
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 528 - 537

May 22-27, 2022 c©2022 Association for Computational Linguistics

TABLEFORMER: Robust Transformer Modeling for Table-Text Encoding

Jingfeng Yang
∗

Aditya Gupta† Shyam Upadhyay†
Luheng He† Rahul Goel† Shachi Paul †

?Georgia Institute of Technology
†Google Assistant

jingfengyangpku@gmail.com
tableformer@google.com

Abstract

Understanding tables is an important aspect of
natural language understanding. Existing mod-
els for table understanding require lineariza-
tion of the table structure, where row or col-
umn order is encoded as an unwanted bias.
Such spurious biases make the model vulner-
able to row and column order perturbations.
Additionally, prior work has not thoroughly
modeled the table structures or table-text align-
ments, hindering the table-text understanding
ability. In this work, we propose a robust and
structurally aware table-text encoding architec-
ture TABLEFORMER, where tabular structural
biases are incorporated completely through
learnable attention biases. TABLEFORMER is
(1) strictly invariant to row and column or-
ders, and, (2) could understand tables better
due to its tabular inductive biases. Our eval-
uations showed that TABLEFORMER outper-
forms strong baselines in all settings on SQA,
WTQ and TABFACT table reasoning datasets,
and achieves state-of-the-art performance on
SQA, especially when facing answer-invariant
row and column order perturbations (6% im-
provement over the best baseline), because pre-
vious SOTA models’ performance drops by
4% - 6% when facing such perturbations while
TABLEFORMER is not affected.1

1 Introduction

Recently, semi-structured data (e.g. variable length
tables without a fixed data schema) has attracted
more attention because of its ubiquitous presence
on the web. On a wide range of various table rea-
soning tasks, Transformer based architecture along
with pretraining has shown to perform well (Eisen-
schlos et al., 2021; Liu et al., 2021).

In a nutshell, prior work used the Transformer
architecture in a BERT like fashion by serializing
tables or rows into word sequences (Yu et al., 2020;

∗Work done during an internship at Google.
1Code to be released at https://github.com/

google-research/tapas

Title Length
Screwed Up 5:02
Ghetto Queen 5:00

Question: Of all song lengths, which one is the longest?
Gold Answer: 5:02
TAPAS: 5:00
TAPAS after row order perturbation: 5:02
TABLEFORMER: 5:02
(a) TAPAS predicts incorrect answer based on the original table,
while it gives the correct answer if the first row is moved to
the end of the table.

Nation Gold Silver Bronze
Great Britain 2 1 2

Spain 1 2 0
Ukraine 0 2 0

Question: Which nation received 2 silver medals?
Gold Answer: Spain, Ukraine
TAPAS: Spain
TABLEFORMER: Spain, Ukraine
TABLEFORMER w/o a proposed structural bias: Spain

(b) TAPAS gives incomplete answer due to its limited cell
grounding ability.

Figure 1: Examples showing the limitations of exist-
ing models (a) vulnerable to perturbations, and (b) lack-
ing structural biases. In contrast, our proposed TABLE-
FORMER predicts correct answers for both questions.

Liu et al., 2021), where original position ids are
used as positional information. Due to the usage
of row/column ids and global position ids, prior
strategies to linearize table structures introduced
spurious row and column order biases (Herzig et al.,
2020; Eisenschlos et al., 2020, 2021; Zhang et al.,
2020; Yin et al., 2020). Therefore, those models are
vulnerable to row or column order perturbations.
But, ideally, the model should make consistent pre-
dictions regardless of the row or column ordering
for all practical purposes. For instance, in Figure 1,
the predicted answer of TAPAS model (Herzig et al.,
2020) for Question (a) “Of all song lengths, which
one is the longest?” based on the original table is

“5:00”, which is incorrect. However, if the first row
is adjusted to the end of the table during inference,
the model gives the correct length “5:02” as an-

528

https://github.com/google-research/tapas
https://github.com/google-research/tapas

swer. This probing example shows that the model
being aware of row order information is inclined
to select length values to the end of the table due
to spurious training data bias. In our experiments
on the SQA dataset, TAPAS models exhibit a 4% -
6% (Section 5.2) absolute performance drop when
facing such answer-invariant perturbations.

Besides, most prior work (Chen et al., 2020; Yin
et al., 2020) did not incorporate enough structural
biases to models to address the limitation of sequen-
tial Transformer architecture, while others induc-
tive biases which are either too strict (Zhang et al.,
2020; Eisenschlos et al., 2021) or computationally
expensive (Yin et al., 2020).

