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Abstract

Recent works on knowledge base question an-
swering (KBQA) retrieve subgraphs for easier
reasoning. The desired subgraph is crucial as a
small one may exclude the answer but a large
one might introduce more noises. However,
the existing retrieval is either heuristic or inter-
woven with the reasoning, causing reasoning
on the partial subgraphs, which increases the
reasoning bias when the intermediate supervi-
sion is missing. This paper proposes a train-
able subgraph retriever (SR) decoupled from
the subsequent reasoning process, which en-
ables a plug-and-play framework to enhance
any subgraph-oriented KBQA model. Exten-
sive experiments demonstrate SR achieves sig-
nificantly better retrieval and QA performance
than existing retrieval methods. Via weakly su-
pervised pre-training as well as the end-to-end
fine-tuning, SR achieves new state-of-the-art
performance when combined with NSM (He
et al., 2021), a subgraph-oriented reasoner, for
embedding-based KBQA methods. Codes and
datasets are available online'.

1 Introduction

Knowledge  Base  Question  Answering
(KBQA) (Zhang et al.,, 2021) aims to seek
answers to factoid questions from structured

KBs such as Freebase, Wikidata, and DBPedia.

KBQA has attracted a lot of attention, as the
logically organized entities and their relations
are beneficial for inferring the answer. Semantic
parsing-based (SP-based) methods (Das et al.,
2021; Lan and Jiang, 2020; Sun et al., 2020) and
embedding-based methods (He et al., 2021; Sun
et al., 2018, 2019) are two mainstream methods for
addressing KBQA. The former ones heavily rely
on the expensive annotation of the intermediate
logic form such as SPARQL. Instead of parsing
the questions, the later ones directly represent
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Figure 1: The impact of subgraph size on (a) answer
coverage rate and (b) QA performance (Hits@1) of
NSM (He et al., 2021) on WebQSP (Yih et al., 2016)
and CWQ (Talmor and Berant, 2018).

and rank entities based on their relevance to input
questions. Among them, the models which first
retrieve a question-relevant subgraph and then
perform reasoning on it (He et al., 2021; Sun et al.,
2018, 2019) reduce the reasoning space, showing
superiority compared with reasoning on the whole
KB (Chen et al., 2019a; Saxena et al., 2020; Xu
et al., 2019) (Cf. Table 2 for empirical proof).

Subgraph retrieval is crucial to the overall QA
performance, as a small subgraph is highly likely
to exclude the answer but a large one might intro-
duce noises that affect the QA performance. Fig-
ure 1(a) presents the answer coverage rates of the
subgraphs with different sizes on two widely-used
KBQA datasets, WebQSP (Yih et al., 2016) and
CWQ (Talmor and Berant, 2018). We extract the
full multi-hop topic-centric subgraph and control
the graph size by the personalized pagerank (PPR)
(Haveliwala, 2003) scores of entities. We also
present the QA performance (Hits@1) of NSM (He
et al., 2021), a state-of-the-art embedding-based
model, under the same sizes of the subgraphs in
Figure 1(b). It is observed that although larger sub-
graphs are more likely to cover the answer, the QA
performance drops dramatically when the subgraph
includes more than 5,000 nodes. Moreover, it is
inefficient to extract such a full multi-hop subgraph
for online QA. The results show that such heuris-
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tic retrieval is far from optimal. To improve the
retrieval performance, PullNet (Sun et al., 2019)
proposes a trainable retriever, but the retrieving and
the reasoning processes are intertwined. At each
step, a LSTM-based retriever selects new relations
relevant to the question, and a GNN-based reasoner
determines which tail entities of the new relations
should be expanded into the subgraph. As a result,
the inference as well as the training of the reasoner
needs to be performed on the intermediate partial
subgraph. Since the intermediate supervision is
usually unobserved, reasoning on partial subgraphs
increases the bias which will eventually affect the
answer reasoning on the final entire subgraph.

This paper proposes a subgraph retrieval en-
hanced model for KBQA, which devises a trainable
subgraph retriever (SR) decoupled from the sub-
sequent reasoner. SR is devised as an efficient
dual-encoder that can expand paths to induce the
subgraph and can stop the expansion automatically.
After that, any subgraph-oriented reasoner such as
GRAFT-Net (Sun et al., 2018) or NSM (He et al.,
2021) can be used to delicately deduce the answers
from the subgraph. Such separable retrieval and
reasoning ensure the reasoning only on the final
entire instead of the intermediate partial subgraphs,
which enables a plug-and-play framework to en-
hance any subgraph-oriented reasoner.

We systematically investigate the advantages of
various training strategies for SR, including weakly
supervised/unsupervised pre-training and end-to-
end fine-tuning with the reasoner. Instead of the
ground truth paths, we extract the shortest paths
from a topic entity in the question to an answer
as the weak supervision signals for pre-training.
When the QA pairs themselves are also scarce, we
construct pseudo (question, answer, path) labels
for unsupervised pre-training. To further teach the
retriever by the final QA performance, we enable
the end-to-end fine-tuning, which injects the like-
lihood of the answer conditioned on a subgraph
as the feedback from the reasoner into the prior
distribution of the subgraph to update the retriever.

