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Abstract

We present a complete pipeline to extract
characters in a novel and link them to their
direct-speech utterances. Our model is divided
into three independent components: extracting
direct-speech, compiling a list of characters,
and attributing those characters to their utter-
ances. Although we find that existing systems
can perform the first two tasks accurately, at-
tributing characters to direct speech is a chal-
lenging problem due to the narrator’s lack of
explicit character mentions, and the frequent
use of nominal and pronominal coreference
when such explicit mentions are made. We
adapt the progress made on Dialogue State
Tracking to tackle a new problem: attributing
speakers to dialogues. This is the first appli-
cation of deep learning to speaker attribution,
and it shows that is possible to overcome the
need for the hand-crafted features and rules
used in the past. Our full pipeline improves
the performance of state-of-the-art models by
a relative 50% in F1-score.

1 Introduction

Natural Language Processing has enabled a quanti-
tative improvement in the humanities, by allowing
for large-scale statistical measurements to be taken
over hundreds of thousands of books compared to
the order of tenths a human could analyse in a much
longer time span. Some examples of large-scale
literary analyses include studies on characters and
their descriptions within the novel, mostly focused
on gender differences (Underwood et al., 2018;
Kraicer and Piper, 2019), and studies on charac-
ter’s relations by extracting social networks from
novels (Labatut and Bost, 2019; Jayannavar et al.,
2015).

Most of these studies demand special attention
to dialogues, being a major part of character ex-
pression and interaction with other characters. Di-
alogues play an instrumental role in plot develop-
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ment, frequently encompassing focal plot moments,
especially in fiction – which is also the focus for
this study. Here we aim to identify direct-speech
utterances that form part of dialogues and associate
them with the speaking characters. Such informa-
tion is not only useful to enable large-scale socio-
temporal studies but also crucial to many down-
stream challenging tasks like narrative understand-
ing (Iyyer et al., 2016) and summarising (Ladhak
et al., 2020). Further, the high-quality dialogue-
character association is pertinent for generating
engaging text-to-speech for novels with distinct
voice profiles for characters.

In the past, models that link direct speech to char-
acters have been dominated by predefined rules
(Muzny et al., 2017) or hand-crafted features (He
et al., 2013). When evaluating these models the
authors also presumed that a character list, together
with the character’s aliases, has been precompiled
and that direct-speech text has been extracted. Al-
though extensions to these models that extract
speaking characters in a fully automated manner
exist, it is unclear what impact does the automation
of the aforementioned steps has on the final perfor-
mance of the model. Moreover, the models have
only been tested against a small dataset of three
books from the same time period.

These are the two questions that we aim to an-
swer in this paper: i) how can we build flexible
models that can generalise and improve with in-
creasing dataset sizes?, and ii) what is the impact
of errors propagating from each component of the
pipeline, and thus where should we focus future
efforts? To answer these questions, we focus on
building deep learning models with the necessary
inductive biases and flexibility to learn nuanced
features when given a large enough dataset, as op-
posed to hand-crafted rules that need revisiting to
generalise to different time periods, writing styles,
genres, or even languages. Moreover, we present a
separate evaluation of pipeline’s each component.
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2 Related Work

Attributing speakers to direct speech is a common
problem for two related domains: news and liter-
ature. However, previous work (O’Keefe et al.,
2012) has shown that models do not generalise to
both domains. Their best model obtained an accu-
racy of 92.4% and 84.1% on their two newswire
datasets, whilst they only found a 53.3% accu-
racy when evaluating the same model on a liter-
ature dataset. We therefore focus on summarising
progress in quote attribution for literary fiction.

The early models targeting literary texts (Glass
and Bangay, 2007) were based on the identifica-
tion of speech verbs and their actors. However, the
proportion of dialogues accompanied by a speech-
verb and an explicit mention to a character can be
as low as 20% of the total quotes for some books.
For this reason, consequent work (O’Keefe et al.,
2012; Elson and McKeown, 2010) shifted their fo-
cus to attributing speakers to dialogues where the
character is not explicitly mentioned, incorporating
rules to exploit the sequential nature of conversa-
tions. These models could not improve the results
of a simple Nearest Mention (NM) baseline that
obtained a 53.3% accuracy on their test set.