To this end, we propose TABLEFORMER, a
Transformer architecture that is robust to row and
column order perturbations, by incorporating struc-
tural biases more naturally. TABLEFORMER re-
lies on 13 types of task-independent table↔text
attention biases that respect the table structure and
table-text relations. For Question (a) in Figure 1,
TABLEFORMER could predict the correct answer
regardless of perturbation, because the model could
identify the same row information with our “same
row” bias, avoiding spurious biases introduced by
row and global positional embeddings. For Ques-
tion (b), TAPAS predicted only partially correct
answer, while TABLEFORMER could correctly pre-
dict “Spain, Ukraine” as answers. That’s because
our “cell to sentence” bias could help table cells
ground to the paired sentence. Detailed attention
bias types are discussed in Section 5.2.

Experiments on 3 table reasoning datasets show
that TABLEFORMER consistently outperforms orig-
inal TAPAS in all pretraining and intermediate
pretraining settings with fewer parameters. Also,
TABLEFORMER’s invariance to row and column
perturbations, leads to even larger improvement
over those strong baselines when tested on pertur-
bations. Our contributions are as follows:

• We identified the limitation of current table-
text encoding models when facing row or col-
umn perturbation.

• We propose TABLEFORMER, which is guaran-
teed to be invariant to row and column order
perturbations, unlike current models.

• TABLEFORMER encodes table-text structures
better, leading to SoTA performance on SQA
dataset, and ablation studies show the effec-
tiveness of the introduced inductive biases.

2 Preliminaries: TAPAS for Table
Encoding

In this section, we discuss TAPAS which serves
as the backbone of the recent state-of-the-art table-
text encoding architectures. TAPAS (Herzig et al.,
2020) uses Transformer architecture in a BERT
like fashion to pretrain and finetune on tabular
data for table-text understanding tasks. This is
achieved by using linearized table and texts for
masked language model pre-training. In the fine-
tuning stage, texts in the linearized table and text
pairs are queries or statements in table QA or table-
text entailment tasks, respectively.

Specifically, TAPAS uses the tokenized and flat-
tened text and table as input, separated by [SEP]
token, and prefixed by [CLS]. Besides token, seg-
ment, and global positional embedding introduced
in BERT (Devlin et al., 2019), it also uses rank em-
bedding for better numerical understanding. More-
over, it uses column and row embedding to encode
table structures.

Concretely, for any table-text linearized se-
quence S = {v1, v2, · · · , vn}, where n is the
length of table-text sequence, the input to TAPAS

is summation of embedding of the following:

token ids (W) = {wv1 , wv2 , · · · , wvn}
positional ids (B) = {b1, b2, · · · , bn}

segment ids (G) = {gseg1 , gseg2 , · · · , gsegn}
column ids (C) = {ccol1 , ccol2 , · · · , ccoln}

row ids (R) = {rrow1 , rrow2 , · · · , rrown}
rank ids (Z) = {zrank1 , zrank2 , · · · , zrankn}

where segi, coli, rowi, ranki correspond to
the segment, column, row, and rank id for the ith
token, respectively.

As for the model, TAPAS uses BERT’s self-
attention architecture (Vaswani et al., 2017) off-
the-shelf. Each Transformer layer includes a multi-
head self-attention sub-layer, where each token
attends to all the tokens. Let the layer input
H = [h1, h2, · · · , hn]> ∈ Rn×d corresponding to
S, where d is the hidden dimension, and hi ∈ Rd×1
is the hidden representation at position i. For
a single-head self-attention sub-layer, the input
H is projected by three matrices WQ ∈ Rd×dK ,
WK ∈ Rd×dK , and W V ∈ Rd×dV to the corre-
sponding representations Q, K, and V :

Q = HWQ, V = HW V , K = HWK (1)

529

Transformer (Self Attention)

Transformer (Self Attention)

⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤

Learnable structure enforced
attention bias scalars. We use
13 types of attention biases based
on task independent relation
between header, row, column,
text, etc.

wlongest w[SEP] wtitle wlength wqueen w5:00

g0 g0 g1 g1 g1 g1

p10 p11 p0 p0 p1 p0

z0 z0 z0 z0 z2

token

segment

per cell position

rank

w[CLS] wof

g0 g0

p0 p1

z0

…

…

…

…

…

…

h1
longest h1

[SEP] h1
title h1

length h1
queenh1

5:00h1
[CLS] h1

of … …

hn
longest hn

[SEP] hn
title hn

length hn
queenhn

5:00hn
[CLS] hn

of

query
…

table
…

… …

.

.

.

Question: “Of all song lengths, which one is the longest ?”
Title Length

Screwed Up 5:02
Ghetto Queen 5:00

Query Table

[CLS]

query

[SEP]

Title

Length

Screwed

Up

5:02

Ghetto

Queen

5:00

[C
LS

]

qu
er

y
[S

EP
]

Ti
tle

Sc
re

w
ed

Le
ng

th

U
p

5:
02

Q
ue

en
5:

00

G
he

tto

z0z0

Figure 2: TABLEFORMER input and attention biases in the self attention module. This example corresponds to
table (a) in Figure 1 and its paired question “query”. Different colors in the attention bias matrix denote different
types of task independent biases derived based on the table structure and the associated text.