We conduct extensive experiments on WebQSP
and CWQ. The results reveal four major advan-
tages: (1) SR, combined with existing subgraph-
oriented reasoners, achieves several gains (+0.4-
9.7% Hits@1 and 1.3-8.7% F1) over the same rea-
soner that is performed with other retrieval meth-
ods. Moreover, SR together with NSM creates new
state-of-the-art results for embedding-based KBQA

models. (2) With the same coverage rate of the an-
swers, SR can result in much smaller subgraphs
that can deduce more accurate answers. (3) The
unsupervised pre-training can improve about 20%
Hits@1 when none of the weak supervision data
is provided. (4) The end-to-end fine-tuning can
enhance the performance of the retriever as well as
the reasoner.

Contributions. (1) We propose a trainable SR
decoupled from the subsequent reasoner to en-
able a plug-and-play framework for enhancing any
subgraph-oriented reasoner. (2) We devise SR by a
simple yet effective dual-encoder, which achieves
significantly better retrieval and QA results than the
existing retrieval methods. (3) NSM equipped with
SR, via weakly supervised pre-training and end-to-
end fine-tuning, achieves new SOTA performance
for embedding-based KBQA methods.

2 Related Work

KBQA solutions can be categorized into SP-based
and embedding-based methods. SP-based meth-
ods (Bao et al., 2016; Berant and Liang, 2014; Das
etal.,2021; Lan and Jiang, 2020; Liang et al., 2017;
Qiu et al., 2020b; Sun et al., 2020) parse a ques-
tion into a logic form that can be executed against
the KB. These methods need to annotate expensive
logic forms as supervision or are limited to narrow
domains with a few logical predicates. Embedding-
based methods embed entities and rank them based
on their relevance to the question, where the enti-
ties are extracted from the whole KB (Miller et al.,
2016; Saxena et al., 2020) or restricted in a sub-
graph (Chen et al., 2019a; He et al., 2021; Sun
et al., 2018; Zhang et al., 2018). They are more
fault-tolerant but the whole KB or the ad-hoc re-
trieved subgraph includes many irrelevant entities.
Some works such as PullNet (Sun et al., 2019),
SRN (Qiu et al., 2020a), IRN (Zhou et al., 2018),
and UHop (Chen et al., 2019b) enhance the re-
trieval by training the retriever, but the retrieving
and the reasoning are intertwined, causing the rea-
soning on partially retrieved subgraphs. Because
of such coupled design, the reasoner in SRN, IRN,
and UHop is degenerated into a simple MLP. On
the contrary, thanks to the decoupled design, the
reasoner can be complicated to support more com-
plex reasoning. Other works propose more compli-
cated reasoner for supporting the numerical reason-
ing in KBQA (Feng et al., 2021).
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Open-domain QA (OpenQA) aims to answer
questions based on a large number of documents.
Most of the OpenQA models also consist of a
retriever to identify the relevant documents and
a reasoner to extract the answers from the doc-
uments. The retriever is devised as a sparse
term-based method such as BM25 (Robertson and
Zaragoza, 2009) or a trainable dense passage re-
trieval method (Karpukhin et al., 2020; Sachan
et al., 2021), and the reasoner deals with each doc-
ument individually (Guu et al., 2020) or fuses all
the documents together (Izacard and Grave, 2021).
Different from the documents in openQA, the sub-
graphs in KBQA can be only obtained by multi-hop
retrieval and the reasoner should deal with the en-
tire subgraph instead of each individual relation to
find the answer. Although some openQA research
proposes multi-hop document retrieval (Asai et al.,
2020), the focus is the matching of the documents
rather than the relations to the questions in KBQA.
Thus the concrete solution for KBQA should be
different from openQA.

3 Problem Definition

A knowledge base (KB) G organizes the fac-
tual information as a set of triples, i.e., G =
{(e,r,€')|e,¢’ € E,r € R}, where E and R de-
note the entity set and the relation set respectively.
Given a factoid question g, KBQA is to figure out
the answers A, to the question ¢ from the entity
set I/ of GG. The entities mentioned in ¢ are topic
entities denoted by E; = {e,}, which are assumed
to be given. This paper considers the complex ques-
tions where the answer entities are multi-hops away
from the topic entities, called multi-hop KBQA.

