 -0.197 0.028 -0.195 0.005

v3
-0.163 0.000 -0.157 0.000 -0.172 0.000 -0.163 0.011
-0.192 0.016 -0.186 0.026 -0.201 0.006 -0.192 0.017

v4

-0.206 0.001 -0.192 0.018 -0.228 0.023 -0.226 0.019
-0.238 0.020 -0.224 0.026 -0.260 0.018 -0.258 0.006
-0.248 0.015 -0.234 0.020 -0.270 0.013 -0.268 0.002
-0.246 0.023 -0.232 0.002 -0.268 0.010 -0.266 0.001
-0.208 0.023 -0.194 0.022 -0.230 0.023 -0.228 0.006
-0.208 0.010 -0.194 0.004 -0.230 0.002 -0.228 0.000

Table 2: The Pearson’s correlation (r) between
capability-specific value vi and model performance.
Stronger correlations are marked in bold. All the corre-
lations are with the p-value < 0.05.

dataset. For the other sub-capabilities of this dimen-
sion, we consider lessons of the ablation operations
performed by Sugawara et al. (2020) to observe
the performance change of the MRC model and
quantify them using the corresponding indicative
structures.

Consider the two examples questions shown in
Figure 1. To solve Q1, an MRC system just needs
to match the words between the question and con-
text. However, Q2 requires understanding tempo-
ral relations among the events (went to the grocery
store→ walked to the fast-food restaurant) and the
verb semantics (walk to means go to). Therefore,
Q2 is more challenging to the MRC system than
Q1. Please refer to Appendix B for more detailed
examples and descriptions of our employed met-
rics.

2.2 Relationship Between Data Properties
and Model Performance

Based on our assessment framework, the learn-
ing value of each sample is also decomposed into
four dimensions, namely capability-specific val-
ues. In this section, we first uncover the connection
between the capability-specific values and model
performance from four dimensions and then re-
calibrate the connection by removing the inter-
dimension correlations.
Capability-specific value. Given a sample x, we
represent it by four capability-specific value (de-
noted as {vi(x)}4i=1) to reflect its learning value for
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Figure 2: Bar diagram illustrating the relationship be-
tween the distribution of model performance and differ-
ent ranges of vi. Horizontal axes represent the differ-
ent score ranges of vi of samples, and the vertical axis
means the performance distribution by the frequency of
Flogits on five levels (plotted in five colors).

each capability dimension. According to our assess-
ment framework, vi(x) can be computed by merg-
ing the corresponding metrics {mj

i (x)}
n(i)
j=1. Specif-

ically, considering the sensitivity of capability-
specific value to different ranges of the metric score,
we normalize each raw metric mj

i (x) from its orig-
inal scale to range [0, 1] by the cumulative density
function (CDF) as Platanios et al. (2019), which

is denoted as m̃j
i (x). In this work, the normaliza-

tion computes the cumulative density from a higher
model performance to ensure that the normalized
metric and model performance are negatively cor-
related. The capability-specific score vi(x) is for-

mulated as: vi(x) = 1
n(i)

∑n(i)
j=1 m̃

j
i (x).

Analysis between capability-specific values and
model performance. For each sample x, we ob-
tain a 4-dimensional score {vi(x)}4i=1. It is nec-
essary to explore the relationship between sam-
ples’ vi(x) and model performance for knowing
about what specific capabilities a model has gained
and the level of each capability. In this work,
we employ BERT-base (Devlin et al., 2018) as
the MRC model and train it respectively on train-
ing split of datasets SQuADv1 (Rajpurkar et al.,
2016), SQuADv2 (Rajpurkar et al., 2018), Hot-
potQA (Yang et al., 2018) and RACE (Lai et al.,
2017). We then analyze the correlations between
four capability-specific scores and the model’s over-
all performance on the corresponding dev split. In
addition to F1, we also report the results of scaled
F1 (denoted as Flogits) by taking the model’s confi-
dence to an answer span or candidate into account.
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v1 v2 v3 v4

v 1
v 2

v 3
v 4

(a) Before apply-
ing inter-dimension
decorrelation.

v1 v2 v3 v4

v 1
v 2

v 3
v 4 0.8

0.4
0.0
0.4
0.8

(b) After whitening
capability-specific scores
using ZCA.

Figure 3: Pairwise correlations of capability-specific
scores before and after inter-dimension decorrelation.

Flogits is computed as:

Flogits =

{
F1 ∗ ln(slog) ∗ ln(elog) or
F1 ∗ ln(candlog)

(1)

where slog and elog mean the model output logits
for start and end token in answer extraction style
questions, and candlog represents the largest logits
among all candidate answers.

Table 2 quantitatively shows the Pearson’s corre-
lation coefficients (r) between capability-specific
values and model performance. From the results,
we have the following observations: First, each
capability-specific score has a relatively strong cor-
relation with the model performance under a statis-
tically significant guarantee, showing the reason-
ability of our capability-based assessment frame-
work. Second, Flogits shows better relevancy than
F1, which indicates that Flogits is a more appropri-
ate performance measurement in our framework.