Then, the output of this single-head self-
attention sub-layer is calculated as:

Attn(H) = softmax(
QK>√
dK

)V (2)

3 TABLEFORMER: Robust Structural
Table Encoding

As shown in Figure 2, TABLEFORMER encodes the
general table structure along with the associated
text by introducing task-independent relative atten-
tion biases for table-text encoding to facilitate the
following: (a) structural inductive bias for better
table understanding and table-text alignment, (b)
robustness to table row/column perturbation.

Input of TABLEFORMER. TABLEFORMER

uses the same token embeddings W , segment
embeddings G, and rank embeddings Z as TAPAS.
However, we make 2 major modifications:

1) No row or column ids. We do not use row em-
beddings R or column embeddings C to avoid any
potential spurious row and column order biases.

2) Per cell positional ids. To further remove any
inter-cell order information, global positional em-
beddings B are replaced by per cell positional em-
beddings P = {ppos1 , ppos2 , · · · , pposn}, where

we follow Eisenschlos et al. (2021) to reset the
index of positional embeddings at the beginning
of each cell, and posi correspond to the per cell
positional id for the ith token.

Positional Encoding in TABLEFORMER. Note
that the Transformer model either needs to spec-
ify different positions in the input (i.e. absolute
positional encoding of Vaswani et al. (2017)) or
encode the positional dependency in the layers (i.e.
relative positional encoding of Shaw et al. (2018)).

TABLEFORMER does not consume any sort of
column and row order information in the input. The
main intuition is that, for cells in the table, the only
useful positional information is whether two cells
are in the same row or column and the column
header of each cell, instead of the absolute order
of the row and column containing them. Thus, in-
spired by relative positional encoding (Shaw et al.,
2018) and graph encoding (Ying et al., 2021), we
capture this with a same column/row relation as
one kind of relative position between two linearized
tokens. Similarly, we uses 12 such table-text struc-
ture relevant relations (including same cell, cell
to header and so on) and one extra type represent-
ing all other relations not explicitly defined. All
of them are introduced in the form of learnable

530

attention bias scalars.
Formally, we consider a function φ(vi, vj) : V ×

V → N, which measures the relation between vi
and vj in the sequence (vi, vj ∈ S). The function φ
can be defined by any relations between the tokens
in the table-text pair.

Attention Biases in TABLEFORMER. In our
work, φ(vi, vj) is chosen from 13 bias types, cor-
responding to 13 table-text structural biases. The
attention biases are applicable to any table-text pair
and can be used for any downstream task:

• “same row” identifies the same row infor-
mation without ordered row id embedding or
global positional embedding, which help the
model to be invariant to row perturbations,

• “same column”, “header to column cell”, and
“cell to column header” incorporates the same
column information without ordered column
id embedding,

• “cell to column header” makes each cell
aware of its column header without repeated
column header as features,

• “header to sentence” and “cell to sentence”
help column grounding and cell grounding of
the paired text,

• “sentence to header”, “sentence to cell”, and
“sentence to sentence” helps to understand the
sentence with the table as context,

• “header to same header” and “header to
other header” for better understanding of ta-
ble schema, and “same cell bias” for cell con-
tent understanding.

Note that, each cell can still attend to other cells
in the different columns or rows through “others”
instead of masking them out strictly.

We assign each bias type a learnable scalar,
which will serve as a bias term in the self-attention
module. Specifically, each self-attention head
in each layer have a set of learnable scalars
{b1, b2, · · · , b13} corresponding to all types of in-
troduced biases. For one head in one self-attention
sub-layer of TABLEFORMER, Equation 2 in the
Transformer is replaced by:

Ā =
QK>√
dK

, A = Ā+ Â (3)

Attn(H) = softmax(A)V (4)

where Ā is a matrix capturing the similarity be-
tween queries and keys, Â is the Attention Bias
Matrix, and Âi,j = bφ(vi,vj).

Relation between TABLEFORMER and ETC.
ETC (Ainslie et al., 2020) uses vectors to repre-
sent relative position labels, although not directly
applied to table-text pairs due to its large computa-
tional overhead (Eisenschlos et al., 2021). TABLE-
FORMER differs from ETC in the following as-
pects (1) ETC uses relative positional embeddings
while TABLEFORMER uses attention bias scalars.
In practice, we observed that using relative posi-
tional embeddings increases training time by more
than 7x, (2) ETC uses global memory and local at-
tention, while TABLEFORMER uses pairwise atten-
tion without any global memory overhead, (3) ETC
uses local sparse attention with masking, limiting
its ability to attend to all tokens, (4) ETC did not
explore table-text attention bias types exhaustively.
Another table encoding model MATE (Eisensch-
los et al., 2021) is vulnerable to row and column
perturbations, and shares limitation (3) and (4).