Probabilistic Formalization of KBQA. Given a
question ¢ and one of its answers a € A,, we for-
malize the KBQA problem as maximizing the prob-
ability distribution p(a|G, q). Instead of directly
reasoning on (G, we retrieve a subgraph G C G and
infer ¢ on G. Since G is unknown, we treat it as a
latent variable and rewrite p(a|G, q) as:

plalG.q) = Y pslalg,G)pe(Glg). (1)
g

In the above equation, the target distribution
p(a|G, q) is jointly modeled by a subgraph retriever
pe(G|q) and an answer reasoner py(alq,G). The
subgraph retriever pgy defines a prior distribution
over a latent subgraph G conditioned on a question

g, while the answer reasoner p predicts the like-
lihood of the answer a given G and ¢q. The goal
is to find the optimal parameters # and ¢ that can
maximize the log-likelihood of training data, i.e.,

£(0,) = max (qﬂ%@log%jm(ﬂq, 9po(Gla), )
where D is the whole training data. Thanks to this
formulation, the retriever can be decoupled from
the reasoner by firstly training the retriever py and
then the reasoner p, on the subgraphs sampled by
the retriever. Via drawing a sample G (Sachan et al.,
2021), we can approximate Eq. (2) as:

L(8,¢) = rgng(q#%eDlogpqﬁ(alq, G) +logps(Glg), (3)
where the first and the second term can be opti-
mized for the reasoner and the retriever respec-
tively. The concrete reasoner can be instantiated
by any subgraph-oriented KBQA model such as
the GNN-based GRAT-Net (Sun et al., 2018) and
NSM (He et al., 2021).

4 Subgraph Retriever (SR)

The retriever needs to calculate pyg(G|q) for any
G, which is intractable as the latent variable G is
combinatorial in nature. To avoid enumerating G,
we propose to expand top-K paths relevant to ¢
from the topic entities and then induce the subgraph
following these paths.

4.1 Expanding Paths

Path expanding starts from a topic entity and fol-
lows a sequential decision process. Here a path
is defined as a sequence of relations (71, -+, 7|y|),
since a question usually implies the intermediate
relations excluding the entities. Suppose a par-
tial path p® = (ri,---,7¢) has been retrieved
at time ¢, a tree can be induced from p(*) by fill-
ing in the intermediate entities along the path, i.e.,
T® = (e4, 71, Er,--- , 74, Ey). Each Ey is an en-
tity set as a head entity and a relation can usually
derive multiple tail entities. Then we select the next
relation from the union of the neighboring relations
of ;. The relevance of each relation r to the ques-
tion ¢ is measured by the dot product between their
embeddings, i.e.,

s(g,7) = f(a) " h(r), )
where both f and h are instantiated by
RoBERTa (Liu et al., 2019). Specifically, we input
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Figure 2: Illustration of the subgraph retrieving process. We expand a path from each topic entity as well as induce
a corresponding tree, and then merge the trees from different topic entities to form a unified subgraph.

the question or the name of r into RoOBERTa and
take its [CLS] token as the output embedding. Ac-
cording to the assumption (Chen et al., 2019b; He
etal., 2021; Qiu et al., 2020a; Zhou et al., 2018) that
expanding relations at different time steps should
attend to specific parts of a query, we update the
embedding of the question by simply concatenating
the original question with the historical expanded
relations in p(t) as the input of ROBERT%, i.e.,

f(¢"") = RoBERTa([g; r1; - -

srel), (5)

Thus s(q,r) is changed to s(¢®,r) =
f(@)Th(r). Then the probability of a relation
r being expanded can be formalized as:

1
1+ exp (S(q(t)aEND) - S(q“), 'I")) ’

p(rlg") = (6)

where END is a virtual relation named as “END”.
The score s(g(*), END) represents the threshold of
the relevance score. p(r|¢(")) is larger than 0.5
if s(¢®,7) > s(¢®™,END) and is no larger than
0.5 otherwise. We select the top-1 relation with
p(r|g®) > 0.5. The expansion is stopped if none
of the probabilities of the relations is larger than
0.5. Finally, the probability of a path given the
question can be computed as the joint distribution
of all the relations in the path, i.e.,

Ip|

po(pla) = Hp re|g" (7

where |p| denotes the number of relations in p, t =
1 indicates the selection at the topic entity and ¢ =
|p| denotes the last none-stop relation selection.
Since the top-1 relevant path cannot be guaranteed
to be right, we perform a top-K beam search at
each time to get K paths. From each topic entity,
we obtain K paths which result in nK paths in
total by n topic entities. nK paths correspond to
nK instantiated trees.

4.2 Inducing Subgraph

We take the union of top-K trees from one topic
entity into a single subgraph, and then merge the
same entities from different subgraphs to induce
the final subgraph. This can reduce the subgraph
size, i.e., the answer reasoning space, as the sub-
graphs from different topic entities can be viewed
as the constraints of each other. Specifically, from
the n subgraphs of the n topic entities, we find the
same entities and merge them. From these merged
entities, we trace back in each subgraph to the root
(i.e., a topic entity) and trace forward to the leaves.
Then we only keep the entities and relations along
the tracing paths of all the trees to form the fi-
nal subgraph. For example in Figure 2, given a
question “Where did Canadian citizens with Turing
Award graduate?” with two topic entities “Turing
Award” and “Canada”, we can explain it by the
two expanded paths (Win, Graduate) and (Citizen,
Graduate) and merge the trees induced by them to
form a unified subgraph. Only the top-1 path is
presented in the figure for a clear illustration.