We further explore the distribution of model per-
formance over different ranges of vi. The distribu-
tion diagrams of v1 and v4 are shown in Figure 2.
There are two inspiring characteristics in this dia-
gram: First, among all the bins of vi, the frequency
of prediction results within the intermediate range
(0.4 ∼ 0.6) are similar (≈ 50%). Second, as the vi
increases, the frequency of prediction results within
a low range (0.0 ∼ 0.2) also increases, while the
one of a high range (0.8 ∼ 1.0) decreases. These
observations reveal that the samples with high vi
can be used in indicative measurements to the cor-
responding model capability ci. Please refer to
Appendix C for more diagrams illustrating this re-
lationship.
Inter-dimension decorrelation. Let V = {vi|i =
1, · · · , 4}. Pairwise correlations of V are illustrated
in Figure 3a in a heatmap fashion. The results show
a common situation where if a sample is difficult
(scored as high capability-specific value) in a di-
mension, the other dimensions have the same ten-
dency and vice versa. To alleviate the inevitable
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𝑶𝒗𝒆𝒓𝒂𝒍𝒍

Figure 4: Illustration of our capability boundary break-
through curriculum learning (CBBC). Different capa-
bilities and their levels are represented in different col-
ors and the length of the color bar, respectively. A
longer color bar indicates a stronger capability.

correlations and construct a clear value represen-
tation for our following specific application sce-
nario (i.e. CBBC), we eliminate the 4-dimensional
capabilities by decorrelation. Specifically, we em-
ploy zero-phase component analysis (ZCA) whiten-
ing (Bell and Sejnowski, 1996) to diagonalize the
covariance matrix while keeping the local informa-
tion of the samples as much as possible.

As shown in Figure 3b, the 4-dimensional ca-
pabilities are not highly correlated after inter-
dimension decorrelation, which can be in favor
of constructing clear indicators for our following
data sampling in CBBC.

3 Improve Learning Efficiency with
Competency Assessment

In this section, our universal assessment frame-
work of the model capability is adapted into a spe-
cific MRC training scenario to evaluate its useful-
ness and efficiency. Specifically, we embed our
proposed assessment framework into a curriculum
learning pipeline and make a capability boundary
breakthrough curriculum learning (CBBC) strategy.
Based on the assessment framework, our CBBC
can guide a model to learn according to its capabil-
ity boundary by understanding what the model has
learned from data (i.e. capability-specific value vi)
and choosing appropriate samples with comparable
learning values from four dimensions. It is worth
noting that our competency assessment framework
is also applicable to other training pipelines that bal-
ance the relationship between the model capabili-
ties and data properties, such as active learning (Set-
tles, 2009) and self-training (Mihalcea, 2004) (Ap-
pendix E).
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Figure 4 shows an illustration of the pipeline
of our CBBC. Following the original formulation
of curriculum learning (Bengio et al., 2009), our
CBBC organizes all samples by a sequence of or-
dered training stages {s}Ss=1 and corresponding
training sets {Ds}Ss=1 with an easy-to-difficult fash-
ion. The classic curriculum learning works (So-
viany et al., 2021) usually consist of two essential
components: the performance measurer and the
curriculum scheduler. In general, the measurer is
used to determine the learning status of a model
by evaluating performance, while the scheduler is
responsible for deciding when and how to update
the curriculum by selecting the input samples.

In our work, the measurer and scheduler are im-
plemented by analyzing the multi-dimensional ca-
pability levels of the model interpretably and mea-
suring the capability-specific values of the data in
a decorrelated way, respectively. That is to say, the
only difference between our CBBC and the original
curriculum learning design is incorporating MRC
capability assessment into the curriculum learning.
Without significantly increasing the complexity of
the pipeline, our proposed assessment framework
can generally empower the MRC training pipeline
in a plug-and-play manner.
Performance measurer. Recall what we have dis-
cussed in Section 2.2 that the samples with high vi
can be used in indicative measurements to the cor-
responding model capability ci. In this work, we
use samples scored in the top-k of each capability-
specific value to assess the corresponding model
capability. More precisely, we first evaluate the
model on the dev set and obtain an average Flogits
for each capability on the corresponding top-k sub-
set. Then partial correlation (Baba et al., 2004)
(denoted as ρi) between dimension vi and Flogits
is computed to mask the contributions of the other
dimensions V\{vi}. After that, each model capabil-
ity on stage s is quantified as: csi =

ρi∑4
j=1 ρj

Flogits.

Empirically, we set k in top-k as 32.
Curriculum scheduler. Following the most
works (Xu et al., 2020; Platanios et al., 2019), we
schedule the curriculum at a linear pace (every
1,000 training iterations). During each curriculum
schedule, we enlarge the training set two times un-
til it includes all the samples. The capability upper
bound cs+1

i for s+ 1 stage by exponential growth:
cs+1
i = max{γcsi , 1.0}. After that, we use crite-

rion vi(x) < cs+1
i to construct candidate set Ds+1

i

for the i-th capability on the state s + 1, and use

absolute contribution of vi to Flogits as sampling
ratio (i.e. ρ1 : ρ2 : ρ3 : ρ4) to construct Ds+1.