4 Experimental Setup

4.1 Datasets and Evaluation

We use the following datasets in our experiments.

Table Question Answering. For the table QA
task, we conducted experiments on WikiTableQues-
tions (WTQ) (Pasupat and Liang, 2015) and Se-
quential QA (SQA) (Iyyer et al., 2017) datasets.
WTQ was crowd-sourced based on complex ques-
tions on Wikipedia tables. SQA is composed of
6, 066 question sequences (2.9 question per se-
quence on average), constructed by decomposing a
subset of highly compositional WTQ questions.

Table-Text Entailment. For the table-text en-
tailment task, we used TABFACT dataset (Chen
et al., 2020), where the tables were extracted from
Wikipedia and the sentences were written by crowd
workers. Among total 118, 000 sentences, each
one is a positive (entailed) or negative sentence.

Perturbation Evaluation Set. For SQA and
TABFACT, we also created new test sets to measure
models’ robustness to answer-invariant row and col-
umn perturbations during inference. Specifically,

531

row and column orders are randomly perturbed for
all tables in the standard test sets.2

Pre-training All the models are first tuned on
the Wikipidia text-table pretraining dataset (Herzig
et al., 2020), optionally tuned on synthetic dataset
at an intermediate stage (“inter”) (Eisenschlos et al.,
2020), and finally fine-tuned on the target dataset.
To get better performance on WTQ, we follow
Herzig et al. (2020) to further pretrain on SQA
dataset after the intermediate pretraining stage in
the “inter-sqa” setting.

Evaluation For SQA, we report the cell selection
accuracy for all questions (ALL) using the official
evaluation script, cell selection accuracy for all se-
quences (SEQ), and the denotation accuracy for all
questions (ALLd). To evaluate the models’ robust-
ness in the instance level after perturbations, we
also report a lower bound of example prediction
variation percentage:

V P =
(t2f + f2t)

(t2t + t2f + f2t + f2f)
(5)

where t2t, t2f, f2t, and f2f represents how many ex-
ample predictions turning from correct to correct,
from correct to incorrect, from incorrect to correct
and from incorrect to incorrect, respectively, after
perturbation. We report denotation accuracy on
WTQ and binary classification accuracy on TAB-
FACT respectively.

4.2 Baselines

We use TAPASBASE and TAPASLARGE as base-
lines, where Transformer architectures are exactly
same as BERTBASE and BERTLARGE (Devlin
et al., 2019), and parameters are initialized from
BERTBASE and BERTLARGE respectively. Cor-
respondingly, we have our TABLEFORMERBASE
and TABLEFORMERLARGE, where attention bias
scalars are initialized to zero, and all other pa-
rameters are initialized from BERTBASE and
BERTLARGE.

4.3 Perturbing Tables as Augmented Data

Could we alleviate the spurious ordering biases
by data augmentation alone, without making any
modeling changes? To answer this, we train an-
other set of models by augmenting the training data

2We fixed perturbation random seeds to make our results
reproducible.

Before Perturb After Perturb

ALL SEQ ALLd ALL V P

Herzig et al. (2020) 67.2 40.4 – – –
Eisenschlos et al. (2020) 71.0 44.8 – – –
Eisenschlos et al. (2021) 71.7 46.1 – – –
Liu et al. (2021) – – 74.5 – –

TAPASBASE 61.1 31.3 – 57.4 14.0%
TABLEFORMERBASE 66.7 39.7 – 66.7 0.2%

TAPASLARGE 66.8 39.9 – 60.5 15.1%
TABLEFORMERLARGE 70.3 44.8 – 70.3 0.1%

TAPASBASE inter 67.5 38.8 – 61.0 14.3%
TABLEFORMERBASE inter 69.4 43.5 – 69.3 0.1%

TAPASLARGE inter 70.6 43.9 – 66.1 10.8%
TABLEFORMERLARGE inter 72.4 47.5 75.9 72.3 0.1%

Table 1: Results on SQA test set before and after per-
turbation during inference (median of 5 runs). ALL is
cell selection accuracy, SEQ is cell selection accuracy
for all question sequences, ALLd is denotation accu-
racy for all questions (reported to compare with Liu
et al. (2021)). V P is model prediction variation per-
centage after perturbation. Missing values are those not
reported in the original paper.

for TAPAS through random row and column order
perturbations.3

For each table in the training set, we randomly
shuffle all rows and columns (including corre-
sponding column headers), creating a new table
with the same content but different orders of rows
and columns. Multiple perturbed versions of the
same table were created by repeating this process
{1, 2, 4, 8, 16} times with different random seeds.
For table QA tasks, selected cell positions are also
adjusted as final answers according to the perturbed
table. The perturbed table-text pairs are then used
to augment the data used to train the model. During
training, the model takes data created by one spe-
cific random seed in one epoch in a cyclic manner.