Finally, current state-of-the-art models (Muzny
et al., 2017; He et al., 2013) demonstrated how the
simple nearest mention baseline could be beaten
through a combination of rules and learning. Both
models present analysis on a limited setup: i)
they report performance on a test set comprised
of two books – Jane Austen’s Emma, and Anton
Chekhov’s The Steppe, – and have therefore not
been bench-marked on a wider range of styles or
time periods, and ii) they assume the ideal circum-
stance of a pre-compiled list of characters, with
character aliases and genders provided. We re-
lax the second assumption when we evaluate our
model, to estimate the end-to-end performance on
a more diverse dataset of fifteen books.

The task of speaker attribution is also closely
related to other dialogue sequence problems. One
such umbrella technique to solve these problems is
Dialogue State Tracking or simply DST, where a
system is tasked with estimating some conversation
state variables usually the user’s goals and intents.
We are first to apply DST for the purpose of speaker
attribution. Our proposed DST-based formulation
requires modification to the utterance encoder with
focus on non-dialogue context, and state-variable
that can generalise to states not seen in the training

set. We adapt a BERT-based DST model (Lai
et al., 2020) to track the speaker for every single
utterance instead of tracking the user’s goals and
intents.

Our work follows a similar line of thought to
Ren et al. (2018); Lai et al. (2020), where the model
is given a list of candidate intents (speakers in our
case) embedded as inputs to the problem so that
the model can generalise to unseen goals (speak-
ers) during test time. The task of our model is to
generate a score for each utterance against every
candidate speaker.

To recap, we present an end-to-end pipeline for
speaker to dialogue attribution that leverages re-
cent advances in large pretrained Language Models
casting the problem as a Dialogue State Tracking.
We empirically show that our model is capable
of generalising to different styles more reliably as
compared to prior hand-crafted features-based sys-
tems. Further, we present this comparative study on
literary texts ranging from the 1900s to the 2010s,
which are more varied and diverse compared to
past studies. Note that usually such dataset are
effort-intensive to create and not publicly available
due to lack of rights to redistribution, which makes
the reported result very interesting for the wider
community.

3 Dataset

Our annotations consist of two independent layers,
one focusing on direct speech, and one focusing on
clustering mentions that refer to the same character
entity.

Example 1: Excerpt from 2001: A Space
Odyssey. Annotated direct speech is in bold,
and the annotated attributed character entity
inside a blue box.

Poole was asleep, and Bowman was reading on the con-
trol deck, when Hal announced:

“Er—Dave, I have a report for you.” HAL
“What’s up?” DAVID BOWMAN
“We have another bad AE-35 unit. My fault pre-

dictor indicates failure within twenty-four hours.”
HAL

For the first layer, the annotator selects the span
of text representing a character’s direct speech. It
is usually found within quotation marks, but this
is not a necessary or sufficient requirement. The
annotator then attributes a character entity to the
utterance. Example 1 presents a typical conversa-
tion with instances of coreference (Dave and Bow-
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man both refer to David Bowman), and implicit
attribution (third and fourth paragraphs) where no
character is explicitly mentioned by the narrator.

The second layer of annotations focuses on char-
acters and their mentions. We follow Bamman
et al. (2014) and distinguish character mentions
(e.g. Dave, David, Bowman, Dr. Bowman) in
the text and character entities (e.g. DAVID BOW-
MAN), to which mentions refer to. See the text
in italics within Example 1 to find some of the an-
notated character mentions. Note that we don’t
include pronominal mentions. These mentions are
then clustered per book into character entities by
the annotators.