5 Training Strategies

In this section, we discuss the pre-training and the
end-to-end fine-tuning strategies to train the re-
triever. Figure 3 illustrates the whole framework
and the training procedure.

5.1 Weakly Supervised Pre-Training

Since the ground truth subgraphs are not easy to
be obtained, we resort to the weak supervision
signals constructed from the (g, a) pairs. Specif-
ically, from each topic entity of a question, we
retrieve all the shortest paths to each answer as
the supervision signals, as paths are easier to be
obtained than graphs. Since maximizing the log-

2Some work views “Canada” as a constraint, which is not
easy to be distinguished with the topic entity “Turing Award”.
Thus this paper treats both of them as topic entities.

5776



For retriever

For retriever

+ pre-training fine-tuning
7777777777777777 . Retricver ! 5
p(rlg™) i
/(t) ( Dot-product @) Prior ] X Posterior Likelihood
w q) &) Po(Prld) || SO0, po.o (prlas @) 77 po(alq, pr)
(re, Ey) Top-K inner product search h(r) paths trees Fotrr;?:is;);er
into tree from relation embeddings A
R - - - 1 nK paths FusingnK [ | Likelihood
1T0p K relations |—>| Relation encoder | and trees trees as G Reasoner polalg, G)

Figure 3: Overview of SR and its training strategies. Given a question, SR generates nK paths via iteratively
expanding the relations. We pre-train the retriever based on the prior of each path and train the reasoner based on
the likelihood of the subgraph fused from the n K trees. For end-to-end training, the retriever is fine-tuned on the
posterior of each path that consists of the prior and the likelihood of it. SG is the stop-gradient operation.

likelihood of a path equals to L’il log p(r¢|q")

according to Eq. (7), we can maximize the prob-
abilities of all the intermediate relations in a
path. To achieve the goal, we decompose a path
p = (r1,---,7p) into |p| 4+ 1 (question, re-
lation) instances, including ([q],71), ([¢;71],72),
woor ([g3715725 -+ 3 7p|=1]5 7|p|)» and an additional
END instance ([g;71;72; -+ ; 7|p(], END), and op-
timize the probability of each instance. We replace
the observed relation at each time step with other
sampled relations as the negative instances to opti-
mize the probability of the observed ones.

5.2 Unsupervised Pre-Training

When the (g, a) pairs are also scarce, we train the
retriever in an unsupervised manner independent
from the (g, a) pairs. We leverage the NYT dataset,
a distant supervision dataset for relation extraction
(Riedel et al., 2010) to construct the pseudo (g, a, p)
labels. In this dataset, each instance is denoted as
a tuple (s, (e1,7,e2)), where s is a sentence that
refers to the relation r between two entities e; and
e9 mentioned in the sentence s. For two instances
(81, (61, 1, 62)) and (82, (62, 9, 63)), we treat e
as the topic entity and e3 as the answer. Then we
concatenate s and so as the question, and concate-
nate r; and r9 as the corresponding path to train
the retriever. The training objective is the same as
the weakly supervised pre-training.

5.3 [End-to-End Fine-tuning

End-to-end training is an alternative to fine-tune
the separately trained retriever and the reasoner
jointly. The main idea is to leverage the feedback
from the reasoner to guide the path expansion of
the retriever. To enable this, we optimize the poste-
rior pg 4(G|q, a) instead of the prior pg(G|q), since
the former one contains the additional likelihood

pg(alg, pr) which exactly reflects the feedback
from the reasoner. We do not directly optimize the
posterior py 4(G|q, a), because G is induced from
nK paths, making it unknown which path should
receive the feedback from the likelihood computed
on the whole G. Instead, we approximate p(G|q, a)
by the sum of the probabilities of the nK paths
and rewrite the posterior of each path by Bayes’
rule (Sachan et al., 2021), i.e.,

nkK
Pos(Gle,a) ~ Y pog(pele, a), ®)
k=1
nkK
x> polalg, pr)pe(pela),
k=1

where py(pg|q) is the prior distribution of the k-
th path that can be estimated by Eq. (7), and
pe(alq, pr) is the likelihood of the answer a given
the k-th path. Essentially, py(a|q, pi,) estimates the
answer a on the single tree induced by the k-th path
instead of the fused subgraph by nK paths. As a
result, the reasoning likelihood on each tree can be
reflected to the corresponding path that induces the
tree. The reasoner for estimating py(a|q, py) is the
same as that for calculating py(alq, G).