4 Experiments

Datasets. We employ two question styles to evalu-
ate our CBBC: answer span extraction and multiple
choice. The former consists of SQuADv1 (Ra-
jpurkar et al., 2016), SQuADv2 (Rajpurkar et al.,
2018) and HotpotQA (Yang et al., 2018), while the
latter adopts RACE (Lai et al., 2017). For each
dataset, we train and evaluate the model on official
training and dev split, respectively.
Implementation details. The source code and
hyperparameters are included in the supplemen-
tary material. We use BERT-base (Devlin et al.,
2018) as our backbone model, which is initial-
ized by pre-trained parameters from cased BERT.
AdamW (Loshchilov and Hutter, 2017) optimizer
with weight decay 5e− 4 and epsilon 8 is used to
finetune the model with max sequence length 384,
document stride 128. The learning rate warms up
over the first 10% steps and then decays linearly
to 0 for all experiments with training batch size 16
and maximum iteration 40, 000.
Baseline models. In addition to the BERT-
base model, we also consider the following ten
baselines. The first two baselines are trained
through a pre-defined curriculum learning strat-
egy, which sorts the samples, then feeds them to
the model stage-by-stage. “B+CL+V (M2)” sorts
the samples by four capability-specific scores in
an easy-to-difficult order. “B+antiCL+V (M3)”
does like “M2”, but in a reverse difficult-to-easy
order. The following five baselines are trained
using our CBBC strategy to maximize the data
value in each dimension, respectively. “B+C+v1
(M4)”, “B+C+v2 (M5)”, “B+C+v3 (M6)” and
“B+C+v4 (M7)” use the corresponding v1, v2,
v3 and v4 respectively to perform the compe-
tency test and filter samples. “B+C+Vcorr (M8)”
is trained using four correlated scores through
CBBC. The following three baselines are devised
by embedding other instance scoring methods into
our CBBC pipeline. “B+C+DatasetMap (M9)”,
“B+C+Forgetting (M10)” and “B+C+Predictability
(M11)” substitute the capability-specific scores
with the confidence score of true answer
span (Swayamdipta et al., 2020), number of “for-
gotten” events (Toneva et al., 2018) and predictabil-
ity score (Le Bras et al., 2020), respectively. The
last two baselines (denoted as M12 and M13) are
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Name Method SQuADv1 SQuADv2 HotpotQA RACE
EM F1 EM F1 EM F1 Acc.

M1 B 81.25 88.41 77.32 80.31 63.53 76.42 63.02
M2 B+CL+V 84.21 90.12 81.16 84.28 66.44 78.71 66.68
M3 B+antiCL+V 79.80 87.31 75.43 79.19 63.01 75.03 61.80
M4 B+C+v1 82.47 89.29 78.56 81.62 64.18 76.88 63.92
M5 B+C+v2 82.67 89.30 78.59 81.98 64.12 77.01 64.11
M6 B+C+v3 83.66 89.68 80.47 83.23 65.36 78.75 65.82
M7 B+C+v4 85.03 89.90 81.60 84.21 66.30 79.13 65.73
M8 B+C+Vcorr 87.25 91.65 84.98 87.64 68.39 80.42 68.66
M9 B+C+DatasetMap 82.04 89.05 78.04 81.11 63.86 76.57 63.51
M10 B+C+Forgetting 83.51 89.77 79.62 82.99 64.75 77.62 64.91
M11 B+C+Predictability 84.65 90.67 81.47 84.22 66.36 79.75 66.82
M12 B+DRCA 85.05 90.59 82.19 85.30 67.07 79.32 67.48
M13 B+CBCL 86.15 90.89 83.17 86.85 67.72 79.65 67.79

Ours 89.71 93.18 87.64 90.51 69.82 82.57 71.01

Table 3: Quantitative results on four benchmark
datasets. B and C represent the BERT backbone and
our CBBC strategy, respectively. The best results are
highlighted in bold.

start-of-the-art curriculum learning pipelines con-
sisting of DRCA (Xu et al., 2020) and CBCL (Pla-
tanios et al., 2019). Finally, our full model is
trained using four decorrelated scores through
CBBC instead. The critical difference between the
full model and M8 is the decorrelation operation.

4.1 Experimental Results
Quantitative Results. We present a summary of
our quantitative results in Table 3. As shown in the
table, we have the following key observations.

On the one hand, our proposed competency
framework does benefit the MRC learning effi-
ciency in either a single or multiple dimensions.
For example, when using a pre-defined curriculum
strategy, M2 achieves EM and F1 far beyond M1,
highlighting that our quantification to data proper-
ties properly estimates the learning value contained
in the data. M3 degrades performance w.r.t. M1,
demonstrating that the learning strategy from easy
to difficult samples is more reasonable than the
reverse. When equipped with our CBBC, all mod-
els of M4, M5, M6 and M7 achieve improvements
w.r.t. M1 on four datasets, which indicates the sig-
nificant contribution of each capability dimension
on gradually increasing the model capability. In
particular, among the four different dimensions,
M7 has the best result, indicating that understand-
ing sentences is a relatively more important capa-
bility for MRC. M8 outperforms all the models
except for ours. This demonstrates that our CBBC
can maximize the learning value of the data sample
to increase an MRC model’s capability.