We annotate a collection of 15 books sampled
from the most popular titles from time epochs 1881
- 2018. The annotation is carried out by 3 expert
English native annotators, each reading the book in
sequential order, over a BRAT 1 based annotation
interface. In case the annotation from any single an-
notator is different, a master annotator goes through
the cases and makes the correction, resulting in a
dataset with a very high agreement (Cohen’s Kappa
greater than 0.9). Across the books, the number of
annotated dialogues varies from 200 to 5000 and
characters from less than 10 to 200. We would refer
these books by IDs 1 through 15 and the existing
3 books as E1 (Emma), E2 (Pride and Prejudice)
and E3 (The Steppe).

4 Model components

We divide the model into three main tasks: identi-
fying quotes, extracting unique characters and their
aliases, and attributing dialogues to the extracted
characters. Our goal is to reduce the amount of
hand-crafted rules (usually heavily biased to the
small subset of documents of prior studies) where
performance can be improved, and allow the model
to learn nuanced features that allow it to generalise
better when given a large enough dataset.

We first introduce our direct speech identifica-
tion component, which is purely rule-based due
to the simplicity of the problem and since improv-
ing this aspect is not part of our core contribu-
tion. Afterward, we focus on identifying characters
and compare NER and coreference resolution deep
learning models to simple rule-based systems. Fi-
nally, we discuss the focal aspect of our contribu-
tion - a DST architectural adaptation to solve the
speaker attribution of quotes.

1https://brat.nlplab.org

4.1 Direct Speech identification

Direct speech in fiction is usually denoted with quo-
tation marks, although there are exceptions such as
Ali Smith’s Summer, where speech marks are com-
pletely removed and dialogues blend in with the
rest of the text, or Joyce’s Ulysses that introduces
speech with dashes. Here we ignore such instances,
which are not present in our dataset, and focus
on the most common case where direct speech
is marked by quotation marks. Further, we find
that for English over ≈ 95 % of the dialogues (as
analysed over a large collection of popular books)
follow open-close quotation-pair variation. See
Steinbach et al. (2011) for an in-depth review of
the topic.

In the case of extracting quotation marks, simple
rules can achieve almost perfect performance. As
in O’Keefe et al. (2012), we use a regular expres-
sion to detect opening and closing quotation marks
that denote the presence of direct speech.

4.2 Character identification

Although characters are central to most literary
analyses, identifying them automatically from a
novel remains an unsolved problem. We split the
character identification task into: i) identifying
mentions in the text that refer to characters, and
ii) clustering those mentions into unique character
entities. Similar to direct speech identification, we
do not focus on improving the architecture for char-
acter identification. As both of these form input
to our core DST module, we re-purpose the best
of existing techniques. However, unlike previous
studies, we do analyse and report the impact of
these components on end-to-end performance to
guide future research.

Extracting entities from text is normally done
over short documents, such as Wikipedia pages.
But literature brings unique challenges to the field:
novels tend to be long documents, demanding effi-
cient algorithms, and requiring models to be able
to link far apart mentions.

We present an evaluation of Named Entity
Recognition (NER) to detect mentions, together
with the effectiveness of coreference resolution to
cluster character mentions into entities. We find
that although NER achieves a similar performance
to a simple rule-based system, coreference resolu-
tion’s performance on clustering characters is sig-
nificantly poorer than a simple rule-based character
clustering technique, and future work should fo-
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Figure 1: Diagram of our speaker attribution pipeline. Utterances in a conversation and mentions to characters are
first embedded by using Distil-BERT. The extracted utterances are processed by a Gated Recurrent Network, and
later combined with the embedded mentions through a dot product that results in the Mention Logits. Finally, we
use the information on how mentions cluster into character entities to pool the maximum values of the Mention
Logits by entity. The result is denoted by Entity Logits, and it is sent to a Conditional Random Field that generates
a prediction by applying the Viterbi decoding algorithm.

cus on addressing this problem through techniques
developed explicitly for the literature domain.

4.2.1 Identifying character mentions
We present a comparison between an out-of-
domain NER model, trained on the CoNLL-2003
dataset (Tjong Kim Sang and De Meulder, 2003)
with a simple rule-based baseline that focuses on
identifying all the characters that speak explicitly.
It finds the subject of the narrator’s explicit dia-
logue attribution signals (defined by the 40 most
frequent speech denoting verbs such as said, an-
swered, ...).