In summary, the whole objective function for
each training instance (¢, a, G) is formalized as:

£ = maxlogpy(alg, 9) ©)
Reasoner
nk

+ meaxlogZSG(qu(a’qapk))pe(pHQ)a
k=1

Retriever

where the stop-gradient operation SG is to stop
updating the parameters ¢. The reasoner is updated
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the same as the two-stage training by computing the
likelihood py(alq, G) on G sampled by the retriever
(without using information from the answer a). As
a result, there is no mismatch between the training
and evaluation when computing py(alq,G), as G
relies only on the prior at both.

Intuitively, we train the reasoner to extract the
correct answer given the subgraph induced from
nK highest scoring paths. And we train the re-
triever to select nK paths which collectively have
a high score to deduce the answer when taking
the feedback from the reasoner into account. Al-
though the two components are jointly trained, the
reasoning is still performed on the retrieved entire
subgraph at each epoch. We present the training
process in Appendix.

6 Experiments

In this section, we conduct extensive experiments
to evaluate the subgraph retrieval (SR) enhanced
model. We design the experiments to mainly an-
swer the four questions: (1) Does SR take effect
in improving the QA performance? (2) Can SR
obtain smaller but higher-quality subgraphs? (3)
How does the weakly supervised and unsupervised
pre-training affect SR’s performance? (4) Can end-
to-end fine-tuning enhance the performance of the
retriever as well as the reasoner?

6.1 Experimental Settings

Datasets. We adopt two benchmarks, WebQues-
tionSP (WebQSP) (Yih et al., 2016) and Com-
plex WebQuestion 1.1 (CWQ) (Talmor and Berant,
2018), for evaluating the proposed KBQA model.
Table 1 shows the statistics.

Evaluation Metrics. We evaluate the retriever by
the answer coverage rate, which is the proportion
of questions for which the topic-n K retrieved paths
contain at least one answer. This metric reflects
the upper bound of the QA performance and is de-
noted as Hits@ K. For QA performance, We use
Hits@1 to evaluate whether the top-1 predicted
answer is correct. Since some questions have mul-
tiple answers, we also predict the answers by the
optimal threshold searched on the validation set
and evaluate their F1 score.

Baseline Models. We compare with embedding-
based KBQA models, in which EmbedKGQA (Sax-
ena et al., 2020) directly optimizes the triplet (topic

Table 1: Data statistics. The number of QA pairs for
training, validating and testing are presented.

Dataset |#Train #Validation #Test

WebQSP | 2,848 250 1,639
CWQ 27,639 3,519 3,531

Table 2: QA performance on WebQSP and CWQ (%).

WebQSP CWQ
Model Hits@l Fl | His@l FI
SP-based models
SPARQA - - 31.6 -
QGG 73.0 73.8 36.9 37.4
CBR-KBQA - 72.8 - 70.0
Embedding-based models
KV-Mem 46.6 34.5 18.4 15.7
EmbedKGQA 66.6 - 32.0 -
BAMnet 55.6 51.8 - -
GRAFT-Net (GN) 66.4 60.4 36.8 32.7
NSM 68.5 62.8 46.3 42.4
PullNet 68.1 - 45.9 -
Our Models
SR+NSM 68.9 64.1 50.2 47.1
SR+GN 65.2 61.2 46.5 41.4
SR+NSM w E2E 69.5 64.1 49.3 46.3
SR+GN w E2E 66.7 63.1 49.0 42.7

entity, question, answer) based on their direct em-
beddings. KV-Mem (Miller et al., 2016) BAM-
Net (Chen et al., 2019a) store triplets in a key-
value structured memory for reasoning. GRAFT-
Net (Sun et al., 2018), BAMNet (Chen et al.,
2019a), NSM (He et al., 2021), and PullNet (Sun
et al., 2019) are subgraph-oriented embedding mod-
els. We also compare with the SP-based models,
in which QGG (Lan and Jiang, 2020) generates
the query graph for a question by adding the con-
straints and extending the relation paths simulta-
neously, SPARQA (Sun et al., 2020) proposes a
novel skeleton grammar to represent a question,
and CBR-KBQA (Das et al., 2021) leverages Big-
Bird (Zaheer et al., 2020), a pre-trained seq2seq
model to directly parse a question into a SPARQL
statement that can be executed on graph DBs. SR
is default trained by weakly supervised pre-training
and the default path number is set to 10.

6.2 Opverall QA Evaluation

We compare with state-of-the-art KBQA models
and present the Hits@1 and F1 scores in Table 2.
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Table 3: The answer coverage rate of SR on WebQSP and CWQ (%).