On the other hand, our framework wins other
scoring methods and curriculum learning pipelines
by a considerable margin. Although M9, M10,
M11, M12 and M13 achieve substantial improve-
ments on four datasets w.r.t. M1, their perfor-
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Figure 5: Illustration of performance (smoothed by
averaging Flogits every 32 steps) of various baseline
models on HotpotQA dev split as training progresses.
Ours (denoted as red plot) outperforms the other mod-
els from the start of training.
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Figure 6: Illustration of MRC model capabilities on dif-
ferent training stages.

mances are still worse than our full model. These
results verify that our proposed framework can as-
sess the model capability more correctly and make
better use of the learning value within data.

Finally, our full model achieves significantly
higher EM , F1 and Acc. compared to all other
baselines, demonstrating the necessity of the decor-
relation between capability-specific scores. Its su-
perior performance roots from constructing a decor-
related value representation of each dimension for
our CBBC learning strategy. Overall, compared to
M1, our full model achieves tremendous improve-
ment of EM / F1 up to 11.22% / 8.71% on the
average of three answer extraction style datasets.
Qualitative Results. Figure 5 shows the perfor-
mance of baselines on the HotpotQA dev set. There
are two observations worth noting here. First, the
performance of our full model lies consistently on
top of the other baseline models during the whole
training stage. This result shows that CBBC can
make the model more prepared for complex sam-
ples by enlarging its capability boundary step by
step. Second, the performance plot of the baseline
model with v4 sits on top of other baselines with v1,
v2, and v3 from the beginning of training to the end.
This result highlights the main contribution of v4
(understanding sentences) to the final performance.

Furthermore, the capability map after max-
min normalization of the model is shown in Fig-
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Value SQuADv1 SQuADv2 HotpotQA RACE

v1
0.602 0.536 0.630 0.589
0.625 0.559 0.653 0.612

v2
0.696 0.683 0.755 0.620
0.714 0.701 0.773 0.638

v3
0.730 0.573 0.550 0.797
0.674 0.517 0.494 0.741

v4

0.553 0.674 0.672 0.819
0.488 0.609 0.607 0.754
0.468 0.589 0.587 0.734
0.472 0.593 0.591 0.738
0.547 0.668 0.666 0.813
0.503 0.612 0.609 0.761

Table 4: Pearson’s correlation coefficients between hu-
man judgments and data properties for four capabilities
and their subclasses.

ure 6. First, among 4-dimensional capability, the
c3 (i.e. understanding words) has the largest initial
value. A possible explanation is that pre-trained
BERT has a fair amount of prior knowledge ob-
tained from unlabeled corpus, which concentrates
more on semantic understanding of words. Second,
the capability c1 increases at the fastest speed as
the training progresses. Interestingly, the model
M4 based on v1 does not seem improving accord-
ingly as the capability c1 increases. The possible
reason could be that the superficial structure is easy
to learn from samples but makes a limited contri-
bution to the final performance. Please refer to
Appendix D for the results of other MRC models.

4.2 Human Annotation

Annotation specification. we ask three annota-
tors to answer (100 × 4 = 400) questions ran-
domly sampled from four datasets, consisting of
SQuADv1, SQuADv2, HotpotQA, and RACE. Us-
ing only our proposed four capabilities, they first
read the context, question, and gold standard an-
swer (the correct candidate answer under multiple-
choice situation), and then choose the evidence
sentences in context. After that, they respectively
label the subclasses of four major capabilities as 1
(required) or 0 (not required). Please refer to Ap-
pendix A for more details about human annotation.
Annotation results. In the annotation of re-
quired capabilities, the inter-annotator agreement
is 75.33% for all 400 samples. We use the average
of three corresponding annotator labels as the final
human judgments for a specific sub-capability re-
quired by the question. Finally, a sample will be
annotated (2 + 2+ 2+ 6 = 12) human ratings. Ta-
ble 4 summarizes the correlations between human

judgments and capability-specific scores of sam-
ples. The relatively strong correlations on all four
dimensions indicate that our employed heuristic
metrics can reasonably approximate the learning
value contained in the samples.

5 Related Work

Analytic approaches to MRC capability. Some
works performed skill-based analyses for the MRC
model. In the scientific question domain, Clark
et al. (2018) constituted the ARC benchmark,
which requires far more powerful knowledge and
reasoning than previous benchmarks. In a gen-
eralizable definition, Sugawara et al. (2017) pro-
posed a set of 10 skills for MCTest (Richardson
et al., 2013). The others focused more on the anal-
ysis of the MRC dataset itself. For example, Sug-
awara et al. (2020) proposed a semi-automated,
ablation-based methodology to assess the capaci-
ties of datasets. Rajpurkar et al. (2016) analyzed
their proposed datasets using several types of rea-
soning, e.g. lexical and syntactic variation, and mul-
tiple sentence reasoning. Nevertheless, they require
too costly human efforts and ignore that the model
capability changes as training progresses.
Data selection for debiased representations.
Some works proposed different criteria to score
instances according to the model response to in-
put. Swayamdipta et al. (2020) built data maps
using training dynamics measures for scoring data
samples. Toneva et al. (2018) also employed the
number of “forgotten” events to measure a sample,
which was misclassified during a later epoch of
training, despite being classified correctly earlier.
The others (Le Bras et al., 2020) used adversar-
ial filtering algorithms to rank instances based on
their “predictability”. However, these approaches
require training a model once in advance on the
dataset to obtain the corresponding training dynam-
ics, which is computationally expensive, especially
when using a large model.