4.2.2 Clustering character mentions into
entities

In Table 1, we show a summary of the aliases vari-
ations found in our dataset and their frequency.
Since our core contribution is not to improve char-
acter clustering, and our dataset of character aliases
is small, we do not develop a custom model for it
and merely compare two different clustering tech-

Type Freq Example ([mentions]→ entity)
Full Name
Variation

67% [Harry, Potter, Mr. Potter, Harry Pot-
ter]→ HARRY POTTER)

Dimunitives 7% [Lizzy, Eliza]→ ELIZABETH
Professional 15.5% [the cook]→ JOHN KING SILVER
Relational 5.5% [her father]→MR. BENNET
Others 5% [the cimmerian]→ CONAN

Table 1: Summary of Character Name Variations for 50
randomly sampled characters over our dataset.

niques: i) an out-of-domain coreference resolution
system, and ii) a simple set of rules that cluster char-
acters according to their names. In both cases, we
build a graph where nodes are character mentions,
and edges are attached to all two compatible nodes.
See the top right box on Clustering Mentions in
Figure 1 for an example of such graph.

On one hand, in the case of coreference reso-
lution, two nodes are compatible if they appear
together at least in two coreferent clusters. Clusters
of characters are formed by finding all disconnected
subgraphs within the graph.
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On the other hand, although character aliases
can be of any kind and might not be related to each
other by name, most of the ones appearing in lit-
erature are variations of the character’s full name
(See Table 1). We build a rule-based algorithm that
deems two names incompatible if,
i) The first names of the characters are different
(the first names do not match exactly) or the shorter
first name is not exactly inside the longest one.
This also takes care of a few diminutive forms (like
Eliza for Elizabeth).
ii) Both names contain a title which is different.
iii) Both names contain a surname which is differ-
ent.

We split the graph into disconnected subgraphs
of compatible names, and find those nodes that
are ambiguous, i.e., nodes whose first neighbour
connections contain more than one title, first name,
or surname. Removing those nodes we can form
unambiguous clusters of characters that share the
same title, name, and surname.

As opposed to previous work (Bamman et al.,
2014; Elson et al., 2010), where ambiguous names
would be merged to the closest entity mentioned
in the text, we allow ambiguous nodes to either
form their own cluster, or be part of any of their
first neighbour nodes’ clusters. We use the text to
resolve this ambiguity by finding the most men-
tioned cluster among the possible clusters in the
20 paragraph vicinity of the ambiguous mention.
In this way, we can retain characters such as Mrs.
Bennet in Pride and Prejudice, without merging
them to other members of the Bennet family, since
they are prominent enough to be given their own
cluster.

4.3 Speaker attribution

In this section, we present an adaptation of Di-
alogue State Tracking to speaker attribution. In
DST, it is a challenge to produce models that can
work with dynamic ontologies and unseen slot val-
ues such that the user can request information on
any slot (movies, restaurants, ...) and use any value
(the type of food, the price, ...) that has not neces-
sarily been seen at test time. In the same way, we
can’t simply use a general fixed tag set of charac-
ters beyond the level of an individual novel, since
we want our model to generalise to unseen novels
and unseen characters during test time. We will
therefore embed the character’s mentions within
the inputs of the model as done in state-of-the-art

DST (Lai et al., 2020). Below, we discuss in detail
how we adapt DST to model speaker attribution in
novels.

4.3.1 Inputs definitions
Although our dataset is annotated at the level of
word spans, the odds are high that disconnected
spans in the same paragraph are attributed to the
same speaker. We find that this rule is violated on
less than 5% of the paragraphs that contain more
than one disconnected span. Therefore, as in He
et al. (2013), our model will be trained on attribut-
ing speakers at the level of paragraphs.

Regarding the model inputs, we split the text into
conversations. Denoting paragraphs with no direct
speech as narratives, we segment conversations by
restricting the number of intervening narratives be-
tween direct speech utterances to one. If more
than one narrative separates two direct speech ut-
terances, the conversation is split into two different
conversations.