Model WebQSP CWQ
Hits@1 Hits@5 Hits@10 Hits@20 | Hits@1 Hits@5 Hits@10 Hits@20
SR w SuperT 78.0 90.7 90.5 95.0 - - - -
SR 71.2 87.5 90.5 92.9 51.5 72.6 79.5 83.7
SR w/o QU 66.9 82.6 86.2 89.4 36.5 46.4 50.8 54.9
SR w/o PE 52.7 71.4 74.8 78.1 49.4 62.3 66.6 71.6
SR+NSM w E2E| 79.3 89.8 91.6 93.3 53.5 73.4 78.4 82.8
SR+GNwE2E | 818 90.2 92.9 94.4 56.1 74.5 79.6 83.9

SP-based Models. The SP-based model CBR-
KBQA achieves the best performance on CWQ.
This is expected, as CBR-KBQA leverages a pre-
trained seq-to-seq model to parse the input question
into a SPARQL statement. However, the model de-
pends on the annotated SPARQL statements, which
are expensive to be annotated in practice.

Embedding-based Models. Among these models,
KV-Mem and EmbedKGQA retrieve the answers
from the global key-value memory built on the KB
or the original whole KB, which enjoys high recall
but suffers from many noisy entities. Compared
with these global retrievals, BAMNet builds the
key-value memory on a subgraph, but it is a full
multi-hop topic-entity-centric subgraph, which is
also noisy. GRAFT-Net and NSM calculate PPR
scores to control the subgraph size, but the ad-hoc
retrieval method is still far from optimal. PullNet
reinforces the retrieval by learning a retriever, but
the retriever and the reasoner are intertwined, caus-
ing the partial reasoning on part of a subgraph,
which increases the reasoning bias.

Our Models. Compared with the above
embedding-based models, a performance improve-
ment on both the datasets can be observed, e.g.,
NSM injected by SR (SR+NSM) improves 0.4%
Hits@1 and 1.3% F1 on WebQSP, 3.9% Hits@1
and 4.7% F1 on CWQ compared with the origi-
nal NSM. We also show that SR can be adapted
to different subgraph-oriented reasoners. Beyond
NSM, when injecting SR to GRAFT-NET, it also
significantly improves 9.7% Hits@1 and 8.7%F1
on CWQ. SR+GN underperforms GN on WebQSP
because GN filters out the relations of the knowl-
edge graph not in the training set of WebQSP. We
do not inject SR into BAMNet as the model needs
entity types in the subgraph, which is temporarily
ignored by SR .

Summary. The overall evaluation shows that

Answer coverage rate (%)

Answer coverage rate (%)
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Figure 4: Comparison of the answer coverage rate
under various subgraph sizes (Top row) and the QA
performance (Hits@ 1) under various answer coverage
rates (Bottom row).

SR takes effect in improving the QA performance
when injecting it before a subgraph-oriented rea-
soner, and SR equipped with NSM creates a
new state-of-the-art model for embedding-based
KBQA.

6.3 Retriever Evaluation

Quality of Retrieved Subgraph. We evaluate
whether the proposed SR can obtain smaller but
higher-quality subgraphs, which are measured by
not only the direct subgraph size and answer cov-
erage rate but also the final QA performance. For
a fair comparison, we fix the reasoner as NSM,
and vary the retriever as SR and the PPR-based
heuristic retrieval (Sun et al., 2018; He et al., 2021).
PPR+NSM are performed on the same knowledge
graph of the proposed SR+NSM. The result of the
trainable retriever in PullNet (Sun et al., 2019) is
ignored, because its code is not published and the
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Figure 5: Retriever’s performance by pre-training in
terms of Hits@ 10 of answer coverage rate (AC). UnP
denotes unsupervised pre-training.

value of some key parameters that seriously impact
the model’s performance is unknown.

We report the comparison results in Figure 4.
The top row presents the answer coverage rates of
the subgraphs with various sizes. It is shown that
when retrieving the subgraphs of the same size, the
answer coverage rate of SR is significantly higher
than PPR. The bottom row presents the QA per-
formance (Hits@1) on the subgraphs with various
answer coverage rates. It is shown that by perform-
ing the same NSM on the subgraphs with the same
coverage rate, the subgraphs retrieved by SR can
result in higher QA performance than PPR.

Summary. The above results show that SR can
obtain smaller but higher-quality subgraphs.

Effect of Question Update, Path Ending, and
Subgraph Merge. We investigate the effects of the
strategies used in SR, including the question up-
dating strategy (QU) which concatenates the orig-
inal question with the partially expanded path at
each time step, the path ending strategy (PE) which
learns when to stop expanding the path, and the
subgraph merging strategy (GM) which induces a
subgraph from the top-n K paths.

Table 3 indicates that based on SR, Hits@1 drops
4.3-15.0% when removing QU (SR w/o QU) and
Hits@1 drops 2.1-18.5% when changing PE to the
fixed path length 7" (SR w/o PE), where the optimal
T is set to 3 on both WebQSP and CWQ.

Table 4 shows that based on SR+NSM, the aver-
age subgraph size increases from 174 to 204, and
Hits@1 of QA drops 0.1% when removing the sub-
graph merging strategy (SR+NSM w/o GM) but
directly taking the union of all the subgraphs from
different topic entities to induce the subgraph. We
only present the results on CWQ as most of the
questions in WebQSP only contain one topic entity,
which does not need the merge operation.