5 Experiments and Results

Besides standard testing results to compare TABLE-
FORMER and baselines, we also answer the follow-
ing questions through experiments:

• How robust are existing (near) state-of-the-
art table-text encoding models to semantic
preserving perturbations in the input?

• How does TABLEFORMER compare with ex-
isting table-text encoding models when tested
on similar perturbations, both in terms of per-
formance and robustness?

3By perturbation, we mean shuffling row and columns
instead of changing/swapping content blindly.

532

Before Perturb After Perturb

dev test testsimple testcomplex testsmall test testsimple testcomplex testsmall

Eisenschlos et al. (2020) 81.0 81.0 92.3 75.6 83.9 – – – –
Eisenschlos et al. (2021) – 81.4 – – – – – – –

TAPASBASE 72.8 72.3 84.8 66.2 74.4 71.2 83.4 65.2 72.5
TABLEFORMERBASE 75.1 75.0 88.2 68.5 77.1 75.0 88.2 68.5 77.1

TAPASLARGE 74.7 74.5 86.6 68.6 76.8 73.7 86.0 67.7 76.1
TABLEFORMERLARGE 77.2 77.0 90.2 70.5 80.3 77.0 90.2 70.5 80.3

TAPASBASE inter 78.4 77.9 90.1 71.9 80.5 76.8 89.5 70.5 79.7
TABLEFORMERBASE inter 79.7 79.2 91.6 73.1 81.7 79.2 91.6 73.1 81.7

TAPASLARGE inter 80.6 80.6 92.0 74.9 83.1 79.2 91.7 73.0 83.0
TABLEFORMERLARGE inter 82.0 81.6 93.3 75.9 84.6 81.6 93.3 75.9 84.6

Table 2: Binary classification accuracy on TABFACT development and 4 splits of test set, as well as performance
on test sets with our perturbation evaluation. Median of 5 independent runs are reported. Missing values are those
not reported in the original paper.

Model dev test

Herzig et al. (2020) – 48.8
Eisenschlos et al. (2021) – 51.5

TAPASBASE 23.6 24.1
TABLEFORMERBASE 34.4 34.8

TAPASLARGE 40.8 41.7
TABLEFORMERLARGE 42.5 43.9

TAPASBASE inter-sqa 44.8 45.1
TABLEFORMERBASE inter-sqa 46.7 46.5

TAPASLARGE inter-sqa 49.9 50.4
TABLEFORMERLARGE inter-sqa 51.3 52.6

Table 3: Denotation accuracy on WTQ development
and test set. Median of 5 independent runs are reported.

• Can we use perturbation based data augmen-
tation to achieve robustness at test time?

• Which attention biases in TABLEFORMER

contribute the most to performance?

5.1 Main Results

Table 1, 2, and 3 shows TABLEFORMER perfor-
mance on SQA, TABFACT, and WTQ, respec-
tively. As can be seen, TABLEFORMER outper-
forms corresponding TAPAS baseline models in all
settings on SQA and WTQ datasets, which shows
the general effectiveness of TABLEFORMER’s
structural biases in Table QA datasets. Specifi-
cally, TABLEFORMERLARGE combined with inter-
mediate pretraining achieves new state-of-the-art
performance on SQA dataset.

Similarly, Table 2 shows that TABLEFORMER

also outperforms TAPAS baseline models in all set-
tings, which shows the effectiveness of TABLE-
FORMER in the table entailment task. Note that,
Liu et al. (2021) is not comparable to our results, be-

cause they used different pretraining data, different
pretraining objectives, and BART NLG model in-
stead of BERT NLU model. But TABLEFORMER

attention bias is compatible with BART model.

5.2 Perturbation Results

One of our major contributions is to systematically
evaluate models’ performance when facing row and
column order perturbation in the testing stage.

Ideally, model predictions should be consistent
on table QA and entailment tasks when facing such
perturbation, because the table semantics remains
the same after perturbation.