Given a set of n utterances that define a conver-
sation, u = {u0, u1, ..., un−1}, a set of l mentions
to candidate characters, m = {m0,m1, ...,ml−1},
and a set of k candidate characters entities linked
to those mentions, c = {c0, c1, ..., ck−1}, where
k <= l, we wish to model the probability for each
candidate character entity, ci, being the speaker
of a given utterance, uj . This probability will be
denoted as P (ci|uj ,u).

Let’s denote as φ the embedding model that
transforms word tokens in vectors (equivalently
IRDε space), where Dε is the output dimension of
the embedding model. In this work, we chose a
Distil-BERT model (Sanh et al., 2019) for φ.

As in Figure 1, we generate an embedding for
every utterance in the conversation,

εui = φDistil−BERT(ui)[CLS], (1)

by selecting the embedding of the [CLS] token,
whereas to encode the character’s mentions we take
the mean of the embedding of the tokens inside the
mention. For a mentionmj = {m0

j ,m
1
j , ...,m

t−1
j }

of length t,

εmj =
1

t

t−1∑
T=0

φDistil−BERT(ui)mTj
. (2)

We denote the collection of all mentions em-
beddings byM , a matrix of dimensions Dε ×Dl,
where Dl is the number of mentions to candidate
characters inside the conversation.
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In the next section, we explain the three compo-
nents of the model that take these embeddings and
produce the probability of a character speaking: i)
the conversation embedding module, that takes an
utterance as input and produces its context-aware
representation, ii) a character extraction module,
that given the contextual representation of an utter-
ance and the embedding of the candidate characters
mentions, generates the logits for each candidate
character entity and utterance, and iii) a sequential
decoder component that learns the conversational
turn patterns. Below, we define the architecture of
each component in detail.

4.3.2 Conversation Embedding
The conversation embedding module consists of
a Gated Recurrent Unit (Cho et al., 2014; Gers
et al., 1999), φGRU, that encodes the content of the
conversation,

hi+1 = φGRU

(
εui+1 ,hi

)
, (3)

where hi is the GRU’s hidden state of dimension
Dε which is randomly initialised at the beginning
of the sequence.

4.3.3 Character mention extraction
This module processes the GRU’s hidden states to
extract the candidate character’s logits. We take the
dot product of the utterance embedding, processed
by a fully connected network, with the mention
embedding matrix,M , to obtain the logits,

li = φFCN (hi) ·M , (4)

where li, has dimensions Dl. This for whole con-
versation results in L of dimension Dn ×Dl and
are denoted by Mention Logits in Figure 1.

We can now combine the logits of different men-
tions that belong to the same character entity by
max-pooling over character entities to get the En-
tity Logits, E with dimensions Dn ×Dk.

4.3.4 Learning to take turns with Conditional
Random Fields

Implicitly, the model defined above assumes that
labels are independent of each other, and that there-
fore the likelihood of a sequence of labels in a
conversation, y, can be expressed as the product of
utterance-wise likelihoods,

P (y|u) =
∏
m

p(yk|u1, ..., um). (5)

However, characters speaking in a conversation
follow certain turn-taking patterns that are common
through literature, such as a two-party conversa-
tion in which the dialogues move back and forth
between two characters. We add a linear chain
Conditional Random Field (CRF) (Lafferty et al.,
2001) to our model, to maximise the likelihood of a
sequence of characters and relax the label indepen-
dence assumption by allowing a target to depend
on its immediate predecessor.

A CRF models the sequential likelihood as a
combination of element-wise prediction, and a pair-
wise interaction term that models the probability
of transitioning from label yi to label yj . In our
particular implementation, the element-wise pre-
dictions are the Entity Logits, E, and the pairwise
interaction will be learned parameters,

P (y|u) = exp

(
N∑
n=0

En(yn) +

N−1∑
n=0

Vyn,yn+1

)
/Z, (6)

where Z represents the normalization factor, and
V is generally a Dk ×Dk dimensional matrix of
learned weights known as transition matrix.