Table 4: Performance of subgraph merging strategy
(GM) on CWQ.

Model | Subgraphsize Hits@1 of QA (%)
SR+NSM 174 50.2
SR+NSM w/o GM 204 50.1

Summary. The above results verify the effective-
ness of the devised QU, PE, and GM in SR.

6.4 Training Strategy Evaluation

Effect of Pre-training. We investigate the effects
of the weakly supervised and the unsupervised pre-
training on the SR. Table 3 shows the performance
of the supervised training (SR w SuperT) and the
weakly supervised pre-training (SR), which indi-
cates that SR is comparable with SR w SuperT
when retrieving top-10 paths. Because a single
ground-truth path between a topic entity and an
answer is provided by WebQSP, which might omit
the situation when multiple ground truth paths can
be found. In view of this, the weakly supervised
way that retrieves multiple shortest paths as the
ground truth can provide richer supervision signals.
We ignore the supervised training in CWQ because
the ground truth paths are not explicitly given in
the dataset.

We further vary the proportion of the weakly
supervised data in {0%, 20%, 50%, 100%}, and
present the corresponding answer coverage rate
of the subgraph induced by top-10 paths (i.e.
Hits@10) in Figure 5. Note 0% means the
RoBERTa used in SR don’t have any fine-tuning.
The performance shows a consistent growth with
the weakly generated data size, which demonstrates
its positive effect.

Before the weakly supervised pre-training, we

create 100,000 pseudo instances for unsupervised
pre-training (Cf. Section 5 for details). The re-
sults presented by the orange bars show that un-
supervised pre-training can significantly improve
the original SR (0% weakly supervised data) by
about 20% Hits@ 1. However, with the increase of
the weakly-supervised data, adding unsupervised
pre-training does not take better effect.
Summary. The above results show the effective-
ness of the weakly supervised pre-training. Mean-
while, the unsupervised strategy can be an alterna-
tive choice when the QA pairs are scarce.

Effect of End-to-End Fine-tuning. Table 3 shows
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both SR+NSM w E2E and SR+GN w E2E im-
prove 2-10.6% Hits@1 of retrieval based on SR.
Table 2 shows SR+NSM w E2E improves 0.6%
Hits@1 of QA based on SR+NSM on WebQSP,
and SR+GRAFT-Net w E2E improves 1.5-2.5%
Hits@1 of QA based on SR+GRAFT-Net. Al-
though SR+NSM w E2E underperforms SR+NSM
on CWQ, we suggest to reason on the top-1 re-
trieved results, which are much better than those
before fine-tuning .

Summary. The above results indicate that the an-
swer likelihood estimated by the reasoner provides
positive feedback for fine-tuning the retriever. With
the improvement of the retriever, the reasoner can
be also enhanced by the updated subgraphs.

7 Conclusion

We propose a subgraph retriever (SR) decoupled
from the subsequent reasoner for KBQA. SR is de-
vised as an efficient dual-encoder that can update
the question when expanding the path as well as
determining the stop of the expansion. The exper-
imental results on two well-studied benchmarks
show SR takes effect in improving the QA perfor-
mance if injecting it before a subgraph-oriented rea-
soner. SR equipped with NSM creates new SOTA
results for embedding-based KBQA methods if
learning SR by weakly supervised pre-training as
well as end-to-end fine-tuning.
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Table 5: Paths learned by

the proposed retriever SR.

Question

| Top-nK (K=2, n is #topic entities) Retrieved Paths

Which airport to fly into <Rome>?

p1 = Rome:(travel_destination, transportation)
p2 = Rome:(nearby_airports)*

<Santo Domingo> is the capital of the country
with what currency?

p1 = Santo Domingo:(capital_of, currency_used)
p2 = Santo Domingo:(containedby, currency_used)*

What is the home county of the person who said <“Few
people have the virtue to withstand the highest bidder?”>?

p1 = (quotation_author, place_of_birth)
p2 = (quotation_author, places_lived)*

What is the most recent movie directed by <Angelina Jolie>?

p1 = Angelina Jolie:(director_of_film, release_date)
p2 = Angelina Jolie:(producer_of_film, release_date)*

What movie, written by <Katerine Fugate>,
featured <Taylor Swift>?

p1 = Katerine Fugate:(film_writer)

po = Katerine Fugate:(film_story_contributor)*
p3 = Taylor Swift:(actor_film)

p4 = Taylor Swift:(nominations, nominated_for)*

What country bordering <Argentina>
is in the <Brasilia Time Zone>?

p1 = Argentina:(location_adjoins)

p2 = Argentina:(import_from)*

ps = Brasilia Time Zone:(location_time_zone)

p4 = Brasilia Time Zone:(location_used, contained_by)*

Where was the artist that had <This Summer Tour> raised?