6 Conclusion

We design a competency assessment framework
for MRC capabilities, which describes model skills
in an explainable and multi-dimensional manner.
By leveraging the framework, we further uncover
and disentangle the connections between various
data properties and model performance on a spe-
cific task, as well as propose a capability boundary
breakthrough curriculum (CBBC) strategy to maxi-
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mize the data value and improve training efficiency.
The experiments performed on four benchmark
datasets verified that our approach can significantly
improve the performance of existing MRC models.
Our work shows a deep understanding of model
capabilities and data properties helps monitor the
model skills during training and improves learning
efficiency. Our framework and learning strategy
are also generally applicable to other NLP tasks.
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A Annotation Details

We ask three annotators to answer (100× 4 = 400)
questions randomly sampled from four datasets,
consisting of SQuADv1, SQuADv2, HotpotQA,
and RACE. They are graduate students majoring
in Computer Science or Electronic Engineering
and competent in English. They voluntarily offer
to help without being compensated in any form.
Before annotation, they are informed of the de-
tailed annotation instruction with the following
three steps.

• Step 1. Make a hypothesis using a question
statement and gold standard answer or the
correct candidate answer under the multiple-
choice situation.

Example 1:

Q: Why did Tom look angry? A: His sister ate
his cake.

→ Hypothesis: Tom looked angry because his
sister ate his cake.

Example 2:

Q: When did French Revolution occur? A: In
1789

→ Hypothesis: French Revolution occurred
in 1789.

• Step 2. Select sentences (from the context)
required to provide the hypothesis.

Example 1:

Context: (C1) Tom is a student. (C2) Tom
looks annoyed because his sister ate his cake.
(C3) His sister’s name is Sylvia.

Hypothesis: Tom looks angry because his sis-
ter ate his cake.

→ Select: C2

• Step 3. Select capabilities required for under-
standing an entailment from selected context
sentences to hypothesis and label the corre-
sponding capability as 1 (required).

Example 1:

C2: Tom looks annoyed because his sister ate
his cake.

Hypothesis: Tom looks angry because his sis-
ter ate his cake.

→ Capability: causal relation (“because”),
semantic overlap (lexical knowledge of “an-
noyed = angry”)

Then, we describe our annotation schema in greater
detail. We present the respective phenomenon, give
a short description, and present an example illus-
trating the corresponding feature.

• Reading words
Recognize vocabulary. We annotate this as
“1” if repetition of some word rarely occurs in
a sentence (less than two times in every ten
words).

Question with label 0: The creek of which
Paradise Creek is a tributary of what river?

Context: Paradise Creek is a 9.6 mi tributary
of Brodhead Creek in the Poconos of eastern
Pennsylvania in the United States. Brodhead
Creek is a 21.9 mi tributary of the Delaware
River in the Poconos of eastern Pennsylvania
in the United States.

Question with label 1: Of these two
publications–Báiki and Sick–what type of
publication is the one that was published most
frequently?

Context: Báiki: The International Sámi Jour-
nal ("Báiki" means a place in Sami) is a bian-
nual English-language publication that cov-
ers Sami culture, history, and current affairs.
The coverage also includes the community af-
fairs of the Sami in North America, estimated
at some 30,000 people. Sick was a satirical-
humor magazine published from 1960 to 1980,
lasting 134 issues.

Recognize function words. We annotate this
as “1” if a sentence consists of lots of the struc-
tural relationships between words signaled by
function words (more than five times in every
ten words).

Question: What drug is among the list of ille-
gal drugs in the Philippines and can be taken
by mouth or by injection?

Context: [. . .] Ephedrine and methylenedioxy
methamphetamine are also among the list of
illegal drugs that are of great concern to the
authorities. Ephedrine is a medication and
stimulant. [. . .]

• Reading sentences
Recognize grammaticality. We annotate this
as “1” the sentence pattern and grammar in-
volved are relatively complex, such as multi-
ple nested subordinate clause structures.
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Question: Sudha Kheterpal, who is a musician
best known as the percussionist in Faithless,
has played with what singer who is recognized
as the highest-selling Australian artist of all
time by the Australian Recording Industry As-
sociation?

Readability. We annotate this as“1” if there
are a lot of obscure words in the question
or context (more than five times in every ten
words).

Question: The creature HNoMS Draug is
named after comes from what kind of mythol-
ogy?

Context: Two ships of the Royal Norwegian
Navy have borne the name HNoMS “Draug”,
after the sea revenant Draugr: The draugr
or draug (Old Norse: “draugr”, plural drau-
gar ; modern Icelandic: “draugur”, Faroese:
“dreygur” and Danish, Swedish, and Norwe-
gian: “draug” ), also called aptrganga or ap-
trgangr , literally “again-walker” (Icelandic:
“afturganga” ) is an undead creature from
Norse mythology.

• Understanding words

Arithmetic operation. We annotate this as
“1” if an arithmetic operation needs to be per-
formed to answer the question, such as addi-
tion, subtraction, ordering, and counting.

Question: How many points were the Giants
behind the Dolphins at the start of the 4th
quarter?

Context: New York was down 17-10 behind
two rushing touchdowns.

Logical operation. We annotate this as “1”
if it is required to understand the concept of
quantification (existential and universal) in
order to determine the correct answer.