In our use-case, there is no specific label order-
ing that can generalise to unseen novels, and we
thus reduce the degrees of freedom of theDk ×Dk

transition matrix to two: the value of the diagonal,
and the value of the off-diagonal elements. The first
one controls the probability of the same speaker to
continue speaking, whereas the second one varies
the probability of a change in speaker. Note that
this implies that we do not need to constrain the
number of speaking characters. At inference, we
find the most likely sequence of characters using
the Viterbi algorithm (Viterbi, 1967).

5 Evaluation of the model components

In this section, we present both the evaluation of
each separate component and the final evaluation
of the entire pipeline.

5.1 Direct Speech identification

To compare ground truth direct speech with our
extracted quotes, we define a True Positive as an ex-
act match between our selected text and the ground
truth. With this definition, the F1-score achieved
by our quote identification module is 0.98± 0.01,
when evaluated against our entire dataset. We find
that common errors are the identification of quoted
text that has a different purpose other than direct
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Model F1-Score Precision Recall
NER 0.74± 0.1 0.82±0.08 0.69±0.14
Rule-based 0.78± 0.1 0.85±0.07 0.76±0.11

Table 2: Evaluation of the character mention compo-
nent, compared to NER (Wolf et al., 2020). We show
the average of all books and their standard deviation.

Model F1-Score Precision Recall
Coreference 0.73± 0.1 0.97±0.08 0.60±0.14
Rule-based 0.86±0.08 0.94±0.07 0.79±0.11

Table 3: Evaluation of the character clustering compo-
nent, compared to coreference resolution (Wolf et al.,
2020). We show the average of all books and their stan-
dard deviation.

speech, such as emphasising a word, naming a title,
or marking written text, such as a letter, that no one
is reading out loud.

5.2 Character identification

We evaluate separately the effects of identifying
character mentions and clustering mentions into
distinct entities. Since our model aims to resolve
dialogue attribution and characters that are men-
tioned more often tend to also speak more often,
we show precision, recall and F1-score weighted
by the number of times a mention appears through
the text. In this way, we make sure that we are
identifying the main characters in the text at the
cost of missing rarer ones. The evaluation is shown
in Table 2. NER and our simple rule-based model
show a similar performance, although overall the
rule-based system works better.

Finally, we evaluate character clustering on ora-
cle mentions using the B3 measures of precision,
recall and F1-score (Amigó et al., 2009). The re-
sults are reported in Table 3. The performance of
coreference resolution is significantly worse than
the simple naming rules we developed. By using
name compatibility we achieve a high precision but
a low recall, meaning that the clusters we create
tend to contain elements of the same class, but are
incomplete; a character might be split into several
different clusters. This is because we only cluster
characters from variations of their names, and there-
fore all other cases shown in Table 1 are considered
as separate entities. As mentioned in Section 4.2.2,
the coreference resolution model fails at linking
two mentions to the same character that are far
apart, and therefore produces a system with lower
recall.

5.3 Speaker attribution

We train and evaluate the speaker attribution task on
oracle direct speech, mentions and character clus-
ters. We compute precision, recall and F1-Score,
all weighted averages, of the character entities at-
tributed to each span of direct speech.

Model F1-Score Precision Recall
Our model 0.78±0.06 0.81±0.06 0.77±0.06
NM 0.54±0.08 0.57±0.06 0.54±0.08

Table 4: Evaluation of the speaker attribution compo-
nent, compared to a baseline nearest mention (NM).

The resulting evaluation is shown in Table 4.
We show a comparison with a baseline model that
selects the nearest mention to either left or right of
the quote. To include a thorough evaluation despite
the small size of our dataset, we have trained the
model in a leave-one-out fashion for all books for
which we annotated more than 1, 000 paragraphs,
together with the three publicly available books
released by Muzny et al. (2017). In Table 4, we
report average values and standard deviation over
the 11 books.

Moreover, we show an ablation study in Table 5,
computed on only one train, validation and test
split. Next to the overall F1-Score we show the
performance on the model by type of signal where
a sample is: i) explicit, if the character is mentioned
on the same paragraph as the quote, ii) implicit,
if there is no narrator context accompanying the
quote. Note that not all quotes fall in either of these
categories.