However, in Table 1 and 2, we can see that in our
perturbed test set, performance of all TAPAS mod-
els drops significantly in both tasks. TAPAS models
drops by at least 3.7% and up to 6.5% in all settings
on SQA dataset in terms of ALL accuracy, while
our TABLEFORMER being strictly invariant to such
row and column order perturbation leads to no drop
in performance.4 Thus, in the perturbation setting,
TABLEFORMER outperforms all TAPAS baselines
even more significantly, with at least 6.2% and
2.4% improvements on SQA and TABFACT dataset,
respectively. In the instance level, we can see that,
with TAPAS, there are many example predictions
changed due to high V P , while there is nearly no
example predictions changed with TABLEFORMER

(around zero V P).

4In SQA dataset, there is at most absolute 0.1% perfor-
mance drop because of some bad data point issues. Specifi-
cally, some columns in certain tables are exactly the same, but
the ground-truth selected cells are in only one of such columns.
TABLEFORMER would select from one column randomly.

533

Model Number of parameters

TAPASBASE 110 M

TABLEFORMERBASE

110 M - 2*512*768
+ 12*12*13 =

110 M - 0.8 M + 0.002 M

TAPASLARGE 340 M

TABLEFORMERLARGE

340 M - 2*512*1024
+ 24*16*13 =

340 M - 1.0 M + 0.005M

Table 4: Model size comparison.

5.3 Model Size Comparison
We compare the model sizes of TABLEFORMER

and TAPAS in Table 4. We added only a few atten-
tion bias scalar parameters (13 parameters per head
per layer) in TABLEFORMER, which is negligible
compared with the BERT model size. Meanwhile,
we delete two large embedding metrics (512 row
ids and 512 column ids). Thus, TABLEFORMER

outperforms TAPAS with fewer parameters.

5.4 Analysis of TABLEFORMER Submodules
In this section, we experiment with several variants
of TABLEFORMER to understand the effectiveness
of its submodules. The performance of all variants
of TAPAS and TABLEFORMER that we tried on the
SQA development set is shown in Table 5.

Learnable Attention Biases v/s Masking. In-
stead of adding learnable bias scalars, we mask out
some attention scores to restrict attention to those
tokens in the same columns and rows, as well as
the paired sentence, similar to Zhang et al. (2020)
(SAT). We can see that TAPASBASE-SAT performs
worse than TAPASBASE, which means that restrict-
ing attention to only same columns and rows by
masking reduce the modeling capacity. This led to
choosing soft bias addition over hard masking.

Attention Bias Scaling. Unlike TABLE-
FORMER, we also tried to add attention biases
before the scaling operation in the self-attention
module (SO). Specifically, we compute pair-wise
attention score by:

Aij =
(h>i W

Q)(h>j W
K)> + Âij√

dK
(6)

instead of using:

Aij =
(h>i W

Q)(h>j W
K)>

√
dK

+ Âij , (7)

rc-gp c-gp gp pcp

TAPASBASE 57.6 47.4 46.4 29.1
TAPASBASE-SAT 45.2 - - -
TABLEFORMERBASE-SO 60.0 60.2 59.8 60.7
TABLEFORMERBASE 62.2 61.5 61.7 61.9

Table 5: ALL questions’ cell selection accuracy of
TABLEFORMER variants on SQA development set. rc-
gp represents the setting including row ids, column
ids and global positional ids, c-gp represents column
ids and global positional ids, gp represents global po-
sitional ids, and pcp represents per-cell positional ids.
“SAT” represents masking out some attention scores.
“SO” represents adding attention bias before scaling.

which is the element-wise version of Equa-
tion 1 and 3. However, Table 5 shows
that TABLEFORMERBASE-SO performs worse than
TABLEFORMERBASE, showing the necessity of
adding attention biases after the scaling operation.
We think the reason is that the attention bias term
does not require scaling, because attention bias
scalar magnitude is independent of dK , while the
dot products grow large in magnitude for large val-
ues of dK . Thus, such bias term could play an
more important role without scaling, which helps
each attention head know clearly what to pay more
attention to according to stronger inductive biases.

Row, Column, & Global Positional IDs.
With TAPASBASE, TABLEFORMERBASE-SO, and
TABLEFORMERBASE, we first tried the full-version
where row ids, column ids, and global positional
ids exist as input (rc-gp). Then, we deleted row
ids (c-gp), and column ids (gp) sequentially. Fi-
nally, we changed global positional ids in gp to
per-cell positional ids (pcp). Table 5 shows that
TAPASBASE performs significantly worse from rc-
gp→ c-gp→ gp→ pcp, because table structure in-
formation are deleted sequentially during such pro-
cess. However, with TABLEFORMERBASE, there is
no obvious performance drop during the same pro-
cess. That shows the structural inductive biases in
TABLEFORMER can provide complete table struc-
ture information. Thus, row ids, column ids and
global positional ids are not necessary in TABLE-
FORMER. We pick TABLEFORMER pcp setting as
our final version to conduct all other experiments in
this paper. In this way, TABLEFORMER is strictly
invariant to row and column order perturbation by
avoiding spurious biases in those original ids.