Question: How many presents did Susan re-
ceive?

Context: On the day of the party, all five
friends showed up. Each friend Quantifica-
tion had a present for Susan.

• Understanding sentences

Syntactic and semantic overlap. We anno-
tate this as “1” if some part of the context and
the question overlap semantically.

Question: Is it freezing today?

Context: The weather is cold today.

Coreference resolution. We annotate this as
“1” if inter-sentence coreference and anaphora
need to be resolved in order to retrieve the
expected answer.

Question: What is the name of the psycholo-
gist who is known as the originator of social
learning theory?

Context: Albert Bandura OC (born December
4, 1925) is a psychologist who is the David
Starr Jordan Professor Emeritus of Social Sci-
ence in Psychology at Stanford University.
[. . .] He is known as the originator of social
learning theory and the theoretical construct
of self-efficacy and is also responsible for the
influential 1961 Bobo doll experiment.

Con/Dis-junction, negation. We annotate
this as “1” if logical conjunction, disjunction,
or negation needs to be resolved in order to
conclude the answer.

Question: Is dad in the living room?

Context: Dad is either in the kitchen or the
living room.

Question: How many percent are not Marriage
couples living together?

Context: [. . .] 46.28% were Marriage living
together. [. . .]

Causality. We annotate this as “1” if causal
(i.e. cause-effect) reasoning between events,
entities, or concepts is required to answer a
question correctly.

Question: Why did Sam stop Mom from mak-
ing four sandwiches?

Context: [. . .] There are three of us, so we
need three sandwiches. [. . .]

Spatial/Temporal relationship. We anno-
tate this as “1” understanding about directions,
environment, spatiality, and succession is re-
quired in order to derive an answer.

Question: What is the 2010 population of the
city 2.1 miles southwest of Marietta Air Force
Station?

Context: Marietta Air Force Station is located
2.1 mi northeast of Smyrna, Georgia.

Multi-hop reasoning. We annotate this as “1”
if information to answer the question needs
to be gathered from multiple supporting facts,
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“Multi-hop” by commonly mentioned entities,
concepts, or events. This phenomenon is also
known as “Bridging” in literature.

Question: What show does the host of The
2011 Teen Choice Awards ceremony currently
star on?

Context: [. . .] The 2011 Teen Choice Awards
ceremony, hosted by Kaley Cuoco, aired live
on August 7, 2011, at 8/7c on Fox. [. . .] Kaley
Christine Cuoco is an American actress. Since
2007, she has starred as Penny on the CBS
sitcom “The Big Bang Theory”, for which she
has received Satellite, Critics’ Choice, and
People’s Choice Awards. [. . .]

B Examples of Our Employed Metrics

We first present a brief overview of employed met-
rics, especially those that are adapted from other
studies. In the following descriptions, the question
Q and corresponding context C are denoted as the
sequence of n-grams Qn = {qni } and Cn = {cnj },
respectively.
Intra-n and Ent-n. Intra-n (Gu et al., 2018) and
Ent-n (Serban et al., 2017) are originally designed
to evaluate the diversity of neural dialogue re-
sponses. The former calculates the ratio of dis-
tinct unigrams (Intra-1) and bigrams (Intra-2) in
generated responses, while the latter measures the
information entropy of n-grams. Specifically, in
our work, they are formulated as:

Intra-n =
Unique(Qn)

|Qn|
(2)

Ent-n =
∑
i=1

−Count(q
n
i )

|Qn|
log

Count(qni )

|Qn|
(3)

Tree statistics. Empirically, most of the compli-
cated sentences have a relatively high and wide con-
stituency parsing tree. In this paper, we calculate
the height and width of the constituency parsing
tree by Standford CoreNLP API (Manning et al.,
2014).
Readability metrics. Readability is the ease with
which a reader can understand a written text. Read-
ability metrics produce an approximate represen-
tation of the US grade level needed to compre-
hend the text and are widely used in the field
of education to assess the English proficiency
of non-native English speakers. We employ the
py-readability package (https://pypi.org/

0.0
6
0.1

9
0.3

1
0.4

4
0.5

6
0.6

9
0.8

1
0.9

4
v2

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

(F
lo

gi
ts

)

0.18
0.25 0.24 0.25 0.28 0.30 0.31 0.35

0.11

0.12 0.16 0.17 0.14 0.15 0.17
0.15

0.12

0.15
0.18 0.18 0.15

0.17 0.17 0.15

0.21

0.17
0.15 0.13 0.15

0.12 0.12 0.12

0.39
0.31 0.26 0.27 0.28 0.25 0.23 0.23

0.0
6
0.1

9
0.3

1
0.4

4
0.5

6
0.6

9
0.8

1
0.9

4
v3

Fr
eq

(F
lo

gi
ts

)

0.25 0.28 0.26 0.28 0.29 0.30 0.33 0.37

0.17 0.14 0.16 0.15 0.16 0.16 0.15

0.200.06
0.16 0.16 0.16 0.16 0.18 0.19

0.17

0.14

0.13 0.12
0.14 0.14

0.12
0.12

0.090.37
0.29 0.31 0.27 0.26 0.24 0.21 0.17

0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0

Figure 7: Bar diagram illustrating the relationship be-
tween the distribution of model performance and differ-
ent ranges of vi. Horizontal axes represent the differ-
ent score ranges of vi of samples, and the vertical axis
means the performance distribution by the frequency of
Flogits on five levels (plotted in five colors).

project/py-readability-metrics/) to
calculate the readability of a question based on two
metrics, including Flesch Kincaid Grade Level and
Automated Readability Index (ARI).
BERTScore and MoverScore. To measure the
semantic overlap between the question and corre-
sponding context, we slightly modify the contextu-
alized embedding-based similarity metrics of text
generation task, comprising BERTScore (Zhang*
et al., 2020) and MoverScore (Zhao et al., 2019).
Unlike the original implementation, the question
and the context rather than the gold standard refer-
ence are fed into the metrics computation.