p1 = This Summer Tour:(music_artist, place_of_birth)
p2 = This Summer Tour:(music_artist, artist_origin)*

What position did <Vince Lombardi> play?

p1 = Vince Lombardi:(basketball_player_position)
p2 = Vince Lombardi:(teams, team_roster_position)*

What city is <Acadia University> in?

p1 = Acadia University:(headquarters, mailing_address)
p2 = Acadia University:(contained_by)*

What was the first book written by
the author of <“The Cricket on the Hearth”>?

p1 = “The Cricket on the Hearth”:(author, works_written)
p2 = “The Cricket on the Hearth”:(author, book_published)*

‘Who married to the person who lived in <Downe, Kent>?

p1 = Downe, Kent:(person_lived, spouse)
p2 = Downe, Kent:(person_lived, children, parent)*

Find the location of the film <Fan Chan>,
what language is spoken there?

p1 = Fan Chan:(film_location, languages_spoken)
p2 = Fan Chan:(film_location, official_language)*

A Appendix

A.1 Interpretability of Retrieved Paths.

We present the top-nK paths learned by the pro-
posed SR for several questions in Table 5 on We-
bQSP and CWQ. Each path is denoted by its topic
entity before the colon. A path denoted by * means
it is the new path discovered by SR beyond the
ground-truth path provided by WebQSP and CWQ.
The paths can explain why an answer is inferred
for a question.

A.2 Training Algorithm.

We present the whole training process in Algo-
rithm 1, where we first pre-train the retriever, then
train the reasoner based on the retrieved subgraph,
and finally end-to-end fine-tune the retriever and
the reasoner together.

Algorithm 1: Training Algorithm

Input: G, {(q,a)}
Output: Learned parameters 6 and ¢.
Pre-train the retriever by weakly supervised
signals or unsupervised signals plus only
20% weakly supervised signals;
Train the reasoner on the retrieved
subgraphs;

/* End-to-End training:

while not converge do

For each (g, a) pair, sample a subgraph
G by current retriever;

Update ¢ by optimizing the first term of
Eq. (9) on all the (¢, a, G) instances;

Update € by optimizing the second term
of Eq. (9) on all the (¢, a, G) instances;

*/

end
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A.3 Experimental Implementation

We provide the training and inference details of all
the experiments as below.

General Setting. We use RoBERTa-base in our
paper (Liu et al., 2019). The basic RoOBERTa con-
tains 12 layers, 768-d hidden size, and 12 attention
heads, resulting in 110M parameters in total. On
WebQSP and CWQ, the batch size for training both
the retriever and the reasoner is set as 16 and 20
respectively.

Supervised Training. WebQSP provides the re-
lation chains corresponding to each (question, an-
swer) pair. For each question, we use each relation
chain from each topic entity to the answer as the
ground truth path. In this way, we obtain 3,098
(question, path) instances which can be decom-
posed into 5,394 (question, relation) instances in
total for supervised training. The learning rate for
supervised training is set as Se-5. An epoch takes
about 5 minutes and the loss function converges
within 10 epochs on WebQSP/CWQ. We ignore
supervised training on CWQ because the explicit
paths are not provided.

Weakly supervised Pre-training. For weakly su-
pervised pre-training, the ground truth paths are
unavailable. To create the pseudo paths, for each
(question, answer) pair, we extract all the short-
est paths between each topic entity and an answer.
We create 16,000/150,000 (question, relation) in-
stances in total for weakly supervised pre-training.
The learning rate for weakly supervised training is
set as 5e-5. An epoch takes about 5 minutes and
the loss function converges within 10 epochs.

Unsupervised Pre-training. From the NYT
dataset (Riedel et al., 2010), we create 100,000
(sentence, path) pseudo instances. The learning
rate for unsupervised training is set as 5Se-5. An
epoch takes about 5 minutes and the loss function
converges within 10 epochs. The unsupervised
pre-training is performed once and then SR can be
adapted to various KBQA datasets.

End-to-End Training. Before end-to-end training,
the retriever needs to be warmed up by weakly su-
pervised pre-training or unsupervised pre-training.
The reasoner also needs to be warmed up by su-
pervised training on the (question, answer) pairs.
For training the NSM reasoner (He et al., 2021),
an epoch with batch size 20 takes 55 seconds and

the loss function converges within 80 epochs. The
learning rate for warming up the reasoner is set as
le-4. For end-to-end training, the learning rate is
set as le-5.

A.4 Inference

We retrieve the top 10 relevant relations at each
step which results in 10 paths for each topic entity.
The number 10 is determined at the pre-training
stage by checking the inflection point of the answer
coverage rate on the validation set. The average
time of online inference including both the sub-
graph retrieving and the reasoning can be within
1 second. By comparison, GRAFT-Net and NSM
which first retrieve the whole two-hop subgraph
and then prune it by the PPR scores spend about 2
to 3 seconds or even 7 to 8 seconds for retrieving
some dense subgraphs.
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