534

Befor Perturb After Perturb

ALL SEQ ALL V P

TAPASBASE 61.1 31.3 57.4 14.0%

TAPASBASE 1p 63.4 34.6 63.4 9.9%
TAPASBASE 2p 64.6 35.6 64.5 8.4%
TAPASBASE 4p 65.1 37.0 65.0 8.1%
TAPASBASE 8p 65.1 37.3 64.3 7.2%
TAPASBASE 16p 62.4 33.6 62.2 7.0%

TABLEFORMERBASE 66.7 39.7 66.7 0.1%

Table 6: Comparison of TABLEFORMER and perturbed
data augmentation on SQA test set, where V P repre-
sents model prediction variation percentage after per-
turbation. Median of 5 independent runs are reported.

5.5 Comparison of TABLEFORMER and
Perturbed Data Augmentation

As stated in Section 4.3, perturbing row and col-
umn orders as augmented data during training can
serve as another possible solution to alleviate the
spurious row/column ids bias. Table 6 shows the
performance of TABPASBASE model trained with
additional {1, 2, 4, 8, 16} perturbed versions of
each table as augmented data.

We can see that the performance of TAPASBASE
on SQA dataset improves with such augmentation.
Also, as the number of perturbed versions of each
table increases, model performance first increases
and then decreases, reaching the best results with
8 perturbed versions. We suspect that too many
versions of the same table confuse the model about
different row and column ids for the same table,
leading to decreased performance from 8p to 16p.
Despite its usefulness, such data perturbation is
still worse than TABLEFORMER, because it could
not incorporate other relevant text-table structural
inductive biases like TABLEFORMER.

Although, such data augmentation makes the
model more robust to row and column order per-
turbation with smaller V P compared to standard
TAPASBASE, there is still a significant prediction
drift after perturbation. As shown in Table 6, V P
decreases from 1p to 16p, however, the best V P
(7.0%) is still much higher than (nearly) no varia-
tion (0.1%) of TABLEFORMER.

To sum up, TABLEFORMER is superior to row
and column order perturbation augmentation, be-
cause of its additional structural biases and strictly
consistent predictions after perturbation.

ALL SEQ

TABLEFORMERBASE 62.1 38.4

- Same Row 32.1 2.8
- Same Column 62.1 37.7
- Same Cell 61.8 38.4
- Cell to Column Header 60.7 36.6
- Cell to Sentence 60.5 36.4
- Header to Column Cell 60.5 35.8
- Header to Other Header 60.6 35.8
- Header to Same Header 61.0 36.9
- Header to Sentence 61.1 36.3
- Sentence to Cell 60.8 36.2
- Sentence to Header 61.0 37.3
- Sentence to Sentence 60.0 35.3
- All Column Related (# 2, 4, 6) 54.5 29.3

Table 7: Ablation study of proposed attention biases.

5.6 Attention Bias Ablation Study

We conduct ablation study to demonstrate the util-
ity of all 12 types of defined attention biases. For
each ablation, we set the corresponding attention
bias type id to “others” bias id. Table 7 shows
TAPASBASE’s performance SQA dev set. Over-
all, all types of attention biases help the TABLE-
FORMER performance to some extent, due to cer-
tain performance drop after deleting each bias type.

Amongst all the attention biases, deleting “same
row” bias leads to most significant performance
drop, showing its crucial role for encoding table
row structures. There is little performance drop
after deleting “same column” bias, that’s because
TABLEFORMER could still infer the same column
information through “cell to its column header”
and “header to its column cell” biases. After
deleting all same column information (“same col-
umn”, “cell to column header” and “header to col-
umn cell” biases), TABLEFORMER performs signif-
icantly worse without encoding column structures.
Similarly, there is little performance drop after
deleting “same cell” bias, because TABLEFORMER

can still infer same cell information through “same
row” and “same column” biases.

5.7 Limitations of TABLEFORMER

TABLEFORMER increases the training time by
around 20%, which might not be ideal for very
long tables and would require a scoped approach.
Secondly, with the strict row and column order in-
variant property, TABLEFORMER cannot deal with
questions based on absolute orders of rows in ta-
bles. This however is not a practical requirement
based on the current dataset. Doing a manual study
of 1800 questions in SQA dataset, we found that

535

there are 4 questions5 (0.2% percentage) whose
answers depend on orders of rows. Three of them
asked “which one is at the top of the table”, an-
other asks “which one is listed first”. However,
these questions could be potentially answered by
adding back row and column order information
based on TABLEFORMER.