We exemplify two samples from HotpotQA dev
set to show the difference of specific metrics in
Table 5 and Table 6.

C Additional Diagrams of Samples’
Capability-specific Value

The distribution diagrams of v2 and v3 are shown in
Figure 7. They present a conclusion consistent with
v1 and v4 discussed in Section 2.2. That is, among
all the bins of vi, the frequency of prediction results
within the intermediate range (0.4 ∼ 0.6) are simi-
lar (≈ 50%). Furthermore, as the vi increases, the
frequency of prediction results within a low range
(0.0 ∼ 0.2) also increases, while the one of a high
range (0.8 ∼ 1.0) decreases.

In addition to the distribution of model perfor-
mance over different ranges of vi, the mean value
and standard deviation of model performance (in
Flogits) over them and their subclasses are illus-
trated in Figure 8. As shown in the figure, it quali-
tatively shows the relatively strong correlation be-
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ID Q1(5a7322a25542991f9a20c634) Q2(5a72bd0b5542992359bc318f)
C

on
te

xt
The Metropolitan Life Insurance Company
Tower, colloquially known as the Met Life
Tower, is a landmark skyscraper located on
Madison Avenue near the intersection with

East 23rd Street, across from Madison Square
Park in Manhattan, New York City. Designed
by the architectural firm of Napoleon LeBrun
& Sons and built by the Hedden Construction

Company, the tower is modeled after the
Campanile in Venice, Italy. The hotel located
in the clock tower portion of the building has

the address 5 Madison Avenue, while the
office building covering the rest of the block,

occupied primarily by Credit Suisse, is
referred to as 1 Madison Avenue. 15 Hudson
Yards is a residential building currently under

construction on Manhattan’s West Side.
Located in Chelsea near Hell’s Kitchen Penn

Station area, the building is a part of the
Hudson Yards project, a plan to redevelop the
Metropolitan Transportation Authority’s West
Side Yards. The tower started construction on

December 4, 2014.

Andrea Louise Martin (born January 15,
1947) is an American actress, singer, author,
and comedian, best known for her work in the
television series "SCTV". She has appeared in
films such as "Black Christmas" (1974), "Wag

the Dog" (1997), "Hedwig and the Angry
Inch" (2001), "My Big Fat Greek Wedding"
(2002), and "My Big Fat Greek Wedding 2"
(2016), and lent her voice to the animated

films "Anastasia" (1997), "The Rugrats
Movie" (1998) and " (2001).Mark S.

Hoplamazian is an American businessman
who is the President and CEO of Hyatt Hotels

Corporation. He received his A.B. in
economics from Harvard College and his

M.B.A. from the University of Chicago Booth
School of Business.

Q
ue

st
io

n Was the Metropolitan Life Insurance
Company Tower [Met Life Tower] or the 15
Hudson Yards building designed by the firm

of Napoleon LeBrun & Sons?

Who achieved more academically, Andrea
Martin or Mark Hoplamazian?

Table 5: Two samples from HotpotQA dev set. The answer span in the context is marked in green.

Value Metrics Q1(5a7322a25542991f9a20c634) Q2(5a72bd0b5542992359bc318f)
raw normalized raw normalized

v1

intra1 0.521 0.252 0.608 0.681
entropy1 6.243 0.530 6.363 0.636

ntopwrods 0.268 0.509 0.274 0.575

v2

height 9.000 0.904 7.000 0.809
flesch kincaid 16.748 0.913 10.574 0.196

ari 17.659 0.895 9.835 0.119

v3
nnums 0.039 0.722 0.051 0.861

nlogicals 0.002 0.506 0.009 0.735

v4

BERTScore 0.862 0.043 0.698 0.959
MoverScore 0.154 0.022 -0.210 0.900

ncoreferences 0.005 0.079 0.071 0.991
njunctions 0.012 0.069 0.071 0.957
ncausals 0.001 0.275 0.009 0.619

nspatialtemporals 0.078 0.779 0.035 0.512
nfacts 2.000 0.674 3.000 0.913

Table 6: Two samples with our raw and normalized metrics. The higher normalized scores are marked in bold.
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Method SQuADv1 SQuADv2 HotpotQA RACE
EM F1 EM F1 EM F1 Acc.