5.4 End-to-end evaluation

Finally, the entire pipeline is evaluated as a clus-
tering overlap problem through the B3 clustering
metric. A cluster is defined by the set of quota-
tions attributed to the same character entity. If the
quote has been incorrectly identified as a quote by
the model, it forms part of a misidentified cluster.
On the other hand, if we haven’t identified one of
the true quotes, we also label it as another kind of
misidentification.

In Figure 2, we show a full pipeline comparison
of our model to the state-of-the-art model presented
in Muzny et al. (2017) 2. Our model improves over
Muzny et al. (2017) by an average of 50% in F1-

2We ran their publicly available code on our dataset, the
code can be found here https://nlp.stanford.edu/
~muzny/quoteli.html
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F1-Score Accuracy Explicit Accuracy Implicit

Distil-BERT (DB) 0.7± 0.06 0.89± 0.03 0.37± 0.03
DB + GRU 0.77± 0.07 0.94± 0.04 0.45± 0.05
DB + CRF 0.75± 0.09 0.94± 0.05 0.43± 0.07
DB + GRU + CRF 0.80± 0.06 0.95± 0.05 0.6± 0.08

Table 5: Summary of the ablation study results. We show the effect of removing different component of the models,
where average values and standard deviations are computed over three test books: 14, 15, and E3 (The Steppe).

Figure 2: Chart showing F1-score values for different books training the model in a leave-one-out fashion. Average
values for both our model and the baseline are shown in dotted lines.

Figure 3: Stacked chart showing the F1-score when dif-
ferent components of the model are replaced by their
oracle (ground truth) value.

score, and achieves a more consistent performance
across different styles and time periods.

We also show the effect of replacing the differ-
ent components with Oracle data for a subsample
of the dataset in Figure 3. We can see that dif-
ferent components play a different role by book,
whereas improving the mention extraction stage
can be of crucial importance for some books (14
and 15 part of text split; and 1 and 11 part of train
split), character clustering has a larger effect on
others. However, the dominant effect is still the
Speaker attribution model.

6 Conclusions and Future Work

We have presented a speaker attribution pipeline
for novels that does not rely on pre-compiled lists
of characters and that performs consistently across
different writing styles and time periods. Our main
contribution has been to develop the first deep learn-
ing model for speaker attribution, based on previ-
ous Dialogue State Tracking approaches. Our deep
learning model has the flexibility to learn nuanced
features from data, compared to previous work that
relied on rules or hand-crafted features. Training
our model on a small dataset composed of 15 dif-
ferent novels, we find that it outperforms the model
presented in Muzny et al. (2017) by an average of
50% F1-score. In the future, we hope to improve
our model by: training it on a larger and more
varied dataset, and training the model on speaker
attribution together with the related task of corefer-
ence resolution.

We have also presented an error analysis on the
different components necessary to perform the end-
to-end goal of attributing characters to their direct
speech utterances in novels: i) direct speech iden-
tification, ii) character extraction, and iii) speaker
attribution. We have shown the need to produce
literature-domain specific models targeting charac-
ter extraction in order to improve the accuracy of
current systems.
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Appendix

Model hyper-parameters
In this appendix we describe the training procedure
and hyper-parameters for the DST model. During
training, we use early stopping with a patience of 6
epochs, a batch size of 3 conversations, and cross-
entropy as a loss function. The initial learning rate
is set to 1e−5 for the BERT model layers, and 1.e−
4 for all the others. We use a linear schedule with
warmup, with the number of warmup steps set to
0. Moreover, we limit the maximum conversation
length to 45 utterances. Regarding the model’s
architecture, the recurrent network is a bidirectional
GRU with only one layer of dimension 768, and
the fully connected network contains also a single
layer with the same dimensions. A dropout of

0.2 is applied to both the output of BERT and the
output of the fully connected layer. The model was
trained on a single NVIDIA Tesla V100 SXM2 16
GB GPU.
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