6 Other Related Work

Transformers for Tabular Data. Yin et al.
(2020) prepended corresponding column headers
to cells contents, and Chen et al. (2020) used cor-
responding column headers as features for cells.
However, such methods encode each table header
multiple times, leading to duplicated computing
overhead. Also, tabular structures (e.g. same row
information) are not fully incorporated to such mod-
els. Meanwhile, Yin et al. (2020) leveraged row
encoder and column encoder sequentially, which
introduced much computational overhead, thus re-
quiring retrieving some rows as a preprocessing
step. Finally, SAT (Zhang et al., 2020), Deng
et al. (2021) and Wang et al. (2021) restricted atten-
tion to same row or columns with attention mask,
where such inductive bias is too strict that cells
could not directly attend to those cells in different
row and columns, hindering the modeling ability
according to Table 5. Liu et al. (2021) used the
seq2seq BART generation model with a standard
Transformer encoder-decoder architecture. In all
models mentioned above, spurious inter-cell or-
der biases still exist due to global positional ids
of Transformer, leading to the vulnerability to row
or column order perturbations, while our TABLE-
FORMER could avoid such problem. Mueller et al.
(2019) and Wang et al. (2020) also used relative
positional encoding to encode table structures, but
they modeled the relations as learnable relation vec-
tors, whose large overhead prevented pretraining
and led to poor performance without pretraining,
similarly to ETC (Ainslie et al., 2020) explained in
Section 3.

Structural and Relative Attention. Modified
attention scores has been used to model relative
positions (Shaw et al., 2018), long documents (Dai
et al., 2019; Beltagy et al., 2020; Ainslie et al.,
2020), and graphs (Ying et al., 2021). But adding

5We find such 4 questions by manually looking at
all 125 questions where the model predictions turn from
correct to incorrect after replacing TAPASLARGE with
TABLEFORMERLARGE.

learnable attention biases to model tabular struc-
tures has been under-explored.

7 Conclusion

In this paper, we identified the vulnerability of
prior table encoding models along two axes: (a)
capturing the structural bias, and (b) robustness
to row and column perturbations. To tackle
this, we propose TABLEFORMER, where learnable
task-independent learnable structural attention bi-
ases are introduced, while making it invariant to
row/column order at the same time. Experimental
results showed that TABLEFORMER outperforms
strong baselines in 3 table reasoning tasks, achiev-
ing state-of-the-art performance on SQA dataset,
especially when facing row and column order per-
turbations, because of its invariance to row and
column orders.

Acknowledgments

We thank Julian Eisenschlos, Ankur Parikh, and
the anonymous reviewers for their feedbacks in
improving this paper.

Ethical Considerations

The authors foresee no ethical concerns with the
research presented in this paper.

References
Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-

clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding long and structured inputs
in transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 268–284, Online. Asso-
ciation for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact : A large-scale
dataset for table-based fact verification. In Inter-
national Conference on Learning Representations
(ICLR), Addis Ababa, Ethiopia.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

536

https://doi.org/10.18653/v1/2020.emnlp-main.19
https://doi.org/10.18653/v1/2020.emnlp-main.19
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and
Cong Yu. 2021. TURL: Table Understanding
through Representation Learning. In VLDB.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Julian Eisenschlos, Maharshi Gor, Thomas Müller, and
William Cohen. 2021. MATE: Multi-view attention
for table transformer efficiency. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7606–7619, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Julian Eisenschlos, Syrine Krichene, and Thomas
Müller. 2020. Understanding tables with interme-
diate pre-training. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
281–296, Online. Association for Computational
Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333, Online. Association for
Computational Linguistics.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1821–1831, Vancouver, Canada. Association
for Computational Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and Jian-
guang Lou. 2021. Tapex: Table pre-training via
learning a neural sql executor. arXiv preprint
arXiv:2107.07653.

Thomas Mueller, Francesco Piccinno, Peter Shaw,
Massimo Nicosia, and Yasemin Altun. 2019. An-
swering conversational questions on structured data
without logical forms. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5902–5910, Hong Kong,
China. Association for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages

1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi
Fu, Shi Han, and Dongmei Zhang. 2021. TUTA:
Tree-based Transformers for Generally Structured
Table Pre-training. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1780–1790.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8413–
8426, Online. Association for Computational Lin-
guistics.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do Transformers Really Perform
Bad for Graph Representation? arXiv preprint
arXiv:2106.05234.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. GraPPa:
Grammar-Augmented Pre-Training for Table Se-
mantic Parsing. arXiv preprint arXiv:2009.13845.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.
Table fact verification with structure-aware trans-
former. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1624–1629, Online. Associa-
tion for Computational Linguistics.

537

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/D19-1603
https://doi.org/10.18653/v1/D19-1603
https://doi.org/10.18653/v1/D19-1603
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.emnlp-main.126
https://doi.org/10.18653/v1/2020.emnlp-main.126