R-Net 76.59 85.83 71.87 75.10 60.78 73.17 59.49
R-Net+CBBC+v1 78.11 86.36 73.37 77.15 61.75 73.80 60.20
R-Net+CBBC+v2 78.23 86.91 73.40 76.52 61.03 73.80 59.92
R-Net+CBBC+v3 79.71 87.63 74.98 78.40 61.92 74.86 61.32
R-Net+CBBC+v4 80.27 87.77 76.35 79.15 62.85 76.29 62.63

R-Net+CBBC+Vcorr 82.49 88.47 78.50 81.15 64.41 77.28 63.33
R-Net+CBBC+V 83.87 89.75 80.85 83.56 65.87 77.96 65.47

Table 7: Quantitative results of R-Net backbone on four benchmark datasets. The best results are highlighted in
bold.

Method SQuADv1 SQuADv2 HotpotQA RACE
EM F1 EM F1 EM F1 Acc.

QANet 77.85 86.54 73.42 76.62 61.72 74.09 60.69
QANet+CBBC+v1 79.37 87.07 74.91 78.68 62.69 74.72 61.40
QANet+CBBC+v2 79.50 87.62 74.94 78.05 61.97 74.72 61.12
QANet+CBBC+v3 80.97 88.34 76.52 79.93 62.86 75.77 62.52
QANet+CBBC+v4 81.54 88.48 77.89 80.67 63.79 77.21 63.83

QANet+CBBC+Vcorr 83.75 89.18 80.04 82.68 65.35 78.20 64.53
QANet+CBBC+V 85.13 90.46 82.40 85.08 66.81 78.88 66.66

Table 8: Quantitative results of QANet backbone on four benchmark datasets. The best results are highlighted in
bold.

tween the model performance and each capability-
specific score.

D Additional Experiments Using Other
Models

In addition to the Transformer-based MRC model,
we also perform ablation analysis using the follow-
ing systems to further verify the effectiveness of our
proposed assessment framework, whose training
setting is consistent with that of our BERT-based
MRC model.

• R-Net (Wang et al., 2017) matches the ques-
tion and passage with gated recurrent neu-
ral networks (RNNs) to obtain the question-
aware passage representation and employs the
pointer networks to locate the positions of an-
swer span from the passages.

• QANet (Yu et al., 2018) encodes the local
and global interactions with the convolution
and self-attention, respectively. It achieves
higher training efficiency while obtaining the
equivalent accuracy to the recurrent models.

The quantitative results of R-Net and QANet are
summarized in Table 7 and Table 8, respectively.
Our assessment framework also provides a signif-
icant performance improvement to these weaker

backbones than BERT, such as RNN-based R-Net
and convolution-based QANet.

E Additional Experiments Using Other
Pipelines

To further verify the effectiveness of our proposed
MRC competency assessment framework and re-
veal more available application scenarios for it, we
embed it into the active learning pipeline besides
curriculum learning.
CBBC in active learning. Given the training state
of a model, active learning aims to select the most
valuable samples from the unlabeled dataset and
hand it over to the oracle (e.g. human annotator)
for labeling so as to reduce the cost of labeling
as much as possible while still maintaining per-
formance. Take the most common pool-based
active learning (Lewis and Gale, 1994; Gal and
Ghahramani, 2016) as an example, which queries
the best sample based on the confidence evalua-
tion and ranking of the entire dataset. This query
strategy is usually implemented by the uncertainty-
based sampling (Ebrahimi et al., 2019; Gal et al.,
2017; Houlsby et al., 2011; Kirsch et al., 2019) and
distribution-based sampling (Pinsler et al., 2019;
Wei et al., 2015). Compared to the original pool-
based active learning (shown in Figure 9a), CBBC-
guided active learning (shown in Figure 9b) pro-
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Figure 8: Bar diagram illustrating the relationship be-
tween the mean value and standard deviation of model
performance and different ranges of vi and its sub-
classes. The height of each bar and its error line rep-
resent the mean value and standard deviation of model
performance, respectively.

vides a novel and interpretable query strategy by
assessing the model in a 4-dimensional capability.
In addition to the pool-based baseline, we employ
a more recent active learning pipeline ICAL (Gao
et al., 2020) as a comparison, which selects sam-
ples with the high inconsistency of predictions over
a set of data augmentations.

We employ BERT as our MRC backbone. In
each active learning cycle, we continue to train
the MRC model by adding 5% labeled data points
by simulating the oracle annotating process. The
initial training set is randomly sampled from the
HotpotQA train split and follows Gao et al. (2020)
for the setting of initial training set size and active
learning budget.

Figure 10 illustrates the results of different meth-
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Figure 9: Architecture comparison between the typi-
cal pool-based active learning pipeline and our CBBC-
guided pipeline.
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Figure 10: Performance comparison under active learn-
ing pipeline on the HotpotQA dev split. The solid lines
indicate the results averaged over five trials, and shad-
ows represent the standard deviation. The dotted line at
the top represents the performance of the BERT-based
MRC model with the whole training set labeled.

ods at each active learning cycle qualitatively. Our
CBBC-guided active learning (denoted as “CBBC-
AL”) achieve a higher MRC performance than the
pool-based active learning (denoted as “Pool-AL”)
and ICAL from the start of training, demonstrat-
ing that the assessment of MRC model capability
derived by our CBBC is reasonable and can also
make a substantial difference to active learning be-
side curriculum learning. When using only 35%
labeled samples, our CBBC-guided active learning
outperforms the baseline model normally trained
on the entire dataset by a considerable margin.
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